Spectral theory for nonconservative transmission line networks

  • Received: 01 August 2010 Revised: 01 April 2011
  • Primary: 34B45.

  • The global theory of transmission line networks with nonconservative junction conditions is developed from a spectral theoretic viewpoint. The rather general junction conditions lead to spectral problems for nonnormal operators. The theory of analytic functions which are almost periodic in a strip is used to establish the existence of an infinite sequence of eigenvalues and the completeness of generalized eigenfunctions. Simple eigenvalues are generic. The asymptotic behavior of an eigenvalue counting function is determined. Specialized results are developed for rational graphs.

    Citation: Robert Carlson. Spectral theory for nonconservative transmission line networks[J]. Networks and Heterogeneous Media, 2011, 6(2): 257-277. doi: 10.3934/nhm.2011.6.257

    Related Papers:

    [1] Awatif Nadia, Abdul Hasib Chowdhury, Esheta Mahfuj, Md. Sanwar Hossain, Khondoker Ziaul Islam, Md. Istianatur Rahman . Determination of transmission reliability margin using AC load flow. AIMS Energy, 2020, 8(4): 701-720. doi: 10.3934/energy.2020.4.701
    [2] Malhar Padhee, Rajesh Karki . Bulk system reliability impacts of forced wind energy curtailment. AIMS Energy, 2018, 6(3): 505-520. doi: 10.3934/energy.2018.3.505
    [3] Awatif Nadia, Md. Sanwar Hossain, Md. Mehedi Hasan, Sinthia Afrin, Md Shafiullah, Md. Biplob Hossain, Khondoker Ziaul Islam . Determination of transmission reliability margin for brownout. AIMS Energy, 2021, 9(5): 1009-1026. doi: 10.3934/energy.2021046
    [4] Armando L. Figueroa-Acevedo, Michael S. Czahor, David E. Jahn . A comparison of the technological, economic, public policy, and environmental factors of HVDC and HVAC interregional transmission. AIMS Energy, 2015, 3(1): 144-161. doi: 10.3934/energy.2015.1.144
    [5] Li Bin, Muhammad Shahzad, Qi Bing, Muhammad Ahsan, Muhammad U Shoukat, Hafiz MA Khan, Nabeel AM Fahal . The probabilistic load flow analysis by considering uncertainty with correlated loads and photovoltaic generation using Copula theory. AIMS Energy, 2018, 6(3): 414-435. doi: 10.3934/energy.2018.3.414
    [6] Gul Ahmad Ludin, Mohammad Amin Amin, Ahmad Shah Irshad, Soichiro Ueda, Zakirhussain Farhad, M. H. Elkholy, Tomonobu Senjyu . Power transmission in Afghanistan: Challenges, opportunities and proposals. AIMS Energy, 2024, 12(4): 840-871. doi: 10.3934/energy.2024040
    [7] Baseem Khan, Hassan Haes Alhelou, Fsaha Mebrahtu . A holistic analysis of distribution system reliability assessment methods with conventional and renewable energy sources. AIMS Energy, 2019, 7(4): 413-429. doi: 10.3934/energy.2019.4.413
    [8] Albert K. Awopone, Ahmed F. Zobaa . Analyses of optimum generation scenarios for sustainable power generation in Ghana. AIMS Energy, 2017, 5(2): 193-208. doi: 10.3934/energy.2017.2.193
    [9] Arben Gjukaj, Rexhep Shaqiri, Qamil Kabashi, Vezir Rexhepi . Renewable energy integration and distributed generation in Kosovo: Challenges and solutions for enhanced energy quality. AIMS Energy, 2024, 12(3): 686-705. doi: 10.3934/energy.2024032
    [10] Gerardo Guerra, Juan A. Martinez-Velasco . A review of tools, models and techniques for long-term assessment of distribution systems using OpenDSS and parallel computing. AIMS Energy, 2018, 6(5): 764-800. doi: 10.3934/energy.2018.5.764
  • The global theory of transmission line networks with nonconservative junction conditions is developed from a spectral theoretic viewpoint. The rather general junction conditions lead to spectral problems for nonnormal operators. The theory of analytic functions which are almost periodic in a strip is used to establish the existence of an infinite sequence of eigenvalues and the completeness of generalized eigenfunctions. Simple eigenvalues are generic. The asymptotic behavior of an eigenvalue counting function is determined. Specialized results are developed for rational graphs.


    The classical beta function

    $ B(δ1,δ2)=0tδ11(1t)δ21dt,((δ1)>0,(δ2)>0)
    $
    (1.1)

    and its relation with well known gamma function is given by

    $ B(δ1,δ2)=Γ(δ1)Γ(δ2)Γ(δ1+δ2),(δ1)>0,(δ2)>0.
    $

    The Gauss hypergeometric, confluent hypergeometric and Appell's functions which are respectively defined by(see [27])

    $ 2F1(δ1,δ2;δ3;z)=n=0(δ1)n(δ2)n(δ3)nznn!,(|z|<1),    (δ1,δ2,δ3C  and  δ30,1,2,3,),
    $
    (1.2)

    and

    $ 1Φ1(δ2;δ3;z)=n=0(δ2)n(δ3)nznn!,(|z|<1),    (δ2,δ3C  and  δ30,1,2,3,).
    $
    (1.3)

    The Appell's series or bivariate hypergeometric series is defined by

    $ F1(δ1,δ2,δ3;δ4;x,y)=m,n=0(δ1)m+n(δ2)m(δ3)nxmyn(δ4)m+nm!n!;
    $
    (1.4)

    for all $ \delta_1, \delta_2, \delta_3, \delta_4\in \mathbb{C}, \delta_4\neq 0, -1, -2, -3, \cdots, \quad |x|, |y| < 1 < 1 $.

    The integral representation of hypergeometric, confluent hypergeometric and Appell's functions are respectively defined by

    $ 2F1(δ1,δ2;δ3;z)=Γ(δ3)Γ(δ2)Γ(δ3δ2)10tδ21(1t)δ3δ21(1zt)δ1dt,
    $
    (1.5)
    $ \Big(\Re(\delta_3) \gt \Re(\delta_2) \gt 0, |\arg(1-z)| \lt \pi\Big), $

    and

    $ 1Φ1(δ2;δ3;z)=Γ(δ3)Γ(δ2)Γ(δ3δ2)10tδ21(1t)δ3δ21eztdt,
    $
    (1.6)
    $ \Big(\Re(\delta_3) \gt \Re(\delta_2) \gt 0\Big). $
    $ F1(δ1,δ2,δ3;δ4;x,y)=Γ(δ4)Γ(δ1)Γ(δ4δ1)10tδ11(1t)δ4δ11(1xt)δ2(1yt)δ3dt.
    $
    (1.7)

    The $ \mathtt{k} $-gamma function, $ \mathtt{k} $-beta function and the $ \mathtt{k} $-Pochhammer symbol introduced and studied by Diaz and Pariguan [5]. The integral representation of $ \mathtt{k} $-gamma function and $ \mathtt{k} $-beta function respectively given by

    $ Γk(z)=kzk1Γ(zk)=0tz1ezkkdt,(z)>0,k>0
    $
    (1.8)
    $ Bk(x,y)=1k10txk1(1t)yk1dt,(x)>0,(y)>0.
    $
    (1.9)

    Here, we recall the following relations (see [5]).

    $ Bk(x,y)=Γk(x)Γk(y)Γk(x+y),
    $
    (1.10)
    $ (z)n,k=Γk(z+nk)Γk(z),
    $
    (1.11)

    where $ (z)_{n, \mathtt{k}} = (z)(z+\mathtt{k})(z+2\mathtt{k})\cdots(z+(n-1)\mathtt{k}); \quad (z)_{0, \mathtt{k}} = 1 $ and $ \mathtt{k} > 0 $

    and

    $ n=0(α)n,kznn!=(1kz)αk.
    $
    (1.12)

    These studies were followed by Mansour [16], Kokologiannaki [13], Krasniqi [14] and Merovci [17]. In 2012, Mubeen and Habibullah [18] defined the $ \mathtt{k} $-hypergeometric function as

    $ 2F1,k(δ1,δ2;δ3;z)=n=0(δ1)n,k(δ2)n,k(δ3)n,kznn!,
    $
    (1.13)

    where $ \delta_1, \delta_2, \delta_3\in\mathbb{C} $ and $ \delta_3\neq0, -1, -2, \cdots $ and its integral representation is given by

    $ 2F1,k(δ1,δ2;δ3;z)=1kBk(δ2,δ3δ2)×10tδ2k1(1t)δ3δ2k1(1ktz)δ1kdt.
    $
    (1.14)

    The $ \mathtt{k} $-Riemann-Liouville (R-L) fractional integral using $ \mathtt{k} $-gamma function introduced in [19]:

    $ (Iαkf(t))(x)=1kΓk(α)x0f(t)(xt)αk1dt,k,αR+.
    $
    (1.15)

    Later on Mubeen and Iqbal [11] established the improved version of Gruss type inequalities by utilizing $ k $-fractional integrals. In [1], Agarwal et al. presented certain Hermite-Hadamard type inequalities for generalized $ k $-fractional integrals. Set et al. [29] presented an integral identity and generalized Hermite–Hadamard type inequalities for Riemann–Liouville fractional integral. Mubeen et al. [24] established integral inequalities of Ostrowski type for $ k $-fractional Riemann–Liouville integrals. Recently, many researchers have introduced generalized version of $ k $-fractional integrals and investigated a large bulk of various inequalities via the said fractional integrals. The interesting readers are referred to see the work of [9,10,26,30]. Farid et al. [7] introduced Hadamard $ k $-fractional integrals. In [8] introduced Hadamard-type inequalities for $ k $-fractional Riemann-Liouville integrals. In [12,31], the authors established certain inequalities by utilizing Hadamard-type inequalities for $ k $-fractional Riemann-Liouville integrals. In [25], Nisar et al. established certain Gronwall type inequalities associated with Riemann-Liouville $ k $- and Hadamard $ k $-fractional derivatives and their applications. In [25], they presented dependence solutions of certain $ k $-fractional differential equations of arbitrary real order with initial conditions. Recently, Samraiz et al. [28] defined an extension of Hadamard $ k $-fractional derivative and proved its various properties.

    The solution of some integral equations involving confluent $ \mathtt{k} $-hypergeometric functions and $ \mathtt{k} $-analogue of Kummer's first formula are given in [22,23]. While the $ \mathtt{k} $-hypergeometric and confluent $ \mathtt{k} $-hypergeometric differential equations are introduced in [20]. In 2015, Mubeen et al. [21] introduced $ \mathtt{k} $-Appell hypergeometric function as

    $ F1,k(δ1,δ2,δ3;δ4;z1,z2)=m,n=0(δ1)m+n,k(δ2)m,k(δ3)m,k(δ4)m+n,kzm1zn2m!n!
    $
    (1.16)

    for all $ \delta_1, \delta_2, \delta_3, \delta_4\in \mathbb{C}, \delta_4\neq 0, -1, -2, -3, \cdots, \quad \max\{|z_{1}|, |z_{2}|\} < \frac{1}{\mathtt{k}} $ and $ \mathtt{k} > 0 $. Also, Mubeen et al. defined its integral representation as

    $ F1,k(δ1,δ2,δ3;δ4;z1,z2)=1kBk(δ1,δ4δ1)10tδ1k1(1t)δ4δ1k1(1kz1t)δ2k(1kz2t)δ3kdt,
    $
    (1.17)
    $ \left(\Re(\delta_4) \gt \Re(\delta_1) \gt 0\right) . $

    In this section, we recall the following definition of fractional derivatives from and give a new extension called Riemann-Liouville $ \mathtt{k} $-fractional derivative.

    Definition 2.1. The well-known R-L fractional derivative of order $ \mu $ is defined by

    $ Dμx{f(x)}=1Γ(μ)x0f(t)(xt)μ1dt,(μ)<0.
    $
    (2.1)

    For the case $ m-1 < \Re(\mu) < m $ where $ m = 1, 2, \cdots $, it follows

    $ Dμx{f(x)}=dmdxmDμmx{f(x)}=dmdxm{1Γ(μ+m)x0f(t)(xt)μ+m1dt}.
    $
    (2.2)

    For further study and applications, we refer the readers to the work of [2,3,4,15,32]. In the following, we define Riemann-Liouville $ \mathtt{k} $-fractional derivative of order $ \mu $ as

    Definition 2.2.

    $ kDμx{f(x)}=1kΓk(μ)x0f(t)(xt)μk1dt,(μ)<0,kR+.
    $
    (2.3)

    For the case $ m-1 < \Re(\mu) < m $ where $ m = 1, 2, \cdots $, it follows

    $ kDμx{f(x)}=dmdxmkDμmkx{f(x)}=dmdxm{1kΓk(μ+mk)x0f(t)(xt)μk+m1dt}.
    $
    (2.4)

    Note that for $ \mathtt{k} = 1 $, definition 2.2 reduces to the classical R-L fractional derivative operator given in definition 2.1.

    Now, we are ready to prove some theorems by using the new definition 2.2.

    Theorem 1. The following formula holds true,

    $ kDμz{zηk}=zημkΓk(μ)Bk(η+k,μ),(μ)<0.
    $
    (2.5)

    Proof. From (2.3), we have

    $ kDμz{zηk}=1kΓk(μ)z0tηk(zt)μk1dt.
    $
    (2.6)

    Substituting $ t = uz $ in (2.6), we get

    $ kDμz{zηk}=1kΓk(μ)10(uz)ηk(zuz)μk1zdu=zημkkΓk(μ)10uηk(1u)μk1du.
    $

    Applying definition (1.9) to the above equation, we get the desired result.

    Theorem 2. Let $ \Re(\mu) > 0 $ and suppose that the function $ f(z) $ is analytic at the origin with its Maclaurin expansion given by $ f(z) = \sum_{n = 0}^\infty a_n z^n $ where $ |z| < \rho $ for some $ \rho\in \mathbb{R^+} $. Then

    $ kDμz{f(z)}=n=0ankDμz{zn}.
    $
    (2.7)

    Proof. Using the series expansion of the function $ f(z) $ in (2.3) gives

    $ kDμz{f(z)}=1kΓk(μ)z0n=0antn(zt)μk1dt.
    $

    As the series is uniformly convergent on any closed disk centered at the origin with its radius smaller then $ \rho $, therefore the series so does on the line segment from $ 0 $ to a fixed $ z $ for $ |z| < \rho $. Thus it guarantee terms by terms integration as follows

    $ kDμz{f(z)}=n=0an{1kΓk(μ)z0tn(zt)μk1dt=n=0ankDμz{zn},
    $

    which is the required proof.

    Theorem 3. The following result holds true:

    $ kDημz{zηk1(1kz)βk}=Γk(η)Γk(μ)zμk12F1,k(β,η;μ;z),
    $
    (2.8)

    where $ \Re(\mu) > \Re(\eta) > 0 $ and $ |z| < 1 $.

    Proof. By direct calculation, we have

    $ kDημz{zηk1(1kz)βk}=1kΓk(μη)z0tηk1(1kt)βk(zt)μηk1dt=zμηk1kΓk(μη)z0tηk1(1kt)βk(1tz)μηk1dt.
    $

    Substituting $ t = zu $ in the above equation, we get

    $ kDημz{zηk1(1kz)βk}=zμk1kΓk(μη)10uηk1(1kuz)βk(1u)μηk1zdu.
    $

    Applying (1.14) and after simplification we get the required proof.

    Theorem 4. The following result holds true:

    $ kDημz{zηk1(1kaz)αk(1kbz)βk}=Γk(η)Γk(μ)zμk1F1,k(η,α,β;μ;az,bz),
    $
    (2.9)

    where $ \Re(\mu) > \Re(\eta) > 0 $, $ \Re(\alpha) > 0 $, $ \Re(\beta) > 0 $, $ \max\{|az|, |bz|\} < \frac{1}{\mathtt{k}} $.

    Proof. To prove (2.9), we use the power series expansion

    $ (1kaz)αk(1kbz)βk=m=0n=0(α)m,k(β)n,k(az)mm!(bz)nn!.
    $

    Now, applying Theorem 1, we obtain

    $ kDημz{zηk1(1kaz)αk(1kbz)βk}=m=0n=0(α)m,k(β)n,k(a)mm!(b)nn!kDημz{zηk+m+n1}=m=0n=0(α)m,k(β)n,k(a)mm!(b)nn!βk(η+mk+nk,μη)Γk(μη)zμk+m+n1=m=0n=0(α)m,k(β)n,k(a)mm!(b)nn!Γk(η+mk+nk)Γk(μ+mk+nk)zμk+m+n1.
    $

    In view of (1.16), we get

    $ kDημz{zηk1(1kaz)αk(1kbz)βk}=Γk(η)Γk(μ)zμk1F1,k(η,α,β;μ;az,bz).
    $

    Theorem 5. The following Mellin transform formula holds true:

    $ M{exkDμz(zηk);s}=Γ(s)Γk(μ)Bk(η+k,μ)zημk,
    $
    (2.10)

    where $ \Re(\eta) > -1 $, $ \Re(\mu) < 0 $, $ \Re(s) > 0 $.

    Proof. Applying the Mellin transform on definition (2.3), we have

    $ M{exkDμz(zηk);s}=0xs1exkDμz(zη);s}dx=1kΓk(μ)0xs1ex{z0tηk(zt)μk1dt}dx=zμk1kΓk(μ)0xs1ex{z0tηk(1tz)μk1dt}dx=zημkkΓk(μ)0xs1ex{10uηk(1u)μk1du}dx
    $

    Interchanging the order of integrations in above equation, we get

    $ M{exkDμz(zηk);s}=zημkkΓk(μ)10uηk(1u)μk1(0xs1exdx)du.=zημkkΓk(μ)Γ(s)10uηk(1u)μk1du=Γ(s)Γk(μ)Bk(η+k,μ)zημk,
    $

    which completes the proof.

    Theorem 6. The following Mellin transform formula holds true:

    $ M{exkDμz((1kz)αk);s}=zμkΓ(s)Γk(μ)Bk(k,μ)2F1,k(α,k;μ+k;z),
    $
    (2.11)

    where $ \Re(\alpha) > 0 $, $ \Re(\mu) < 0 $, $ \Re(s) > 0 $, and $ |z| < 1 $.

    Proof. Using the power series for $ (1-\mathtt{k}z)^{-\frac{\alpha}{\mathtt{k}}} $ and applying Theorem 5 with $ \eta = n\mathtt{k} $, we can write

    $ M{exkDμz((1kz)αk);s}=n=0(α)n,kn!M{exkDμz(zn);s}=Γ(s)kΓk(μ)n=0(α)n,kn!Bk(nk+k,μ)znμk=Γ(s)zμkΓk(μ)n=0Bk(nk+k,μ)(α)n,kznn!=Γ(s)zμkn=0Γk(k+nk)Γk(μ+k+nk)(α)n,kznn!=Γ(s)Γk(μ+k)zμkn=0(k)n,k(μ+k)n,k(α)n,kznn!=Γ(s)zμkΓk(μ)Bk(k,μ)2F1,k(α,k;μ+k;z),
    $

    which is the required proof.

    Theorem 7. The following result holds true:

    $ kDημz[zηk1Eμk,γ,δ(z)]=zμk1kΓk(μη)n=0(μ)n,kΓk(γn+δ)Bk(η+nk,μη)znn!,
    $
    (2.12)

    where $ \gamma, \delta, \mu\in\mathbb{C} $, $ \Re(p) > 0 $, $ \Re(q) > 0 $, $ \Re(\mu) > \Re(\eta) > 0 $ and $ E_{\mathtt{k}, \gamma, \delta}^{\mu}(z) $ is $ \mathtt{k} $-Mittag-Leffler function (see [6]) defined as:

    $ Eμk,γ,δ(z)=n=0(μ)n,kΓk(γn+δ)znn!.
    $
    (2.13)

    Proof. Using (2.13), the left-hand side of (2.12) can be written as

    $ kDημz[zηk1Eμk,γ,δ(z)]=kDημz[zηk1{n=0(μ)n,kΓk(γn+δ)znn!}].
    $

    By Theorem 2, we have

    $ kDημz[zηk1Eμk,γ,δ(z)]=n=0(μ)n,kΓk(γn+δ){kDμz[zηk+n1]}.
    $

    In view of Theorem 1, we get the required proof.

    Theorem 8. The following result holds true:

    $ kDημz{zηk1mΨn[(αi,Ai)1,m;|z(βj,Bj)1,n;]}=zμk1kΓk(μη)×n=0mi=1Γ(αi+Ain)nj=1Γ(βj+BjnBk(η+nk,μη)znn!,
    $
    (2.14)

    where $ \Re(p) > 0 $, $ \Re(q) > 0 $, $ \Re(\mu) > \Re(\eta) > 0 $ and $ _m\Psi_n(z) $ is the Fox-Wright function defined by (see [15], pages 56–58)

    $ mΨn(z)=mΨn[(αi,Ai)1,m;|z(βj,Bj)1,n;]=n=0mi=1Γ(αi+Ain)nj=1Γ(βj+Bjnznn!.
    $
    (2.15)

    Proof. Applying Theorem 1 and followed the same procedure used in Theorem 7, we get the desired result.

    Recently, many researchers have introduced various generalizations of fractional integrals and derivatives. In this line, we have established a $ k $-fractional derivative and its various properties. If we letting $ \mathtt{k}\rightarrow1 $ then all the results established in this paper will reduce to the results related to the classical Reimann-Liouville fractional derivative operator.

    The author K.S. Nisar thanks to Deanship of Scientific Research (DSR), Prince Sattam bin Abdulaziz University for providing facilities and support.

    The authors declare no conflict of interest.

    [1] A. Agarwal, S. Das and D. Sen, Power dissipation for systems with junctions of multiple quantum wires, Physical Review B, 81 (2010).
    [2] L. Ahlfors, "Complex Analysis," McGraw-Hill, New York, 1966.
    [3] F. Ali Mehmeti, "Nonlinear Waves in Networks," Akademie Verlag, Berlin, 1994.
    [4] R. Carlson, Inverse eigenvalue problems on directed graphs, Transactions of the American Mathematical Society, 351 (1999), 4069-4088. doi: 10.1090/S0002-9947-99-02175-3
    [5] R. Carlson, Linear network models related to blood flow, in Quantum Graphs and Their Applications, Contemporary Mathematics, 415 (2006), 65-80.
    [6] C. Cattaneo and L. Fontana, D'Alembert formula on finite one-dimensional networks, J. Math. Anal. Appl., 284 (2003), 403-424. doi: 10.1016/S0022-247X(02)00392-X
    [7] G. Chen, S. Krantz, D. Russell, C. Wayne, H. West and M. Coleman, Analysis, designs, and behavior of dissipative joints for coupled beams, SIAM Journal on Applied Mathematics., 49 (1989), 1665-1693. doi: 10.1137/0149101
    [8] S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end, Indiana Univ. Math. J., 44 (1995), 545-573. doi: 10.1512/iumj.1995.44.2001
    [9] E. B. Davies, Eigenvalues of an elliptic system, Math. Z., 243 (2003), 719-743. doi: 10.1007/s00209-002-0464-0
    [10] E. B. Davies, P. Exner and J. Lipovsky, Non-Weyl asymptotics for quantum graphs with general coupling conditions, J. Phys. A, 43 (2010).
    [11] Y. Fung, "Biomechanics," Springer, New York, 1997.
    [12] I. Herstein, "Topics in Algebra," Xerox College Publishing, Waltham, 1964.
    [13] B. Jessen and H. Tornhave, Mean motions and zeros of almost periodic functions, Acta Math., 77 (1945), 137-279. doi: 10.1007/BF02392225
    [14] T. Kato, "Perturbation Theory for Linear Operators," Springer-Verlag, New York, 1995.
    [15] V. Kostrykin, J. Potthoff and R. Schrader, Contraction semigroups on metric graphs, in Analysis on Graphs and Its Applications, PSUM, 77 (2008), 423-458.
    [16] T. Kottos and U. Smilansky, Periodic orbit theory and spectral statistics for quantum graphs, Ann. Phys., 274 (1999), 76-124. doi: 10.1006/aphy.1999.5904
    [17] M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162. doi: 10.1007/s00209-004-0695-3
    [18] M. Kramar Fijavz, D. Mugnolo and E. Sikolya, Variational and semigroup methods for waves and diffusions in networks, Appl. Math. Optim., 55 (2007), 219-240. doi: 10.1007/s00245-006-0887-9
    [19] M. Krein and A. Nudelman, Some spectral properties of a nonhomogeneous string with a dissipative boundary condition, J. Operator Theory, 22 (1989), 369-395.
    [20] B. Levin, "Distribution of Zeros of Entire Functions," American Mathematical Society, Providence, 1980.
    [21] S. Lang, "Algebra," Addison-Wesley, 1984.
    [22] G. Lumer, "Equations de Diffusion Generales sur des Reseaux Infinis," Seminar Goulaouic-Schwartz, 1980.
    [23] G. Lumer, "Connecting of Local Operators and Evolution Equations on Networks," Lecture Notes in Math., 787, Springer, 1980.
    [24] P. Magnusson, G. Alexander, V. Tripathi and A. Weisshaar, "Transmission Lines and Wave Propagation," CRC Press, Boca Raton, 2001.
    [25] G. Miano and A. Maffucci, "Transmission Lines and Lumped Circuits," Academic Press, San Diego, 2001.
    [26] L. J. Myers and W. L. Capper, A transmission line model of the human foetal circulatory system, Medical Engineering and Physics, 24 (2002), 285-294. doi: 10.1016/S1350-4533(02)00019-X
    [27] S. Nicaise, Spectre des reseaux topologiques finis, Bulletin des sciences mathematique, 111 (1987), 401-413.
    [28] J. Ottesen, M. Olufsen and J. Larsen, "Applied Mathematical Models in Human Physiology," SIAM, 2004. doi: 10.1137/1.9780898718287
    [29] A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer, New York, 1983.
    [30] S. Sherwin, V. Franke, J. Peiro and K. Parker, One-dimensional modeling of a vascular network in space-time variables, Journal of Engineering Mathematics, 47 (2003), 217-250. doi: 10.1023/B:ENGI.0000007979.32871.e2
    [31] J. von Below, A characteristic equation associated to an eigenvalue problem on C2 networks, Lin. Alg. Appl., 71 (1985), 309-325. doi: 10.1016/0024-3795(85)90258-7
    [32] L. Zhou and G. Kriegsmann, A simple derivation of microstrip transmission line equations, SIAM J. Appl. Math., 70 (2009), 353-367. doi: 10.1137/080737563
  • This article has been cited by:

    1. Hamza Abunima, Jiashen Teh, Ching-Ming Lai, Hussein Jabir, A Systematic Review of Reliability Studies on Composite Power Systems: A Coherent Taxonomy Motivations, Open Challenges, Recommendations, and New Research Directions, 2018, 11, 1996-1073, 2417, 10.3390/en11092417
    2. Wook-Won Kim, Jong-Keun Park, Yong-Tae Yoon, Mun-Kyeom Kim, Transmission Expansion Planning under Uncertainty for Investment Options with Various Lead-Times, 2018, 11, 1996-1073, 2429, 10.3390/en11092429
    3. O Kuzmin, N Stanasiuk, S Maiti, Relationship between сonflict management strategies and economic growth of organisation, 2020, 7, 23123435, 1, 10.23939/eem2020.02.001
    4. Panlong Jin, Zongchuan Zhou, Xue Feng, Zhiyuan Wang, Tengmu Li, Pierluigi Siano, Hazlie Mokhlis, 2024, Game study of power system reconstruction planning after extreme disaster, 9781510679795, 172, 10.1117/12.3024421
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4535) PDF downloads(103) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog