Loading [MathJax]/jax/output/SVG/jax.js

Some attempts to couple distinct fluid models

  • Received: 01 January 2010 Revised: 01 June 2010
  • Primary: 76T10, 65M08; Secondary: 76S05, 35Q70.

  • We present in this paper a review of some recent works dedicated to the numerical interfacial coupling of fluid models. One main motivation of the whole approach is to provide some meaningful methods and tools in order to compute unsteady patterns, while using distinct existing CFD codes in the nuclear industry. Thus, the main objective is to derive suitable boundary conditions for the codes to be coupled. A first section is devoted to a review of some attempts to couple: (i) 1D and 3D codes, (ii) distinct homogeneous two-phase flow models, (iii) fluid and porous models. More details on numerical procedures described in this section can be found in companion papers. Then we detail in a second section a way to couple a two-fluid hyperbolic model and an homogeneous relaxation model.

    Citation: Jean-Marc Hérard, Olivier Hurisse. Some attempts to couple distinct fluid models[J]. Networks and Heterogeneous Media, 2010, 5(3): 649-660. doi: 10.3934/nhm.2010.5.649

    Related Papers:

    [1] Ioannis D. Schizas, Vasileios Maroulas, Guohua Ren . Regularized kernel matrix decomposition for thermal video multi-object detection and tracking. Big Data and Information Analytics, 2018, 3(2): 1-23. doi: 10.3934/bdia.2018004
    [2] Weidong Bao, Wenhua Xiao, Haoran Ji, Chao Chen, Xiaomin Zhu, Jianhong Wu . Towards big data processing in clouds: An online cost-minimization approach. Big Data and Information Analytics, 2016, 1(1): 15-29. doi: 10.3934/bdia.2016.1.15
    [3] Marco Tosato, Jianhong Wu . An application of PART to the Football Manager data for players clusters analyses to inform club team formation. Big Data and Information Analytics, 2018, 3(1): 43-54. doi: 10.3934/bdia.2018002
    [4] Jinyuan Zhang, Aimin Zhou, Guixu Zhang, Hu Zhang . A clustering based mate selection for evolutionary optimization. Big Data and Information Analytics, 2017, 2(1): 77-85. doi: 10.3934/bdia.2017010
    [5] Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong . An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data and Information Analytics, 2017, 2(1): 23-37. doi: 10.3934/bdia.2017006
    [6] Bill Huajian Yang . Modeling path-dependent state transitions by a recurrent neural network. Big Data and Information Analytics, 2022, 7(0): 1-12. doi: 10.3934/bdia.2022001
    [7] Guojun Gan, Qiujun Lan, Shiyang Sima . Scalable Clustering by Truncated Fuzzy c-means. Big Data and Information Analytics, 2016, 1(2): 247-259. doi: 10.3934/bdia.2016007
    [8] Xiaoying Chen, Chong Zhang, Zonglin Shi, Weidong Xiao . Spatio-temporal Keywords Queries in HBase. Big Data and Information Analytics, 2016, 1(1): 81-91. doi: 10.3934/bdia.2016.1.81
    [9] Dongyang Yang, Wei Xu . Statistical modeling on human microbiome sequencing data. Big Data and Information Analytics, 2019, 4(1): 1-12. doi: 10.3934/bdia.2019001
    [10] M Supriya, AJ Deepa . Machine learning approach on healthcare big data: a review. Big Data and Information Analytics, 2020, 5(1): 58-75. doi: 10.3934/bdia.2020005
  • We present in this paper a review of some recent works dedicated to the numerical interfacial coupling of fluid models. One main motivation of the whole approach is to provide some meaningful methods and tools in order to compute unsteady patterns, while using distinct existing CFD codes in the nuclear industry. Thus, the main objective is to derive suitable boundary conditions for the codes to be coupled. A first section is devoted to a review of some attempts to couple: (i) 1D and 3D codes, (ii) distinct homogeneous two-phase flow models, (iii) fluid and porous models. More details on numerical procedures described in this section can be found in companion papers. Then we detail in a second section a way to couple a two-fluid hyperbolic model and an homogeneous relaxation model.


  • This article has been cited by:

    1. Laura Abatangelo, Susanna Terracini, Harmonic functions in union of chambers, 2015, 35, 1078-0947, 5609, 10.3934/dcds.2015.35.5609
    2. Matthieu Bonnivard, Antoine Lemenant, Filippo Santambrogio, Approximation of Length Minimization Problems Among Compact Connected Sets, 2015, 47, 0036-1410, 1489, 10.1137/14096061X
    3. Davide Zucco, Dirichlet conditions in Poincaré–Sobolev inequalities: the sub-homogeneous case, 2019, 58, 0944-2669, 10.1007/s00526-019-1547-7
    4. Paolo Tilli, Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length, 2012, 7, 1556-181X, 127, 10.3934/nhm.2012.7.127
    5. Al-hassem Nayam, Asymptotics of an optimal compliance-network problem, 2013, 8, 1556-181X, 573, 10.3934/nhm.2013.8.573
    6. Bohdan Bulanyi, Partial regularity for the optimal p-compliance problem with length penalization, 2022, 61, 0944-2669, 10.1007/s00526-021-02073-8
    7. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    8. Antoine Lemenant, A selective review on Mumford–Shah minimizers, 2016, 9, 1972-6724, 69, 10.1007/s40574-016-0056-2
    9. Paolo Tilli, Davide Zucco, Where Best to Place a Dirichlet Condition in an Anisotropic Membrane?, 2015, 47, 0036-1410, 2699, 10.1137/140999402
    10. A. Lemenant, A presentation of the average distance minimizing problem, 2012, 181, 1072-3374, 820, 10.1007/s10958-012-0717-3
    11. Bohdan Bulanyi, On the importance of the connectedness assumption in the statement of the optimal p-compliance problem, 2021, 499, 0022247X, 125064, 10.1016/j.jmaa.2021.125064
    12. Laura Abatangelo, Veronica Felli, Susanna Terracini, On the sharp effect of attaching a thin handle on the spectral rate of convergence, 2014, 266, 00221236, 3632, 10.1016/j.jfa.2013.11.019
    13. Al-hassem Nayam, Constant in two-dimensional p-compliance-network problem, 2014, 9, 1556-181X, 161, 10.3934/nhm.2014.9.161
    14. Antonin Chambolle, Jimmy Lamboley, Antoine Lemenant, Eugene Stepanov, Regularity for the Optimal Compliance Problem with Length Penalization, 2017, 49, 0036-1410, 1166, 10.1137/16M1070578
    15. Paolo Tilli, Davide Zucco, Asymptotics of the First Laplace Eigenvalue with Dirichlet Regions of Prescribed Length, 2013, 45, 0036-1410, 3266, 10.1137/130916825
    16. Antoine Lemenant, Edoardo Mainini, On convex sets that minimize the average distance, 2012, 18, 1292-8119, 1049, 10.1051/cocv/2011190
    17. Bohdan Bulanyi, Antoine Lemenant, Regularity for the planar optimalp-compliance problem, 2021, 27, 1292-8119, 35, 10.1051/cocv/2021035
    18. Filippo Santambrogio, 2023, Chapter 6, 978-3-031-45035-8, 243, 10.1007/978-3-031-45036-5_6
    19. Filippo Santambrogio, 2023, Chapter 7, 978-3-031-45035-8, 287, 10.1007/978-3-031-45036-5_7
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3936) PDF downloads(125) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog