Loading [MathJax]/jax/output/SVG/jax.js

The Cauchy problem for the inhomogeneous porous medium equation

  • Received: 01 February 2006 Revised: 01 April 2006
  • Primary: 35B40, 35D05, 35K55, 35K60, 35K65, 47H20.

  • We consider the initial value problem for the filtration equation in an inhomogeneous medium
    p(x)ut=Δum,m>1.

    The equation is posed in the whole space Rn , n2, for 0<t<; p(x) is a positive and bounded function with a certain behaviour at infinity. We take initial data u(x,0)=u0(x)0, and prove that this problem is well-posed in the class of solutions with finite "energy", that is, in the weighted space L1p, thus completing previous work of several authors on the issue. Indeed, it generates a contraction semigroup.
        We also study the asymptotic behaviour of solutions in two space dimensions when p decays like a non-integrable power as |x| : p(x) |x|α ~ 1 with αϵ(0,2) (infinite mass medium). We show that the intermediate asymptotics is given by the unique selfsimilar solution U2(x,t;E) of the singular problem
    |x|αut=Δum in R2×R+
    |x|αu(x,0)=Eδ(x),E=||u0||L1p

    Citation: Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation[J]. Networks and Heterogeneous Media, 2006, 1(2): 337-351. doi: 10.3934/nhm.2006.1.337

    Related Papers:

    [1] Guillermo Reyes, Juan-Luis Vázquez . The Cauchy problem for the inhomogeneous porous medium equation. Networks and Heterogeneous Media, 2006, 1(2): 337-351. doi: 10.3934/nhm.2006.1.337
    [2] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009
    [3] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10(4): 897-948. doi: 10.3934/nhm.2015.10.897
    [4] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171. doi: 10.3934/nhm.2017006
    [5] Catherine Choquet, Ali Sili . Homogenization of a model of displacement with unbounded viscosity. Networks and Heterogeneous Media, 2009, 4(4): 649-666. doi: 10.3934/nhm.2009.4.649
    [6] Gabriela Jaramillo . Inhomogeneities in 3 dimensional oscillatory media. Networks and Heterogeneous Media, 2015, 10(2): 387-399. doi: 10.3934/nhm.2015.10.387
    [7] John R. King . Wavespeed selection in the heterogeneous Fisher equation: Slowly varying inhomogeneity. Networks and Heterogeneous Media, 2013, 8(1): 343-378. doi: 10.3934/nhm.2013.8.343
    [8] Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti . Null controllability of degenerate parabolic operators with drift. Networks and Heterogeneous Media, 2007, 2(4): 695-715. doi: 10.3934/nhm.2007.2.695
    [9] María Anguiano, Renata Bunoiu . Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15(1): 87-110. doi: 10.3934/nhm.2020004
    [10] Mahmoud Saleh, Endre Kovács, Nagaraja Kallur . Adaptive step size controllers based on Runge-Kutta and linear-neighbor methods for solving the non-stationary heat conduction equation. Networks and Heterogeneous Media, 2023, 18(3): 1059-1082. doi: 10.3934/nhm.2023046
  • We consider the initial value problem for the filtration equation in an inhomogeneous medium
    p(x)ut=Δum,m>1.

    The equation is posed in the whole space Rn , n2, for 0<t<; p(x) is a positive and bounded function with a certain behaviour at infinity. We take initial data u(x,0)=u0(x)0, and prove that this problem is well-posed in the class of solutions with finite "energy", that is, in the weighted space L1p, thus completing previous work of several authors on the issue. Indeed, it generates a contraction semigroup.
        We also study the asymptotic behaviour of solutions in two space dimensions when p decays like a non-integrable power as |x| : p(x) |x|α ~ 1 with αϵ(0,2) (infinite mass medium). We show that the intermediate asymptotics is given by the unique selfsimilar solution U2(x,t;E) of the singular problem
    |x|αut=Δum in R2×R+
    |x|αu(x,0)=Eδ(x),E=||u0||L1p


  • This article has been cited by:

    1. Fabio Punzo, On the Cauchy problem for nonlinear parabolic equations with variable density, 2009, 9, 1424-3199, 429, 10.1007/s00028-009-0018-6
    2. Gabriele Grillo, Matteo Muratori, Fabio Punzo, On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density, 2015, 35, 1078-0947, 5927, 10.3934/dcds.2015.35.5927
    3. Fabio Punzo, Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space, 2012, 5, 1937-1179, 657, 10.3934/dcdss.2012.5.657
    4. Benito Hernández-Bermejo, Razvan Gabriel Iagar, Pilar R. Gordoa, Andrew Pickering, Ariel Sánchez, Equivalence and finite time blow-up of solutions and interfaces for two nonlinear diffusion equations, 2020, 482, 0022247X, 123503, 10.1016/j.jmaa.2019.123503
    5. Razvan Gabriel Iagar, Ana Isabel Muñoz, Ariel Sánchez, Self-similar solutions preventing finite time blow-up for reaction-diffusion equations with singular potential, 2023, 358, 00220396, 188, 10.1016/j.jde.2023.02.026
    6. Razvan Gabriel Iagar, Ariel Sánchez, Large time behavior for a porous medium equation in a nonhomogeneous medium with critical density, 2014, 102, 0362546X, 226, 10.1016/j.na.2014.02.016
    7. Matteo Bonforte, Nikita Simonov, Quantitative a priori estimates for fast diffusion equations with Caffarelli–Kohn–Nirenberg weights. Harnack inequalities and Hölder continuity, 2019, 345, 00018708, 1075, 10.1016/j.aim.2019.01.018
    8. Armida GONZALEZ-LORENCE, Govani G. SÁNCHEZ-ORDUÑA, José G. AYALA-LANDEROS, Sonia E. ROMÁN-FLORES, Smart glasses for blind people, 2020, 2444-4995, 32, 10.35429/JTP.2020.17.6.32.38
    9. Fabio Punzo, Well-posedness of the Cauchy problem for nonlinear parabolic equations with variable density in the hyperbolic space, 2012, 19, 1021-9722, 485, 10.1007/s00030-011-0139-9
    10. Giulia Meglioli, Fabio Punzo, Blow-up and global existence for solutions to the porous medium equation with reaction and fast decaying density, 2021, 203, 0362546X, 112187, 10.1016/j.na.2020.112187
    11. A. F. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations, 2007, 86, 0003-6811, 755, 10.1080/00036810701435711
    12. Fabio Punzo, Uniqueness and non-uniqueness of bounded solutions to singular nonlinear parabolic equations, 2009, 70, 0362546X, 3020, 10.1016/j.na.2008.12.025
    13. Fabio Punzo, Gabriele Grillo, Matteo Muratori, Conditions at infinity for the inhomogeneous filtration equation, 2014, 31, 0294-1449, 413, 10.1016/j.anihpc.2013.04.002
    14. Gabriele Grillo, Matteo Muratori, Fabio Punzo, Fractional porous media equations: existence and uniqueness of weak solutions with measure data, 2015, 54, 0944-2669, 3303, 10.1007/s00526-015-0904-4
    15. Razvan Gabriel Iagar, Guillermo Reyes, Ariel Sánchez, Radial Equivalence of Nonhomogeneous Nonlinear Diffusion Equations, 2013, 123, 0167-8019, 53, 10.1007/s10440-012-9714-2
    16. Pan Zheng, Chunlai Mu, Global existence, large time behavior, and life span for a degenerate parabolic equation with inhomogeneous density and source, 2014, 65, 0044-2275, 471, 10.1007/s00033-013-0337-x
    17. Razvan Gabriel Iagar, Ariel Sánchez, Asymptotic behavior for the critical nonhomogeneous porous medium equation in low dimensions, 2016, 439, 0022247X, 843, 10.1016/j.jmaa.2016.03.015
    18. Fabio Punzo, Gabriele Terrone, On the Cauchy problem for a general fractional porous medium equation with variable density, 2014, 98, 0362546X, 27, 10.1016/j.na.2013.12.007
    19. Sofía Nieto, Guillermo Reyes, Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density, 2012, 12, 1534-0392, 1123, 10.3934/cpaa.2013.12.1123
    20. Juan Luis Vázquez, Fundamental solution and long time behavior of the Porous Medium Equation in hyperbolic space, 2015, 104, 00217824, 454, 10.1016/j.matpur.2015.03.005
    21. Gabriele Grillo, Matteo Muratori, Maria Michaela Porzio, Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities, 2013, 33, 1078-0947, 3599, 10.3934/dcds.2013.33.3599
    22. Fabio Punzo, Uniqueness and support properties of solutions to singular quasilinear parabolic equations on surfaces of revolution, 2012, 191, 0373-3114, 311, 10.1007/s10231-011-0185-2
    23. Razvan Gabriel Iagar, Ariel Sánchez, Asymptotic behavior for the heat equation in nonhomogeneous media with critical density, 2013, 89, 0362546X, 24, 10.1016/j.na.2013.05.002
    24. Sergey Shmarev, Viktor Vdovin, Alexey Vlasov, Interfaces in diffusion–absorption processes in nonhomogeneous media, 2015, 118, 03784754, 360, 10.1016/j.matcom.2014.11.004
    25. Giulia Meglioli, Fabio Punzo, Blow-up and global existence for solutions to the porous medium equation with reaction and slowly decaying density, 2020, 269, 00220396, 8918, 10.1016/j.jde.2020.06.017
    26. Razvan Gabriel Iagar, Ariel Sánchez, Radial equivalence and applications to the qualitative theory for a class of nonhomogeneous reaction‐diffusion equations, 2023, 46, 0170-4214, 15799, 10.1002/mma.9427
    27. Mersaid Aripov, Makhmud Bobokandov, Muyassar Mamatkulova, Analysis of a double nonlinear diffusion equation in inhomogeneous medium, 2024, 1072-3374, 10.1007/s10958-024-07384-7
    28. Razvan Gabriel Iagar, Ariel Sánchez, Existence and Multiplicity of Blow-Up Profiles for a Quasilinear Diffusion Equation with Source, 2025, 24, 1575-5460, 10.1007/s12346-024-01204-8
    29. Razvan Gabriel Iagar, Ariel Sánchez, A critical non-homogeneous heat equation with weighted source, 2025, 0956-7925, 1, 10.1017/S095679252500004X
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4118) PDF downloads(115) Cited by(29)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog