Citation: Mica Grujicic, Jennifer S. Snipes, S. Ramaswami. Penetration resistance and ballistic-impact behavior of Ti/TiAl3 metal/intermetallic laminated composites (MILCs): A computational investigation[J]. AIMS Materials Science, 2016, 3(3): 686-721. doi: 10.3934/matersci.2016.3.686
[1] | Marek Konieczny . Transformation superplasticity of laminated CuAl10Fe3Mn2 bronze-intermetallics composites. AIMS Materials Science, 2020, 7(3): 312-322. doi: 10.3934/matersci.2020.3.312 |
[2] | Mica Grujicic, S. Ramaswami, Jennifer Snipes . Nacre-like ceramic/polymer laminated composite for use in body-armor applications. AIMS Materials Science, 2016, 3(1): 83-113. doi: 10.3934/matersci.2016.1.83 |
[3] | Mohammad Na'aim Abd Rahim, Mohd Shukor Salleh, Saifudin Hafiz Yahaya, Sivarao Subramonian, Azrin Hani Abdul Rashid, Syarifah Nur Aqida Syed Ahmad, Salah Salman Al-Zubaidi . Microstructural investigation and mechanical properties of Al2O3-MWCNTs reinforced aluminium composite. AIMS Materials Science, 2025, 12(2): 318-335. doi: 10.3934/matersci.2025017 |
[4] | Marek Konieczny . Mechanical properties and failure analysis of laminated magnesium-intermetallic composites. AIMS Materials Science, 2022, 9(4): 572-583. doi: 10.3934/matersci.2022034 |
[5] | Marek Konieczny . Mechanical properties and wear characterization of Al-Mg composites synthesized at different temperatures. AIMS Materials Science, 2024, 11(2): 309-322. doi: 10.3934/matersci.2024017 |
[6] | Tomáš Meluš, Roman Koleňák, Jaromír Drápala, Paulína Babincová, Matej Pašák . Ultrasonic soldering of Al2O3 ceramics and Ni-SiC composite by use of Bi-based active solder. AIMS Materials Science, 2023, 10(2): 213-226. doi: 10.3934/matersci.2023012 |
[7] | Yernat Kozhakhmetov, Mazhyn Skakov, Wojciech Wieleba, Kurbanbekov Sherzod, Nuriya Mukhamedova . Evolution of intermetallic compounds in Ti-Al-Nb system by the action of mechanoactivation and spark plasma sintering. AIMS Materials Science, 2020, 7(2): 182-191. doi: 10.3934/matersci.2020.2.182 |
[8] | Ruaa Al-Mezrakchi, Ahmed Al-Ramthan, Shah Alam . Designing and modeling new generation of advanced hybrid composite sandwich structure armors for ballistic threats in defense applications. AIMS Materials Science, 2020, 7(5): 608-631. doi: 10.3934/matersci.2020.5.608 |
[9] | Elisa Padovano, Francesco Trevisan, Sara Biamino, Claudio Badini . Processing of hybrid laminates integrating ZrB2/SiC and SiC layers. AIMS Materials Science, 2020, 7(5): 552-564. doi: 10.3934/matersci.2020.5.552 |
[10] | Habibur Rahman, Altab Hossain, Mohammad Ali . Experimental investigation on cooling tower performance with Al2O3, ZnO and Ti2O3 based nanofluids. AIMS Materials Science, 2024, 11(5): 935-949. doi: 10.3934/matersci.2024045 |
[1] |
Grujicic M, Pandurangan B, d’Entremont BP, et al. (2012) The role of adhesive in the ballistic/structural performance of ceramic/polymer-matrix composite hybrid armor. Mater Des 41: 380–393. doi: 10.1016/j.matdes.2012.05.023
![]() |
[2] |
Grujicic M, Pandurangan B, Zecevic U, et al. (2007) Ballistic performance of alumina/S-2 glass-reinforced polymer-matrix composite hybrid lightweight armor against armor piercing (AP) and non-AP projectiles. Multidisc Model Mater Struct 3: 287–312. doi: 10.1163/157361107781389562
![]() |
[3] | Medvedovski E (2002) Alumina ceramics for ballistic protection. Am Ceram Soc Bull 81: 27–32. |
[4] | Aghajanian MK, Morgan BN, Singh JR, et al. (2001) A new family of reaction bonded ceramics for armor applications. In: Proceedings of PAC RIM 4, Maui. Hawaii, Paper No. PAC6-H-04-2001. |
[5] |
Grujicic M, Glomski PS, He T, et al. (2009) Material modeling and ballistic-resistance analysis of armor-grade composites reinforced with high-performance fibers. J Mater Eng Perform 18: 1169–1182. doi: 10.1007/s11665-009-9370-5
![]() |
[6] |
Grujicic M, Pandurangan B, Snipes JS, et al. (2013) Multi-length scale enriched continuum-level material model for Kevlar®-fiber reinforced polymer-matrix composites. J Mater Eng Perform 22: 681–695. doi: 10.1007/s11665-012-0329-6
![]() |
[7] | Grujicic M, Bell WC, Biggers SB, et al. (2008) Enhancement of the ballistic-protection performance of E-glass reinforced poly-vinyl-ester-epoxy composite armor via the use of a carbon-nanotube forest-mat strike face. J Mater: Des Appl 222: 15–28. |
[8] |
Grujicic M, Bell WC, Pandurangan B, et al. (2011) Computational investigation of structured shocks in Al/SiC-particulates metal matrix composites. Multidisc Model Mater Struct 7: 469–497. doi: 10.1108/15736101111185315
![]() |
[9] | Cheeseman BA, Jensen R, Hopped C (2005), Protecting the Future Force: Advanced Materials and Analysis Enable Robust Composite Armor. The AMPTIAC Quarterly, 8: 37–43. |
[10] | Vecchio KS (2005) Synthetic multifunctional metallic-intermetallic laminate composites. J Metals 57: 25–31. |
[11] |
Price RD, Jiang F, Kulin RM, et al. (2011) Effects of ductile phase volume fraction on the mechanical properties of Ti–Al3Ti metal-intermetallic laminate (MIL) composites. Mater Sci Eng A 528: 3134–3146. doi: 10.1016/j.msea.2010.12.087
![]() |
[12] |
Yang C, Guo C, Zhu S, et al. (2015) Fracture behavior of Ti/Al3Ti metal-intermetallic laminate (MIL) composite under dynamic loading. Mater Sci Eng A 637: 235–242. doi: 10.1016/j.msea.2015.04.025
![]() |
[13] | Lazurenko DV, Mali VI, Bataev IA, et al. (2015) Metal-intermetallic laminate Ti-Al3Ti composites produced by spark plasma sintering of titanium and aluminum foils enclosed in titanium shells. Metall Mater Trans A 46A: 4326–4334. |
[14] |
Cao Y, Zhu S, Guo C, et al. (2015) Numerical investigation of the ballistic performance of metal-intermetallic laminate composites. Adv Compos Mater 22: 437–456. doi: 10.1007/s10443-014-9416-1
![]() |
[15] | Yu H, Lu C, Tieu AK, et al. (2016) Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets. Mater Sci Eng A 20: 195–204. |
[16] | Harach DJ (2000) Processing, properties, and ballistic performance of Ti-Al3Ti Metal-Intermetallic Laminate (MIL) composites. PhD Thesis, University of California, San Diego, CA. |
[17] | Zelepugin S, Mali V, Zelepugin A, et al. (2012), Failure of metallic-intermetallic laminate composites under dynamic loading. AIP Conference Proceedings 1426: 1101. |
[18] | ABAQUS Version 6.13, User Documentation, Dassault Systèmes, 2013. |
[19] |
Grujicic M, d’Entremont BP, Pandurangan B, et al. (2012) A study of the blast-induced brain white-matter damage and the associated diffuse axonal injury. Multidisc Model Mater Struct 8: 213–245. doi: 10.1108/15736101211251220
![]() |
[20] |
Grujicic M, Bell WC, Pandurangan B, et al. (2012) Inclusion of material nonlinearity and inelasticity into a continuum-level material model for soda-lime glass. Mater Des 35: 144–155. doi: 10.1016/j.matdes.2011.08.031
![]() |
[21] | Grujicic M, Bell WC, Pandurangan B, et al. (2012) Effect of the tin- vs. air-side plate-glass orientation on the impact response and penetration resistance of a laminated transparent-armor structure. J Mater Des Appl 226: 119–143. |
[22] |
Grujicic M, Pandurangan B, Bell WC, et al. (2012) Shock-wave attenuation and energy-dissipation potential of granular materials. J Mater Eng Perform 21: 167–179. doi: 10.1007/s11665-011-9954-8
![]() |
[23] |
Grujicic M, Pandurangan B, Bell WC, et al. (2011) Molecular-level simulations of shock generation and propagation in polyurea. Mater Sci Eng A 528: 3799–3808. doi: 10.1016/j.msea.2011.01.081
![]() |
[24] | Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, the Netherlands, Arlington, VA: American Defense Preparedness Association. |
[25] | AUTODYN-2D and 3D, Version 6.1, User Documentation, Century Dynamics Inc., 2006. |
[26] | Johnson GR, Holmquist TJ (1994) An improved computational constitutive model for brittle materials, in AIP Conference Proceedings, Colorado Springs, CO 1993, American Institute of Physics, Melville, NY, 309: 981–984. |
[27] |
Li T, Grignon F, Benson D, et al. (2004) Modeling the elastic properties and damage evolution in Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Mater Sci Eng A 374: 10–26. doi: 10.1016/j.msea.2003.09.074
![]() |
[28] |
Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54: 525–531. doi: 10.1115/1.3173064
![]() |
[29] | Socrate S (1995) Mechanics of microvoid nucleation and growth in high-strength metastable austenitic steels. PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA. |
[30] |
Grujicic M, Dang P (1996) Atomic-scale analysis of martensitic transformation in titanium with vanadium – Part I: Verification of the EAM potential. Mater Sci Eng A 205: 139–152. doi: 10.1016/0921-5093(95)09894-1
![]() |
[31] |
Dang P, Grujicic M (1997) Transformation toughening in the Gamma TiAl/Beta Ti-V system – Part II: A molecular dynamics analysis. J Mater Sci 32: 4875–4887. doi: 10.1023/A:1018611921183
![]() |
[32] | Grujicic M, Olson GB, Owen WS (1985) Mobility of the β1-γ1’ martensitic interface in Cu-Al-Ni. I. Experimental measurements. Metall Trans A 16: 1723–1734. |
[33] | Grujicic M, Olson GB, Owen WS (1985) Mobility of the β1-γ1’ martensitic interface in Cu-Al-Ni. II. Model calculations. Metall Trans A 16: 1735–1744. |
[34] |
Grujicic M, Arakere G, Yen C-F, et al. (2011) Computational investigation of hardness evolution during friction-stir welding of AA5083 and AA2139 aluminum alloys. J Mater Eng Perform 20: 1097–1108. doi: 10.1007/s11665-010-9741-y
![]() |
[35] |
Grujicic M, Ramaswami S, Snipes JS, et al. (2013) Multi-physics modeling and simulations of MIL A46100 armor-grade martensitic steel gas metal arc welding process. J Mater Eng Perform 22: 2950–2969. doi: 10.1007/s11665-013-0583-2
![]() |
1. | Adam Kurzawa, Dariusz Pyka, Krzysztof Jamroziak, Marcin Bajkowski, Miroslaw Bocian, Mariusz Magier, Jan Koch, Assessment of the Impact Resistance of a Composite Material with EN AW-7075 Matrix Reinforced with α-Al2O3 Particles Using a 7.62 × 39 mm Projectile, 2020, 13, 1996-1944, 769, 10.3390/ma13030769 | |
2. | S A Zelepugin, A S Zelepugin, A A Popov, D V Yanov, Failure of the laminate composites under impact loading, 2018, 1115, 1742-6588, 042018, 10.1088/1742-6596/1115/4/042018 | |
3. | Le Xin, Meini Yuan, Yuhang Yao, Leibin Yao, Fangzhou Han, Numerical study the effects of defects on the anti-penetration performance of Ti6Al4V–Al3Ti Laminated Composites, 2019, 6, 2053-1591, 0865f8, 10.1088/2053-1591/ab2695 | |
4. | Leonid Moiseevich Gurevich, Victor Georgievich Shmorgun, Dmitriy Vladimirovich Pronichev, Roman Evgenyevich Novikov, The Simulation of Titanium-Aluminium Composite with Intermetallic Inclusions Behavior under Compression, 2017, 743, 1662-9795, 176, 10.4028/www.scientific.net/KEM.743.176 | |
5. | Hailiang Yu, Cheng Lu, Kiet Tieu, Huijun Li, Ajit Godbole, Xiong Liu, Charlie Kong, Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding, 2017, 32, 0884-2914, 3761, 10.1557/jmr.2017.355 | |
6. | B. Blessto, Sarath Nair, K. Sivaprasad, D. Nagarajan, Replication of the Al/Ti Metal Intermetallic Laminates Using LS Dyna for Tungsten Alloy Penetrator Application, 2020, 2250-2122, 10.1007/s40033-020-00208-3 | |
7. | Jian Ma, Meini Yuan, Lirong Zheng, Zeyuan Wei, Kai Wang, Dynamic Mechanical Properties of Ti–Al3Ti–Al Laminated Composites: Experimental and Numerical Investigation, 2021, 11, 2075-4701, 1489, 10.3390/met11091489 | |
8. | Honglin Wang, Jian Ma, Meini Yuan, Guang Liang, Xin Pei, Yuzhong Miao, Maohua Li, Microstructure, deformation behaviors and GND density evolution of Ti-Al laminated composites under the incremental compression test, 2022, 33, 23524928, 104605, 10.1016/j.mtcomm.2022.104605 | |
9. | C. O. Ujah, A. P. I. Popoola, O. M. Popoola, Review on materials applied in electric transmission conductors, 2022, 57, 0022-2461, 1581, 10.1007/s10853-021-06681-9 | |
10. | Chika Oliver Ujah, Daramy Vandi Von Kallon, Victor Sunday Aigbodion, Overview of Electricity Transmission Conductors: Challenges and Remedies, 2022, 15, 1996-1944, 8094, 10.3390/ma15228094 | |
11. | G. Sukumar, K. Muralidharan, P. Ponguru Senthil, P. Prakasa Rao, G. Balaji, S. G. Savio, B. Bhav Singh, 2024, Chapter 28, 978-981-99-8806-8, 353, 10.1007/978-981-99-8807-5_28 | |
12. | Yu Wang, Xiangfei Peng, Ahmed M. Fallatah, Hongxin Qin, Wenjuan Zhao, Zaki I. Zaki, Hong Xu, Bin Liu, Hongkui Mao, Zeinhom M. El-Bahy, Hassan Algadi, Chao Wang, High-entropy CoCrFeMnNi alloy/aluminide-laminated composites with enhanced quasi-static bending and dynamic compression properties, 2023, 6, 2522-0128, 10.1007/s42114-023-00782-6 | |
13. | Chongyang Feng, Hua Hou, Zhiqiang Li, Muxi Li, Qingwei Guo, Yuhong Zhao, Anti-penetration performance of Ti/Al3Ti/Al laminated composites with graphene nanoplatelets, 2025, 22387854, 10.1016/j.jmrt.2025.03.280 | |
14. | Yang Wang, Meini Yuan, Pengfei Zhou, Xin Pei, Wei Yang, Zehui Tian, Effects of TC4 Thickness on the Penetration Resistance Behavior of Ti-Al3Ti Metal–Intermetallic Laminated Composites, 2025, 18, 1996-1944, 1846, 10.3390/ma18081846 |