Self-similar solutions in a sector for a quasilinear parabolic equation

  • Received: 01 January 2012 Revised: 01 October 2012
  • Primary: 35C06, 35C07; Secondary: 35K59, 35B40.

  • We study a two-point free boundary problem in a sector for a quasilinear parabolic equation. The boundary conditions are assumed to be spatially and temporally "self-similar" in a special way. We prove the existence, uniqueness and asymptotic stability of an expanding solution which is self-similar at discrete times. We also study the existence and uniqueness of a shrinking solution which is self-similar at discrete times.

    Citation: Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation[J]. Networks and Heterogeneous Media, 2012, 7(4): 857-879. doi: 10.3934/nhm.2012.7.857

    Related Papers:

    [1] Bendong Lou . Self-similar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7(4): 857-879. doi: 10.3934/nhm.2012.7.857
    [2] Peter V. Gordon, Cyrill B. Muratov . Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7(4): 767-780. doi: 10.3934/nhm.2012.7.767
    [3] Flavia Smarrazzo, Alberto Tesei . Entropy solutions of forward-backward parabolic equations with Devonshire free energy. Networks and Heterogeneous Media, 2012, 7(4): 941-966. doi: 10.3934/nhm.2012.7.941
    [4] F. R. Guarguaglini, R. Natalini . Nonlinear transmission problems for quasilinear diffusion systems. Networks and Heterogeneous Media, 2007, 2(2): 359-381. doi: 10.3934/nhm.2007.2.359
    [5] Wen Dong, Dongling Wang . Mittag-Leffler stability of numerical solutions to linear homogeneous time fractional parabolic equations. Networks and Heterogeneous Media, 2023, 18(3): 946-956. doi: 10.3934/nhm.2023041
    [6] Juraj Földes, Peter Poláčik . On asymptotically symmetric parabolic equations. Networks and Heterogeneous Media, 2012, 7(4): 673-689. doi: 10.3934/nhm.2012.7.673
    [7] Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch . Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16(2): 283-315. doi: 10.3934/nhm.2021007
    [8] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009
    [9] Patrick Joly, Maryna Kachanovska, Adrien Semin . Wave propagation in fractal trees. Mathematical and numerical issues. Networks and Heterogeneous Media, 2019, 14(2): 205-264. doi: 10.3934/nhm.2019010
    [10] Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo . On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13(4): 585-607. doi: 10.3934/nhm.2018027
  • We study a two-point free boundary problem in a sector for a quasilinear parabolic equation. The boundary conditions are assumed to be spatially and temporally "self-similar" in a special way. We prove the existence, uniqueness and asymptotic stability of an expanding solution which is self-similar at discrete times. We also study the existence and uniqueness of a shrinking solution which is self-similar at discrete times.


    [1] P. Brunovský, P. Poláčik and B. Sandstede, Convergence in general periodic parabolic equation in one space dimension, Nonlinear Anal., 18 (1992), 209-215. doi: 10.1016/0362-546X(92)90059-N
    [2] Y.-L. Chang, J.-S. Guo and Y. Kohsaka, On a two-point free boundary problem for a quasilinear parabolic equation, Asymptotic Anal., 34 (2003), 333-358.
    [3] X. Chen and J.-S. Guo, Motion by curvature of planar curves with end points moving freely on a line, Math. Ann., 350 (2011), 277-311. doi: 10.1007/s00208-010-0558-7
    [4] H.-H. Chern, J.-S. Guo and C.-P. Lo, The self-similar expanding curve for the curvature flow equation, Proc. Amer. Math. Soc., 131 (2003), 3191-3201. doi: 10.1090/S0002-9939-03-07055-2
    [5] G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations, J. Partial Differential Equations, 1 (1988), 12-42.
    [6] A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964.
    [7] M.-H. Giga, Y. Giga and H. Hontani, Selfsimilar expanding solutions in a sector for a crystalline flow, SIAM J. Math. Anal., 37 (2005), 1207-1226. doi: 10.1137/040614372
    [8] J.-S. Guo and B. Hu, A shrinking two-point free boundary problem for a quasilinear parabolic equation, Quart. Appl. Math., 64 (2006), 413-431.
    [9] J.-S. Guo and Y. Kohsaka, Self-similar solutions of two-point free boundary problem for heat equation, in "Nonlinear Diffusion Systems and Related Topics" RIMS Kokyuroku 1258, Kyoto University, (2002), 94-107.
    [10] D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi, A mathematical study of the one-dimensional Keller and Rubinow model for Liesegang bands, J. Stat. Phys., 135 (2009), 107-132. doi: 10.1007/s10955-009-9701-9
    [11] J. B. Keller and S. I. Rubinow, Recurrent precipitation and Liesegang rings, J. Chem. Phys., 74 (1981), 5000-5007. doi: 10.1063/1.441752
    [12] Y. Kohsaka, Free boundary problem for quasilinear parabolic equation with fixed angle of contact to a boundary, Nonlinear Anal., 45 (2001), 865-894. doi: 10.1016/S0362-546X(99)00422-8
    [13] G. M. Lieberman, "Second Order Parabolic Differential Equations," World Scientific Publishing Co., Inc., NJ, 1996.
    [14] O. A. Ladyzhenskia, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasi-linear Equations of Parabolic Type," Amer. Math. Soc., Providence, Rhode Island, 1968.
    [15] preprint.
    [16] H. Matano, K. I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit, Netw. Heterog. Media, 1 (2006), 537-568. doi: 10.3934/nhm.2006.1.537
    [17] D. A. V. Stow, "Sedimentary Rocks in the Field: A Color Guide," Academic Press, 2005.
    [18] K. H. W. J. Ten Tusscher and A. V. Panfilov, Wave propagation in excitable media with randomly distributed obstacles, Multiscale Model. Simul., 3 (2005), 265-282. doi: 10.1137/030602654
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5299) PDF downloads(65) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog