Research article Topical Sections

Penetration resistance and ballistic-impact behavior of Ti/TiAl3 metal/intermetallic laminated composites (MILCs): A computational investigation

  • Received: 13 May 2016 Accepted: 12 June 2016 Published: 14 July 2016
  • A comprehensive computational engineering analysis is carried out in order to assess suitability of the Ti/TiAl3 metal/intermetallic laminated composites (MILCs) for use in both structural and add-on armor applications. This class of composite materials consists of alternating sub-millimeter thick layers of Ti (the ductile and tough constituent) and TiAl3 (the stiff and hard constituent). In recent years, this class of materials has been investigated for potential use in light-armor applications as a replacement for the traditional metallic or polymer-matrix composite materials. Within the computational analysis, an account is given to differing functional requirements for candidate materials when used in structural and add-on ballistic armor. The analysis employed is of a transient, nonlinear-dynamics, finite-element character, and the problem investigated involves normal impact (i.e. under zero obliquity angle) of a Ti/TiAl3 MILC target plate, over a range of incident velocities, by a fragment simulating projectile (FSP). This type of analysis can provide more direct information regarding the ballistic limit of the subject armor material, as well as help with the identification of the nature and the efficacy of various FSP material-deformation/erosion and kinetic-energy absorption/dissipation phenomena and processes. The results obtained clearly revealed that Ti/TiAl3 MILCs are more suitable for use in add-on ballistic, than in structural armor applications.

    Citation: Mica Grujicic, Jennifer S. Snipes, S. Ramaswami. Penetration resistance and ballistic-impact behavior of Ti/TiAl3 metal/intermetallic laminated composites (MILCs): A computational investigation[J]. AIMS Materials Science, 2016, 3(3): 686-721. doi: 10.3934/matersci.2016.3.686

    Related Papers:

    [1] Marek Konieczny . Transformation superplasticity of laminated CuAl10Fe3Mn2 bronze-intermetallics composites. AIMS Materials Science, 2020, 7(3): 312-322. doi: 10.3934/matersci.2020.3.312
    [2] Mica Grujicic, S. Ramaswami, Jennifer Snipes . Nacre-like ceramic/polymer laminated composite for use in body-armor applications. AIMS Materials Science, 2016, 3(1): 83-113. doi: 10.3934/matersci.2016.1.83
    [3] Mohammad Na'aim Abd Rahim, Mohd Shukor Salleh, Saifudin Hafiz Yahaya, Sivarao Subramonian, Azrin Hani Abdul Rashid, Syarifah Nur Aqida Syed Ahmad, Salah Salman Al-Zubaidi . Microstructural investigation and mechanical properties of Al2O3-MWCNTs reinforced aluminium composite. AIMS Materials Science, 2025, 12(2): 318-335. doi: 10.3934/matersci.2025017
    [4] Marek Konieczny . Mechanical properties and failure analysis of laminated magnesium-intermetallic composites. AIMS Materials Science, 2022, 9(4): 572-583. doi: 10.3934/matersci.2022034
    [5] Marek Konieczny . Mechanical properties and wear characterization of Al-Mg composites synthesized at different temperatures. AIMS Materials Science, 2024, 11(2): 309-322. doi: 10.3934/matersci.2024017
    [6] Tomáš Meluš, Roman Koleňák, Jaromír Drápala, Paulína Babincová, Matej Pašák . Ultrasonic soldering of Al2O3 ceramics and Ni-SiC composite by use of Bi-based active solder. AIMS Materials Science, 2023, 10(2): 213-226. doi: 10.3934/matersci.2023012
    [7] Yernat Kozhakhmetov, Mazhyn Skakov, Wojciech Wieleba, Kurbanbekov Sherzod, Nuriya Mukhamedova . Evolution of intermetallic compounds in Ti-Al-Nb system by the action of mechanoactivation and spark plasma sintering. AIMS Materials Science, 2020, 7(2): 182-191. doi: 10.3934/matersci.2020.2.182
    [8] Ruaa Al-Mezrakchi, Ahmed Al-Ramthan, Shah Alam . Designing and modeling new generation of advanced hybrid composite sandwich structure armors for ballistic threats in defense applications. AIMS Materials Science, 2020, 7(5): 608-631. doi: 10.3934/matersci.2020.5.608
    [9] Elisa Padovano, Francesco Trevisan, Sara Biamino, Claudio Badini . Processing of hybrid laminates integrating ZrB2/SiC and SiC layers. AIMS Materials Science, 2020, 7(5): 552-564. doi: 10.3934/matersci.2020.5.552
    [10] Habibur Rahman, Altab Hossain, Mohammad Ali . Experimental investigation on cooling tower performance with Al2O3, ZnO and Ti2O3 based nanofluids. AIMS Materials Science, 2024, 11(5): 935-949. doi: 10.3934/matersci.2024045
  • A comprehensive computational engineering analysis is carried out in order to assess suitability of the Ti/TiAl3 metal/intermetallic laminated composites (MILCs) for use in both structural and add-on armor applications. This class of composite materials consists of alternating sub-millimeter thick layers of Ti (the ductile and tough constituent) and TiAl3 (the stiff and hard constituent). In recent years, this class of materials has been investigated for potential use in light-armor applications as a replacement for the traditional metallic or polymer-matrix composite materials. Within the computational analysis, an account is given to differing functional requirements for candidate materials when used in structural and add-on ballistic armor. The analysis employed is of a transient, nonlinear-dynamics, finite-element character, and the problem investigated involves normal impact (i.e. under zero obliquity angle) of a Ti/TiAl3 MILC target plate, over a range of incident velocities, by a fragment simulating projectile (FSP). This type of analysis can provide more direct information regarding the ballistic limit of the subject armor material, as well as help with the identification of the nature and the efficacy of various FSP material-deformation/erosion and kinetic-energy absorption/dissipation phenomena and processes. The results obtained clearly revealed that Ti/TiAl3 MILCs are more suitable for use in add-on ballistic, than in structural armor applications.


    [1] Grujicic M, Pandurangan B, d’Entremont BP, et al. (2012) The role of adhesive in the ballistic/structural performance of ceramic/polymer-matrix composite hybrid armor. Mater Des 41: 380–393. doi: 10.1016/j.matdes.2012.05.023
    [2] Grujicic M, Pandurangan B, Zecevic U, et al. (2007) Ballistic performance of alumina/S-2 glass-reinforced polymer-matrix composite hybrid lightweight armor against armor piercing (AP) and non-AP projectiles. Multidisc Model Mater Struct 3: 287–312. doi: 10.1163/157361107781389562
    [3] Medvedovski E (2002) Alumina ceramics for ballistic protection. Am Ceram Soc Bull 81: 27–32.
    [4] Aghajanian MK, Morgan BN, Singh JR, et al. (2001) A new family of reaction bonded ceramics for armor applications. In: Proceedings of PAC RIM 4, Maui. Hawaii, Paper No. PAC6-H-04-2001.
    [5] Grujicic M, Glomski PS, He T, et al. (2009) Material modeling and ballistic-resistance analysis of armor-grade composites reinforced with high-performance fibers. J Mater Eng Perform 18: 1169–1182. doi: 10.1007/s11665-009-9370-5
    [6] Grujicic M, Pandurangan B, Snipes JS, et al. (2013) Multi-length scale enriched continuum-level material model for Kevlar®-fiber reinforced polymer-matrix composites. J Mater Eng Perform 22: 681–695. doi: 10.1007/s11665-012-0329-6
    [7] Grujicic M, Bell WC, Biggers SB, et al. (2008) Enhancement of the ballistic-protection performance of E-glass reinforced poly-vinyl-ester-epoxy composite armor via the use of a carbon-nanotube forest-mat strike face. J Mater: Des Appl 222: 15–28.
    [8] Grujicic M, Bell WC, Pandurangan B, et al. (2011) Computational investigation of structured shocks in Al/SiC-particulates metal matrix composites. Multidisc Model Mater Struct 7: 469–497. doi: 10.1108/15736101111185315
    [9] Cheeseman BA, Jensen R, Hopped C (2005), Protecting the Future Force: Advanced Materials and Analysis Enable Robust Composite Armor. The AMPTIAC Quarterly, 8: 37–43.
    [10] Vecchio KS (2005) Synthetic multifunctional metallic-intermetallic laminate composites. J Metals 57: 25–31.
    [11] Price RD, Jiang F, Kulin RM, et al. (2011) Effects of ductile phase volume fraction on the mechanical properties of Ti–Al3Ti metal-intermetallic laminate (MIL) composites. Mater Sci Eng A 528: 3134–3146. doi: 10.1016/j.msea.2010.12.087
    [12] Yang C, Guo C, Zhu S, et al. (2015) Fracture behavior of Ti/Al3Ti metal-intermetallic laminate (MIL) composite under dynamic loading. Mater Sci Eng A 637: 235–242. doi: 10.1016/j.msea.2015.04.025
    [13] Lazurenko DV, Mali VI, Bataev IA, et al. (2015) Metal-intermetallic laminate Ti-Al3Ti composites produced by spark plasma sintering of titanium and aluminum foils enclosed in titanium shells. Metall Mater Trans A 46A: 4326–4334.
    [14] Cao Y, Zhu S, Guo C, et al. (2015) Numerical investigation of the ballistic performance of metal-intermetallic laminate composites. Adv Compos Mater 22: 437–456. doi: 10.1007/s10443-014-9416-1
    [15] Yu H, Lu C, Tieu AK, et al. (2016) Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets. Mater Sci Eng A 20: 195–204.
    [16] Harach DJ (2000) Processing, properties, and ballistic performance of Ti-Al3Ti Metal-Intermetallic Laminate (MIL) composites. PhD Thesis, University of California, San Diego, CA.
    [17] Zelepugin S, Mali V, Zelepugin A, et al. (2012), Failure of metallic-intermetallic laminate composites under dynamic loading. AIP Conference Proceedings 1426: 1101.
    [18] ABAQUS Version 6.13, User Documentation, Dassault Systèmes, 2013.
    [19] Grujicic M, d’Entremont BP, Pandurangan B, et al. (2012) A study of the blast-induced brain white-matter damage and the associated diffuse axonal injury. Multidisc Model Mater Struct 8: 213–245. doi: 10.1108/15736101211251220
    [20] Grujicic M, Bell WC, Pandurangan B, et al. (2012) Inclusion of material nonlinearity and inelasticity into a continuum-level material model for soda-lime glass. Mater Des 35: 144–155. doi: 10.1016/j.matdes.2011.08.031
    [21] Grujicic M, Bell WC, Pandurangan B, et al. (2012) Effect of the tin- vs. air-side plate-glass orientation on the impact response and penetration resistance of a laminated transparent-armor structure. J Mater Des Appl 226: 119–143.
    [22] Grujicic M, Pandurangan B, Bell WC, et al. (2012) Shock-wave attenuation and energy-dissipation potential of granular materials. J Mater Eng Perform 21: 167–179. doi: 10.1007/s11665-011-9954-8
    [23] Grujicic M, Pandurangan B, Bell WC, et al. (2011) Molecular-level simulations of shock generation and propagation in polyurea. Mater Sci Eng A 528: 3799–3808. doi: 10.1016/j.msea.2011.01.081
    [24] Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, the Netherlands, Arlington, VA: American Defense Preparedness Association.
    [25] AUTODYN-2D and 3D, Version 6.1, User Documentation, Century Dynamics Inc., 2006.
    [26] Johnson GR, Holmquist TJ (1994) An improved computational constitutive model for brittle materials, in AIP Conference Proceedings, Colorado Springs, CO 1993, American Institute of Physics, Melville, NY, 309: 981–984.
    [27] Li T, Grignon F, Benson D, et al. (2004) Modeling the elastic properties and damage evolution in Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Mater Sci Eng A 374: 10–26. doi: 10.1016/j.msea.2003.09.074
    [28] Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54: 525–531. doi: 10.1115/1.3173064
    [29] Socrate S (1995) Mechanics of microvoid nucleation and growth in high-strength metastable austenitic steels. PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA.
    [30] Grujicic M, Dang P (1996) Atomic-scale analysis of martensitic transformation in titanium with vanadium – Part I: Verification of the EAM potential. Mater Sci Eng A 205: 139–152. doi: 10.1016/0921-5093(95)09894-1
    [31] Dang P, Grujicic M (1997) Transformation toughening in the Gamma TiAl/Beta Ti-V system – Part II: A molecular dynamics analysis. J Mater Sci 32: 4875–4887. doi: 10.1023/A:1018611921183
    [32] Grujicic M, Olson GB, Owen WS (1985) Mobility of the β1-γ1’ martensitic interface in Cu-Al-Ni. I. Experimental measurements. Metall Trans A 16: 1723–1734.
    [33] Grujicic M, Olson GB, Owen WS (1985) Mobility of the β1-γ1’ martensitic interface in Cu-Al-Ni. II. Model calculations. Metall Trans A 16: 1735–1744.
    [34] Grujicic M, Arakere G, Yen C-F, et al. (2011) Computational investigation of hardness evolution during friction-stir welding of AA5083 and AA2139 aluminum alloys. J Mater Eng Perform 20: 1097–1108. doi: 10.1007/s11665-010-9741-y
    [35] Grujicic M, Ramaswami S, Snipes JS, et al. (2013) Multi-physics modeling and simulations of MIL A46100 armor-grade martensitic steel gas metal arc welding process. J Mater Eng Perform 22: 2950–2969. doi: 10.1007/s11665-013-0583-2
  • This article has been cited by:

    1. Adam Kurzawa, Dariusz Pyka, Krzysztof Jamroziak, Marcin Bajkowski, Miroslaw Bocian, Mariusz Magier, Jan Koch, Assessment of the Impact Resistance of a Composite Material with EN AW-7075 Matrix Reinforced with α-Al2O3 Particles Using a 7.62 × 39 mm Projectile, 2020, 13, 1996-1944, 769, 10.3390/ma13030769
    2. S A Zelepugin, A S Zelepugin, A A Popov, D V Yanov, Failure of the laminate composites under impact loading, 2018, 1115, 1742-6588, 042018, 10.1088/1742-6596/1115/4/042018
    3. Le Xin, Meini Yuan, Yuhang Yao, Leibin Yao, Fangzhou Han, Numerical study the effects of defects on the anti-penetration performance of Ti6Al4V–Al3Ti Laminated Composites, 2019, 6, 2053-1591, 0865f8, 10.1088/2053-1591/ab2695
    4. Leonid Moiseevich Gurevich, Victor Georgievich Shmorgun, Dmitriy Vladimirovich Pronichev, Roman Evgenyevich Novikov, The Simulation of Titanium-Aluminium Composite with Intermetallic Inclusions Behavior under Compression, 2017, 743, 1662-9795, 176, 10.4028/www.scientific.net/KEM.743.176
    5. Hailiang Yu, Cheng Lu, Kiet Tieu, Huijun Li, Ajit Godbole, Xiong Liu, Charlie Kong, Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding, 2017, 32, 0884-2914, 3761, 10.1557/jmr.2017.355
    6. B. Blessto, Sarath Nair, K. Sivaprasad, D. Nagarajan, Replication of the Al/Ti Metal Intermetallic Laminates Using LS Dyna for Tungsten Alloy Penetrator Application, 2020, 2250-2122, 10.1007/s40033-020-00208-3
    7. Jian Ma, Meini Yuan, Lirong Zheng, Zeyuan Wei, Kai Wang, Dynamic Mechanical Properties of Ti–Al3Ti–Al Laminated Composites: Experimental and Numerical Investigation, 2021, 11, 2075-4701, 1489, 10.3390/met11091489
    8. Honglin Wang, Jian Ma, Meini Yuan, Guang Liang, Xin Pei, Yuzhong Miao, Maohua Li, Microstructure, deformation behaviors and GND density evolution of Ti-Al laminated composites under the incremental compression test, 2022, 33, 23524928, 104605, 10.1016/j.mtcomm.2022.104605
    9. C. O. Ujah, A. P. I. Popoola, O. M. Popoola, Review on materials applied in electric transmission conductors, 2022, 57, 0022-2461, 1581, 10.1007/s10853-021-06681-9
    10. Chika Oliver Ujah, Daramy Vandi Von Kallon, Victor Sunday Aigbodion, Overview of Electricity Transmission Conductors: Challenges and Remedies, 2022, 15, 1996-1944, 8094, 10.3390/ma15228094
    11. G. Sukumar, K. Muralidharan, P. Ponguru Senthil, P. Prakasa Rao, G. Balaji, S. G. Savio, B. Bhav Singh, 2024, Chapter 28, 978-981-99-8806-8, 353, 10.1007/978-981-99-8807-5_28
    12. Yu Wang, Xiangfei Peng, Ahmed M. Fallatah, Hongxin Qin, Wenjuan Zhao, Zaki I. Zaki, Hong Xu, Bin Liu, Hongkui Mao, Zeinhom M. El-Bahy, Hassan Algadi, Chao Wang, High-entropy CoCrFeMnNi alloy/aluminide-laminated composites with enhanced quasi-static bending and dynamic compression properties, 2023, 6, 2522-0128, 10.1007/s42114-023-00782-6
    13. Chongyang Feng, Hua Hou, Zhiqiang Li, Muxi Li, Qingwei Guo, Yuhong Zhao, Anti-penetration performance of Ti/Al3Ti/Al laminated composites with graphene nanoplatelets, 2025, 22387854, 10.1016/j.jmrt.2025.03.280
    14. Yang Wang, Meini Yuan, Pengfei Zhou, Xin Pei, Wei Yang, Zehui Tian, Effects of TC4 Thickness on the Penetration Resistance Behavior of Ti-Al3Ti Metal–Intermetallic Laminated Composites, 2025, 18, 1996-1944, 1846, 10.3390/ma18081846
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7963) PDF downloads(1589) Cited by(14)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog