Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Topical Sections

A novel bidirectional projection measures of circular intuitionistic fuzzy sets and its application to multiple attribute group decision-making problems

  • Atanassov recently proposed a new circular intuitionistic fuzzy set (CIFS) as an extension of intuitionistic fuzzy sets to express uncertain information by a circle with centered membership, non-membership, and radius r. Circular intuitionistic fuzzy sets can express uncertain information more flexibly than the intuitionistic fuzzy set. In this paper, we first propose a new method for calculating the radius r of CIFSs by ordinary least squares (OLS). We introduce some notions, such as modules of the circular intuitionistic fuzzy set and the cosine of the included angle between membership and non-membership vectors of the circular intuitionistic fuzzy set. Then, we define a new bidirectional projection measure of circular intuitionistic fuzzy sets, which takes into account the difference between different CIFSs in terms of membership degree and non-membership degree and radius r. The proposed bidirectional projection measures show superiority compared with some recent research works through numerical examples. Finally, the method is applied to a multi-attribute decision-making problem with group expert decision-making to prove the effectiveness and accuracy of the method.

    Citation: Hu Wang. A novel bidirectional projection measures of circular intuitionistic fuzzy sets and its application to multiple attribute group decision-making problems[J]. AIMS Mathematics, 2025, 10(5): 10283-10307. doi: 10.3934/math.2025468

    Related Papers:

    [1] Wedad Albalawi, Muhammad Imran Liaqat, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Qualitative study of Caputo Erdélyi-Kober stochastic fractional delay differential equations. AIMS Mathematics, 2025, 10(4): 8277-8305. doi: 10.3934/math.2025381
    [2] Wei Zhang, Jifeng Zhang, Jinbo Ni . New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative. AIMS Mathematics, 2022, 7(1): 1074-1094. doi: 10.3934/math.2022064
    [3] Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013
    [4] Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477
    [5] Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394
    [6] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [7] Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704
    [8] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [9] Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan . A generalized Gronwall inequality via ψ-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191
    [10] Muhammad Imran Liaqat, Fahim Ud Din, Wedad Albalawi, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives. AIMS Mathematics, 2024, 9(5): 11194-11211. doi: 10.3934/math.2024549
  • Atanassov recently proposed a new circular intuitionistic fuzzy set (CIFS) as an extension of intuitionistic fuzzy sets to express uncertain information by a circle with centered membership, non-membership, and radius r. Circular intuitionistic fuzzy sets can express uncertain information more flexibly than the intuitionistic fuzzy set. In this paper, we first propose a new method for calculating the radius r of CIFSs by ordinary least squares (OLS). We introduce some notions, such as modules of the circular intuitionistic fuzzy set and the cosine of the included angle between membership and non-membership vectors of the circular intuitionistic fuzzy set. Then, we define a new bidirectional projection measure of circular intuitionistic fuzzy sets, which takes into account the difference between different CIFSs in terms of membership degree and non-membership degree and radius r. The proposed bidirectional projection measures show superiority compared with some recent research works through numerical examples. Finally, the method is applied to a multi-attribute decision-making problem with group expert decision-making to prove the effectiveness and accuracy of the method.



    Numerous fractional operators are discussed in the literature [1,2,3], with the Caputo and Riemann-Liouville derivatives being the most significant and widely used [4,5,6]. In 2000, Hilfer [7] generalized the Riemann-Liouville derivative, introducing what is now referred to as the Hilfer fractional derivative (HFrD).

    In literature, various authors used HFrD in their research work with fractional differential and integro-differential models; for example, Raghavan et al. [8] found solutions of the fractional differential equations (FrDEs) with HFrD applying the Laplace transform. Li et al. [9] developed results on the existence and uniqueness and also developed solutions for FrDEs by HFrD. Zhu et al. [10] extracted the solutions of fractional integro-differential models with HFrD. Bedi et al. [11] developed results of the existence and uniqueness of solutions for Hilfer FrDEs. Kasinathan et al. [12] developed results related to mild solutions for FrDEs. Lv and Yang [13] established results for the existence and uniqueness of mild solutions for stochastic models applying semigroup theory. Jin et al. [14] researched the existence and uniqueness of mild solutions to the diffusion model. Karthikeyan et al. [15] discussed results about the controllability of delayed FrDEs. Hegade and Bhalekar [16] developed results of stability for FrDEs. For more studies related to work with HFrD, see [17,18].

    In recent years, many scholars have actively worked on various topics related to different classes of fractional stochastic differential equations (FSDEs). In [19], Batiha et al. proposed an innovative approach for solving FSDEs. They obtained approximate solutions for these equations and compared the results with solutions obtained by other methods. Chen et al. [20] established the existence and uniqueness of solutions to FSDEs and presented results related to stability. The authors also found solutions using the Euler-Maruyama technique for FSDEs. Moualkia and Xu [21] undertook a theoretical analysis of variable-order FSDEs. They determined approximate solutions for these equations and assessed their accuracy by comparing them with solutions from alternative methods. In [22], Ali et al. investigated the coupled system of FSDEs regarding the existence and uniqueness of solutions and stability and found solutions. Li et al. carried out a stability investigation of a system of FSDEs in [23]. The research analyzes the interaction between fractional calculus, stochastic processes, and time delays to provide a better understanding of system stability. It sheds light on the effective solution of these equations via several numerical methods. Moreover, the paper examined various types of stability in FSDEs. Albalawi et al. [24] conducted existence and uniqueness of solution and stability analysis for FSDEs with conformable derivatives. In [25], Doan et al. established the convergence of the Euler-Maruyama approach for FSDEs, found solutions using this technique, and presented stability results. In [26], Umamaheswari et al. discussed the existence and uniqueness of solutions using the Picard scheme for FSDEs with Lévy noise. In [27], Li et al. studied Hilfer FSDEs with delay concerning the existence and uniqueness of solutions using the Picard method. Moreover, they investigated finite-time stability using various inequalities. For further information on FSDEs, refer to [28,29,30,31,32].

    Stochastic fractional delay differential equations (SFDDEs) are a mathematical model that includes fractional derivatives to take into account memory effects, delays in the display of time layer interactions, and stochastic processes for recording randomness or noise. These equations are particularly suitable for systems where past conditions, delay effects, and random variations have a significant impact on dynamics. SFDDEs find applications in various real-life scenarios, such as modeling biological systems with delayed feedback and environmental noise (e.g., population dynamics), engineering systems with memory and delays (e.g., control systems in robotics), finance (e.g., asset pricing with time-lagged market responses), and physics (e.g., viscoelastic materials with delayed stress-strain relationships). By integrating these complex factors, SFDDEs provide a robust framework for analyzing and predicting the behavior of time-dependent, uncertain systems.

    The average principle is a valuable way to analyze various systems. Focusing on averaged equations instead of the original complex time-dependent system provides an effective way to simplify the analysis and reduce complexity. The effectiveness of the average principle depends on the identification of conditions in which the system averaged in a particular context corresponds to the original system. Various authors have presented results on the average principle from different perspectives, such as Zou et al. [33], who established the average principle for FSDEs with impulses. Zou and Luo [34] established a novel result regarding the average principle for SFDDEs with the Caputo operator. The authors [35] established a result on the average principle with the Caputo derivative for neutral FSDEs. Mao et al. [36] established averaging principle results for stochastic delay differential equations with jumps. Xu et al. [37] also worked to prove an averaging principle theorem for FSDEs. Guo et al. [38] studied the averaging principle for stochastic differential equations under a general averaging condition, which is weaker than the traditional case. In [39,40], the authors proved the averaging principle for impulsive FSDEs. Ahmed and Zhu [41] presented results regarding the averaging principle for Hilfer FSDEs with Poisson jumps. Xu et al. [42] presented an averaging principle for Caputo FSDEs driven by Brownian motion in the mean square sense. Jing and Li [43] worked on the averaging principle for backward stochastic differential equations. Djaouti et al. [44] presented some generalizations of the averaging principle for neutral FSDEs. Mouy et al. [45] also proved the averaging principle for Caputo-Hadamard FSDEs with a pantograph term. Liu et al. [46] presented results for Caputo FSDEs with Brownian motion and Lévy noise [47]. Yang et al. [48] presented results for FSDEs with Poisson jumps regarding the averaging principle.

    Motivated by the above discussion, this paper presents significant findings on the existence and uniqueness of solutions, continuous dependence (Con-D), regularity, and average principle for Hilfer SFDDEs of the pth moment. The pth moment is a crucial tool for studying stochastic systems, helping assess the system's behavior and stability by providing a measure of its response over time. The pth moment can be applied to study the behavior of a stochastic system by analyzing its expected value. Moreover, the pth moment is an essential tool in probability analysis, offering a convenient framework for investigating and verifying the stability of stochastic systems.

    This research study uses the contraction mapping principle to determine the existence and uniqueness results of the Hilfer SFDDES solution. Next, we present the Con-D results by assuming that the coefficients correspond to the global Lipschitz condition. Additionally, various inequalities are used to describe regularity and determine average principle results. Finally, examples and graphic illustrations are included to support the results derived from this study.

    Remark 1.1. By proving the outcomes of the theoretical analysis regarding well-posedness, regularity, and average principle, we conclude that these results can be generalized to SFDDEs with the Hadamard fractional operator.

    Remark 1.2. Unlike traditional fractional models, SFDDEs with HFrD present a fundamental challenge due to the interaction of memory, randomness, and time delay effects. These complexities make it even more difficult to derive analytical or approximate solutions and ensure stability. Furthermore, the relationship between HFrD and probabilistic properties requires careful treatment of functional spaces, noise structures, and solution methods.

    Listed below are the main contributions of our study:

    (1) This research work establishes results on the well-posedness, regularity, and average principle for SFDDEs concerning HFrD.

    (2) Most of the findings related to existence, uniqueness, and average principle for FSDEs have been established in the mean-square sense; however, we obtained these results using the pth moment. Consequently, our study extended the results on well-posedness and average principle for SFDDEs to the case where p=2.

    (3) We provide several numerical examples along with their graphical representations to verify the accuracy and reliability of our theoretical findings.

    (4) We provide results for FSDEs with a delay term.

    In this research, we study the following SFDDEs driven by Brownian motions:

    {Dϑ,a0+ϖ(c)=f(c,ϖ(c),ϖ(cs))+g(c,ϖ(c),ϖ(cs))dw(c)dc,ϖ(c)=σ(c),sc0,I(1ϑ)(1a)0+ϖ(0)=σ, (1.1)

    where sR+ is the delay time, σ(c) is the history function for all c[s,0], and Dϑ,a0+ represents HFrD with orders 0ϑ1, 12<a<1. The f:[0,M]×Rm×RmRm and g:[0,M]×Rm×RmRm×b are the m-dimensional measurable functions. The stochastic process (wc)c[0,) follows a standard Brownian trajectory within the b-dimensional complete probability space (Ω,F,P). σ:[s,0]Rm is a continuous function. Assume that the norm of Rm is and Eσ(c)p<. The operator I(1ϑ)(1a)0+ is the Riemann-Liouville fractional integral operator.

    The structure of the paper is as follows: The next section, Preliminary, discusses definitions, a lemma, and some assumptions. Section 3 presents the main results regarding Hilfer SFDDEs. Section 4 provides results related to average principle. Then, we present examples to illustrate our established theoretical results in Section 5. Section 6 contains the conclusion, and we discuss future directions.

    First, we discuss the most important part of the paper, which serves as the foundation of our established results.

    Definition 2.1. [49] Considering a function ϖ(c), the fractional integral operator of order a can be expressed as

    Iaϖ(c)=1Γ(a)c0ϖ(φ)(cφ)1adφ,c>0.

    Definition 2.2 [50] The HFrD of order 0ϑ1 and 0<a<1 is given as follows:

    Dϑ,a0+ϖ(c)=Iϑ(1a)0+ddcI(1ϑ)(1a)0+ϖ(c),

    here, D=ddc.

    Lemma 2.1. [50] When a>12 and c>0, we have

    ηΓ(2a1)c0(cφ)2a2E2a1(ηφ2a1)dφE2a1(ηφ2a1).

    Definition 2.3. For p2 and c[0,), assume Apc=Lp(Ω,F,P) consists of all Fcth measurable with pth integrable ϖ=(ϖ1,ϖ2,,ϖm)T:ΩRm as

    ϖp=(mȷ=1E(|ϖȷ|p))1p.

    The ϖ(c):[0,M]Lp(Ω,F,P) is an Fadapted process when ϖ(c)Apc and c0. For σAp0, the ϖ(c) is a solution of Eq (1.1) if

    ϖ(c)=σc(ϑ1)(1a)Γ(ϑ(1a)+a)+1Γ(a)c0(cφ)a1f(φ,ϖ(φ),ϖ(φs))dφ+1Γ(a)c0(cφ)a1g(φ,ϖ(φ),ϖ(φs))dw(φ). (2.1)

    For f and g, assume the following:

    (H1) When 1,2,ζ1,ζ2Rm, there are U1 and U2 such as

    f(c,1,2)f(c,ζ1,ζ2)pU1(1ζ1p+2ζ2p).
    g(c,1,2)g(c,ζ1,ζ2)pU2(1ζ1p+2ζ2p).

    (H2) For f(c,0,0) and g(c,0,0), we have

    esssupc[0,M]f(c,0,0)p<ψ,esssupc[0,M]g(c,0,0)p<ψ.

    Now, assume the following:

    (H3) When 1,2,ζ1,ζ2,,ζRm, c[0,M], there is U3>0 such as

    f(c,1,2)f(c,ζ1,ζ2)g(c,1,2)g(c,ζ1,ζ2)U3(1ζ1+2ζ2).

    (H4) For f and g in system Eq (1.1), for ,ζRm, and c[0,M], we can find a constant U4>0 such that it satisfies the following:

    f(c,,ζ)g(c,,ζ)U4(1++ζ).

    (H5) There exist functions ˜f and ˜g, along with positive bounded functions 1(M1) and 2(M1) defined for M1[0,M], such that for all c[0,M], ,ζRm, and p2, the following holds:

    1M1M10f(c,,ζ)˜f(,ζ)pdc1(M1)(1+p+ζp),
    1M1M10g(c,,ζ)˜g(,ζ)pdc2(M1)(1+p+ζp),

    where lim, \lim_{\mathbb{M}_{1}\rightarrow \infty}\aleph_{2}(\mathbb{M}_{1}) = 0 and \aleph_{1}(\mathbb{M}_{1}) , \aleph_{2}(\mathbb{M}_{1}) are positively bound functions.

    This section establishes the well-posedness and regularity of the solutions to SFDDEs.

    First, we present the important results regarding well-posedness for SFDDEs.

    We have \hbar_{\sigma}: \mathscr{H}^{\mathrm{p}}(0, \mathbb{M}) \rightarrow \mathscr{H}^{\mathrm{p}}(0, \mathbb{M}) with \hbar_{\sigma}(\varpi(0)) = \sigma^{\prime} . Then,

    \begin{align} \hbar_{\sigma}(\varpi(\mathfrak{c})) = &\frac{\sigma^{\prime}\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}+ \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)\mathrm{d}\varphi \\&+ \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\mathrm{w}{(\varphi)}. \end{align} (3.1)

    The main tool for establishing the key results is as follows:

    \begin{equation} \big\Vert\varpi_{1}+\varpi_{2}\Vert_{\mathrm{p}}^{\mathrm{p}} \leq2^{\mathrm{p}-1}\big(\Vert\varpi_{1}\Vert_{\mathrm{p}}^{\mathrm{p}} +\big(\Vert\varpi_{2}\Vert_{\mathrm{p}}^{\mathrm{p}}\big),\; \forall\varpi_{1},\varpi_{2}\in\mathbb{R}^{\mathfrak{m}}. \end{equation} (3.2)

    Lemma 3.1. Assume that (\mathbb{H}_{1}) and (\mathbb{H}_{2}) hold; then \hbar_{\sigma} is well-defined.

    Proof. For \varpi(\mathfrak{c}) \in \mathscr{H}^{\mathrm{p}}[0, \mathbb{M}] and \mathfrak{c} \in [0, \mathbb{M}] , the following results are derived using Eqs (3.1) and (3.2):

    \begin{align} \big\Vert\hbar_{\sigma}(\varpi(\mathfrak{c}))\big\Vert_{\mathrm{p}}^{\mathrm{p}} \leq& 2^{\mathrm{p}-1}\bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}+ \frac{2^{2\mathrm{p}-2}}{\Gamma^{\mathrm{p}}(\mathfrak{a})}\bigg\Vert\int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{f}\big(\varphi,\varpi(\varphi), \varpi(\varphi-\mathrm{s})\big) \mathrm{d}\varphi \bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{2^{2\mathrm{p}-2}} {\Gamma^{\mathrm{p}}(\mathfrak{a})}\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s}) \big) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align} (3.3)

    By Hölder's inequality, we have

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\mathfrak{f}\big(\varphi,\varpi (\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\varphi\bigg \Vert_{\mathrm{p}}^{\mathrm{p}} \\ \leq & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\big|\mathfrak{f}_{\imath} \big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)\big| \mathrm{d}\varphi\bigg)^{\mathrm{p}} \\ \leq & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\Biggl( \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^\frac{(\mathfrak{a}-1) \mathrm{p}}{(\mathrm{p}-1)} \mathrm{d}\varphi\bigg)^{\mathrm{p}-1} \int_{0}^{\mathfrak{c}}\big|\mathfrak{f}_{\imath}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s}) \big)\big|^{\mathrm{p}}\mathrm{d}\varphi\Biggl) \\ \leq& \mathbb{M}^{\mathfrak{a}\mathrm{p}-1} \bigg(\frac{\mathrm{p}-1}{\mathfrak{a}\mathrm{p}-1}\bigg)^{\mathrm{p}-1} \int_{0}^{\mathfrak{c}}\big\Vert\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \big\Vert^{\mathrm{p}}_{\mathrm{p}}\mathrm{d}\varphi. \end{align} (3.4)

    From (\mathbb{H}_{1}) , we obtain

    \begin{align} \big\Vert\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)\big\Vert^{\mathrm{p}}_{\mathrm{p}}\leq&2^{\mathrm{p}-1} \bigg(\big\Vert\mathfrak{f} \big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)- \mathfrak{f}(\varphi,0,0)\big\Vert^{\mathrm{p}}_{\mathrm{p}}+ \big\Vert\mathfrak{f}(\varphi,0,0)\big\Vert^{\mathrm{p}}_{\mathrm{p}}\bigg) \\\leq&2^{\mathrm{p}-1}\bigg(2^{\mathrm{p}-1}\mathscr{U}_{1}^{\mathrm{p}}\bigg(\big\Vert\varpi(\varphi)\big\Vert^{\mathrm{p}}_{\mathrm{p}}+ \big\Vert\varpi(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}_{\mathrm{p}}\bigg)+ \big\Vert\mathfrak{f}(\varphi,0,0)\big\Vert^{\mathrm{p}}_{\mathrm{p}}\bigg). \end{align} (3.5)

    Accordingly, we obtain

    \begin{align} &\; \; \; \; \int_{0}^{\mathfrak{c}}\big\Vert\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \big\Vert^{\mathrm{p}}_{\mathrm{p}}\mathrm{d}\varphi\\ &\leq2^{\mathrm{p}-1}\mathscr{U}_{1}^{\mathrm{p}}\bigg(\bigg(\underset{\varphi \in[0,\mathbb{M}]}{esssup} \Vert\varpi(\varphi) \Vert_{\mathrm{p}}\bigg)^{\mathrm{p}}+\bigg( \underset{\varphi\in[0,\mathbb{M}]}{esssup} \big\Vert\varpi({\varphi-\mathrm{s}})\big\Vert_{\mathrm{p}}\bigg)^{\mathrm{p}}\bigg) \int_{0}^{\mathfrak{c}}1\mathrm{d}\varphi +2^{\mathrm{p}-1}\big\Vert\mathfrak{f}(\varphi,0,0)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\int_{0}^{\mathfrak{c}}1\mathrm{d}\varphi \\&\leq 2^{\mathrm{p}-1}\mathbb{M}\mathscr{U}_{1}^{\mathrm{p}}\bigg(\big\Vert\varpi(\varphi)\big\Vert^{\mathrm{p}}_{\mathscr{H}^{\mathrm{p}}} +\big\Vert\varpi(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}_{\mathscr{H}^{\mathrm{p}}}\bigg) + 2^{\mathrm{p}-1} \big\Vert\mathfrak{f}(\varphi,0,0)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \int_{0}^{\mathfrak{c}}1\mathrm{d}\varphi. \end{align} (3.6)

    By Eqs (3.4) and (3.6), we get the following:

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{f} \big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ \leq& \mathbb{M}^{\mathfrak{a}\mathrm{p}-1} \bigg(\frac{\mathrm{p}-1}{\mathfrak{a}\mathrm{p}-1}\bigg)^{\mathrm{p}-1} 2^{\mathrm{p}-1} \bigg(\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M} \bigg(\big\Vert\varpi(\varphi)\big\Vert^{\mathrm{p}}_{\mathscr{H}^{\mathrm{p}}} + \big\Vert\varpi(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}_{\mathscr{H}^{\mathrm{p}}}\bigg)+\int_{0}^{\mathfrak{c}} \big\Vert\mathfrak{f}(\varphi,0,0)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\mathrm{d}\varphi\bigg). \end{align} (3.7)

    By (\mathbb{H}_{2}) , we obtain

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& \mathbb{M}^{\mathfrak{a}\mathrm{p}-1} \bigg(\frac{\mathrm{p}-1}{\mathfrak{a}\mathrm{p}-1}\bigg)^{\mathrm{p}-1} 2^{\mathrm{p}-1} \bigg(\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M} \bigg(\big\Vert\varpi(\varphi)\big\Vert^{\mathrm{p}}_{\mathscr{H}^{\mathrm{p}}} + \big\Vert\varpi(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}_{\mathscr{H}^{\mathrm{p}}}\bigg)+\mathbb{M} \psi^{\mathrm{p}}\bigg). \end{align} (3.8)

    By Burkholder-Davis-Gundy inequality and Hölder's inequality, we obtain

    \begin{align} &\; \; \; \; \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\& = \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \big(\mathfrak{g}_{\imath}(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\mathrm{w}{(\varphi)}\bigg|^{\mathrm{p}} \\&\leq \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \bigg|\mathfrak{g}_{\imath}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \bigg|^{2} \mathrm{d}\varphi\bigg|^\frac{\mathrm{p}}{2} \\&\leq \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \bigg|\mathfrak{g}_{\imath}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)\bigg|^{\mathrm{p}} \mathrm{d}\varphi \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\bigg)^\frac{\mathrm{p}-2}{2} \mathrm{d}\varphi \\&\leq \mathscr{C}_{\mathrm{p}}\bigg(\frac{\mathbb{M}^{2\mathfrak{a}-1}}{2\mathfrak{a}-1}\bigg)^\frac{\mathrm{p}-2}{2} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big\Vert \mathfrak{g}\big(\varphi,\varpi(\varphi,\varpi(\varphi-\mathrm{s})\big) \big\Vert_{\mathrm{p}}^{\mathrm{p}} \mathrm{d}\varphi. \end{align} (3.9)

    By utilizing (\mathbb{H}_{1}) and (\mathbb{H}_{2}) , we obtain

    \begin{align} \big\Vert\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \leq&2^{\mathrm{p}-1}\mathscr{U}_{2}^{\mathrm{p}} \bigg(\big\Vert\varpi(\varphi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+\big\Vert\varpi(\varphi-\mathrm{s})\big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)+ 2^{\mathrm{p}-1}\big\Vert\mathfrak{g}(\varphi,0,0)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& 2^{\mathrm{p}-1}\mathscr{U}_{2}^{\mathrm{p}}\bigg(\big\Vert\varpi(\varphi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert\varpi(\varphi-\mathrm{s})\big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)+2^{\mathrm{p}-1}\psi^{\mathrm{p}}. \end{align} (3.10)

    So, we get

    \begin{align} &\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big\Vert\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi (\varphi-\mathrm{s})\big)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \mathrm{d}\varphi \\ \leq&2^{\mathrm{p}-1}\mathscr{U}_{2}^{\mathrm{p}} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \Biggl(\bigg(\underset{\varphi\in[0,\mathbb{M}]}{esssup}\big\Vert\varpi(\varphi)\big\Vert_{\mathrm{p}}\bigg)^{\mathrm{p}} + \bigg(\underset{\varphi\in[0,\mathbb{M}]}{esssup}\big\Vert\varpi(\varphi-\mathrm{s})\big\Vert_{\mathrm{p}}\bigg)^{\mathrm{p}}\Biggl) \mathrm{d}\varphi + 2^{\mathrm{p}-1}\psi^{\mathrm{p}}\int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi \\\leq& \frac{2^{\mathrm{p}-1}\mathbb{M}^{(2\mathfrak{a}-1)}}{2\mathfrak{a}-1} \Biggl(\mathscr{U}_{2}^{\mathrm{p}} \bigg(\Vert\varpi(\varphi)\Vert^{\mathrm{p}}_{\mathscr{H}_{\mathrm{p}}}+ \Vert\varpi(\varphi-\mathrm{s})\Vert^{\mathrm{p}}_{\mathscr{H}_{\mathrm{p}}}\bigg)+\psi^{\mathrm{p}}\Biggl). \end{align} (3.11)

    So, from above, we have

    \begin{align} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \big\Vert\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi (\varphi-\mathrm{s})\big)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \mathrm{d}\varphi \leq \frac{2^{\mathrm{p}-1}\mathbb{M}^{2\mathfrak{a}-1}}{2\mathfrak{a}-1} \Biggl(\mathscr{U}_{2}^{\mathrm{p}} \bigg(\Vert\varpi(\varphi)\Vert^{\mathrm{p}}_{\mathscr{H}_{\mathrm{p}}}+ \Vert\varpi(\varphi-\mathrm{s})\Vert^{\mathrm{p}}_{\mathscr{H}_{\mathrm{p}}}\bigg)+\psi^{\mathrm{p}}\Biggl). \end{align} (3.12)

    By using Eq (3.12) in Eq (3.9), we obtain

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& \mathscr{C}_{\mathrm{p}}\bigg(\frac{\mathbb{M}^{2\mathfrak{a}-1}}{2\mathfrak{a}-1}\bigg)^\frac{\mathrm{p}-2}{2} \frac{2^{\mathrm{p}-1}\mathbb{M}^{2\mathfrak{a}-1}}{2\mathfrak{a}-1} \Biggl(\mathscr{U}_{2}^{\mathrm{p}} \bigg(\Vert\varpi(\varphi)\Vert^{\mathrm{p}}_{\mathscr{H}_{\mathrm{p}}}+ \Vert\varpi(\varphi-\mathrm{s})\Vert^{\mathrm{p}}_{\mathscr{H}_{\mathrm{p}}}\bigg)+\psi^{\mathrm{p}}\Biggl). \end{align} (3.13)

    By putting Eqs (3.8) and (3.13) into Eq (3.3), we find that \Vert\hbar_{\sigma}(\varpi(\mathfrak{c}))\Vert_{\mathscr{H}{\mathrm{p}}} < \infty . So, the \hbar_{\sigma} is well-defined.

    Now, we establish the result regarding existence and uniqueness.

    Theorem 3.1. If (\mathbb{H}_{1}) and (\mathbb{H}_{2}) are satisfied, then Eq (1.1) with \varpi(0) = \sigma^{\prime} has a unique solution.

    Proof. Taking \eta > 0 :

    \begin{equation} \eta > 2^{\mathrm{p}-1}\delta\Gamma(2\mathfrak{a}-1), \end{equation} (3.14)

    where

    \begin{align} \delta = \frac{2^{\mathrm{p}-1}}{\Gamma^{\mathrm{p}}(\mathfrak{a})} &\bigg( 2^{\mathrm{p}-1} \frac{\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M}^{(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)}(\mathrm{p}-1)^{\mathrm{p}-1}} {(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)^{\mathrm{p}-1}} + 2^{\mathrm{p}-1} \bigg(\frac{{\mathbb{M}}^{(2\mathfrak{a}-1)}}{2\mathfrak{a}-1}\bigg)^{\frac{\mathrm{p}-2}{2}}\mathscr{U}_{2}^{\mathrm{p}}\mathscr{C}_{\mathrm{p}}\bigg). \end{align} (3.15)

    The weighted norm \Vert\cdot\Vert_{\eta} is

    \begin{equation} \Vert\varpi(\mathfrak{c})\Vert_{\eta} = \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\bigg(\frac{\Vert\varpi(\mathfrak{c})\Vert_{\mathrm{p}}^{\mathrm{p}}} {\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)}\bigg)^{\frac{1}{\mathrm{p}}},\; \forall\varpi(\mathfrak{c})\in\mathscr{H}^{\mathrm{p}}([0,\mathbb{M}]). \end{equation} (3.16)

    For \varpi(\mathfrak{c}) and \widetilde{\varpi}(\mathfrak{c}) , we obtain

    \begin{align} &\Vert\hbar_{\sigma}\big(\varpi(\mathfrak{c}))-\hbar_{\sigma}\big(\widetilde{\varpi}(\mathfrak{c}))\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& \frac{2^{\mathrm{p}-1}}{\Gamma^{\mathrm{p}}(\mathfrak{a})} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)-\mathfrak{f}\big(\varphi,\widetilde{\varpi}(\varphi), \widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\& +\frac{2^{\mathrm{p}-1}}{\Gamma^{\mathrm{p}}(\mathfrak{a})} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)-\mathfrak{g}\big(\varphi, \widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align} (3.17)

    Using the Hölder's inequality and (\mathbb{H}_{1}) , we obtain

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)-\mathfrak{f}\big(\varphi, \widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ = & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}_{\imath}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) -\mathfrak{f}_{\imath}\big(\varphi,\widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg)^{\mathrm{p}} \\\leq& \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\Biggl(\bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\frac{(\mathfrak{a}-1) (\mathrm{p}-2)}{\mathrm{p}-1}} \mathrm{d}\varphi\bigg)^{\mathrm{p}-1} \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \big|\mathfrak{f}_{\imath}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)- \mathfrak{f}_{\imath}\big(\varphi,\widetilde{\varpi}(\varphi), \widetilde{\varpi}(\varphi-\mathrm{s}))\big|^{\mathrm{p}} \mathrm{d}\varphi\bigg)\Biggl) \\\leq& 2^{\mathrm{p}-1} \frac{\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M}^{(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)}(\mathrm{p}-1)^{\mathrm{p}-1}} {(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)^{\mathrm{p}-1}} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert \varpi(\varphi)-\widetilde{\varpi}(\varphi))\big\Vert_{\mathrm{p}}^{\mathrm{p}}+\big\Vert \varpi(\varphi-\mathrm{s})-\widetilde{\varpi}(\varphi-\mathrm{s}))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg) \mathrm{d}\varphi. \end{align} (3.18)

    Hence, we have

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)-\mathfrak{f}\big(\varphi, \widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& 2^{\mathrm{p}-1} \frac{\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M}^{(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)}(\mathrm{p}-1)^{\mathrm{p}-1}} {(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)^{\mathrm{p}-1}} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert \varpi(\varphi)-\widetilde{\varpi}(\varphi))\big\Vert_{\mathrm{p}}^{\mathrm{p}}+\big\Vert \varpi(\varphi-\mathrm{s})-\widetilde{\varpi}(\varphi-\mathrm{s}))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg) \mathrm{d}\varphi. \end{align} (3.19)

    However, using (\mathbb{H}_{1}) and the Burkholder-Davis-Gundy inequality, we have

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)- \mathfrak{g}\big(\varphi,\widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ = & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}_{\imath}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)- \mathfrak{g}_{\imath}\big(\varphi,\widetilde{\varpi}(\varphi),\widetilde{\varpi} (\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg|^{\mathrm{p}} \\\leq& \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big| \mathfrak{g}_{\imath}\big(\varphi,\varpi(\varphi), \varpi(\varphi-\mathrm{s})\big)- {\mathfrak{g}}_{\imath}\big(\varphi,\widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\big|^{2} \mathrm{d}\varphi\bigg|^{\frac{\mathrm{p}}{2}} \\\leq& \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big|\mathfrak{g}_{\imath} \big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)- {\mathfrak{g}}_{\imath}\big(\varphi,\widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\big|^{\mathrm{p}} \mathrm{d}\varphi \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi \bigg)^{\frac{\mathrm{p}-2}{2}} \\\leq& 2^{\mathrm{p}-1} \bigg(\frac{\mathbb{M}^{(2\mathfrak{a}-1)}} {2\mathfrak{a}-1}\bigg)^{\frac{\mathrm{p}-2}{2}}\mathscr{U}_{2}^{\mathrm{p}}\mathscr{C}_{\mathrm{p}} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\mathrm{p}}^{\mathrm{p}}+\big\Vert\varpi(\varphi-\mathrm{s})- \widetilde{\varpi}(\varphi-\mathrm{s})\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg) \mathrm{d}\varphi. \end{align} (3.20)

    So, from above

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)- \mathfrak{g}\big(\varphi,\widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& 2^{\mathrm{p}-1} \bigg(\frac{{\mathbb{M}}^{(2\mathfrak{a}-1)}}{2\mathfrak{a}-1}\bigg)^{\frac{\mathrm{p}-2}{2}}\mathscr{U}_{2}^{\mathrm{p}}\mathscr{C}_{\mathrm{p}} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\mathrm{p}}^{\mathrm{p}}+\big\Vert\varpi(\varphi-\mathrm{s})- \widetilde{\varpi}(\varphi-\mathrm{s})\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg) \mathrm{d}\varphi. \end{align} (3.21)

    Thus, \forall\mathfrak{c}\in[0, \mathbb{M}] , we have

    \begin{align} \Vert\hbar_{\sigma}\big(\varpi(\mathfrak{c})\big)-\hbar_{\sigma}\big(\widetilde{\varpi}(\mathfrak{c})\big)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\leq\delta \int_{0}^{\mathfrak{c}}\bigg(\big\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\mathrm{p}}^{\mathrm{p}}+\big\Vert\varpi(\varphi-\mathrm{s})- \widetilde{\varpi}(\varphi-\mathrm{s})\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi. \end{align} (3.22)

    So,

    \begin{align} &\frac{\Vert\hbar_{\sigma}\varpi(\mathfrak{c})-\hbar_{\sigma}\widetilde{\varpi}(\mathfrak{c})\Vert_{\mathrm{p}}^{\mathrm{p}}} {\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)}\\ \leq& \frac{1}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} \delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \\& \Bigg(\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)\frac{\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\mathrm{p}}^{\mathrm{p}}}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} +\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta(\mathfrak{c}-\mathrm{s})^{2\mathfrak{a}-1}\big) \frac{ \Vert\varpi(\varphi-\mathrm{s})-\widetilde{\varpi}(\varphi-\mathrm{s})\Vert_{\mathrm{p}}^{\mathrm{p}}} {\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta(\mathfrak{c}-\mathrm{s})^{2\mathfrak{a}-1}\big)} \Bigg) \mathrm{d}\varphi \\\leq& \frac{1}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} \delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \Bigg(\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big) \underset{{\varphi}\in[0,\mathbb{M}]}{esssup}\bigg(\frac{\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\mathrm{p}}^{\mathrm{p}}} {\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)}\bigg) \\&+ \mathfrak{E}_{2\mathfrak{a}-1}\big(\eta(\mathfrak{c}-\mathrm{s})^{2\mathfrak{a}-1}\big) \underset{{\varphi}\in[0,\mathbb{M}]}{esssup}\bigg(\frac{ \Vert\varpi(\varphi-\mathrm{s})-\widetilde{\varpi}(\varphi-\mathrm{s})\Vert_{\mathrm{p}}^{\mathrm{p}}} {\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta(\mathfrak{c}-\mathrm{s})^{2\mathfrak{a}-1}\big)}\bigg) \Bigg) \mathrm{d}\varphi \\\leq& \frac{\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\eta}^{\mathrm{p}}}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} \delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \big(\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)+\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta(\mathfrak{c}-\mathrm{s})^{2\mathfrak{a}-1}\big) \big) \mathrm{d}\varphi \\\leq& \frac{2\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\eta}^{\mathrm{p}}}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} \delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big) \mathrm{d}\varphi. \end{align} (3.23)

    Now, we use the following:

    \begin{equation*} \frac{1}{\Gamma(2\mathfrak{a}-1)} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big) \mathrm{d}\varphi \leq \frac{1} {\eta} \mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big). \end{equation*}

    We obtain the required result from Eq (3.23).

    \begin{align} \Vert\hbar_{\sigma}\big(\varpi(\mathfrak{c})\big)-\hbar_{\sigma}\big(\widetilde{\varpi}(\mathfrak{c})\big)\Vert_{\eta} \leq \bigg(\frac{2\delta\Gamma(2\mathfrak{a}-1)}{\eta}\bigg)^{\frac{1}{\mathrm{p}}}\Vert\varpi(\varphi)-\widetilde{\varpi} (\varphi)\Vert_{\eta}. \end{align} (3.24)

    From Eq (3.14), we obtain \frac{2\delta\Gamma(2\mathfrak{a}-1)}{\eta} < 1 .

    Theorem 3.2. If \xi_{\mathfrak{a}}(\mathfrak{c}, \sigma) is a solution that is Con-D on \mathfrak{a} , then

    \begin{equation} \underset{\mathfrak{a}\rightarrow \tilde{\mathfrak{a}}} {\lim}\; \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)- \xi_{\tilde{\mathfrak{a}}}(\mathfrak{c},\sigma)\Vert_{\mathrm{p}} = 0. \end{equation} (3.25)

    Proof. Assume \mathfrak{a} , \tilde{\mathfrak{a}}\in(\frac{1}{2}, 1) . Then,

    \begin{align} &\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}}(\mathfrak{c},\sigma)\\ = & \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{f}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\bigg) \mathrm{d}\varphi \\&+ \int_{0}^{\mathfrak{c}}\bigg(\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg) \mathfrak{f}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\varphi \\&+ \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\bigg(\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{g}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\bigg) \mathrm{d}\mathrm{w}{(\varphi)} \\&+ \int_{0}^{\mathfrak{c}} \bigg(\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg) \mathfrak{g}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}{(\varphi)}. \end{align} (3.26)

    We extract the subsequent outcome from Eq (3.26) by employing Eq (3.2).

    \begin{align} &\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}}(\mathfrak{c},\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& 2^{\mathrm{p}}\delta\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}} (\mathfrak{c},\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \mathrm{d}\varphi \\&+ 2^{2\mathrm{p}-2}\bigg\Vert\int_{0}^{\mathfrak{c}}\bigg(\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg)\mathfrak{f}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ 2^{2\mathrm{p}-2} \bigg\Vert\int_{0}^{\mathfrak{c}}\bigg(\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg) \mathfrak{g}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align} (3.27)

    Suppose the following:

    \begin{equation} \Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) = \bigg|\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg|. \end{equation} (3.28)

    By Hölder's inequality, (\mathbb{H}_{1}) , (\mathbb{H}_{2}) , and Eq (3.2), we have

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}\bigg(\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg) \mathfrak{f}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& \sum\nolimits_{\iota = 1}^{m}\mathrm{E}\bigg(\int_{0}^{\mathfrak{c}}\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big|\mathfrak{f}_{\imath}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma), \xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\big|\mathrm{d}\varphi\bigg)^{\mathrm{p}} \\\leq& \sum\nolimits_{\iota = 1}^{m}\mathrm{E}\Biggl(\bigg(\int_{0}^{\mathfrak{c}}\big(\Phi (\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{\frac{\mathrm{p}}{\mathrm{p}-1}}\mathrm{d}\varphi\bigg)^{\mathrm{p}-1} \int_{0}^{\mathfrak{c}}\bigl| \mathfrak{f}_{\imath}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma), \xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\big|^{\mathrm{p}}\mathrm{d}\varphi\bigg) \\\leq& \bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \bigg(\int_{0}^{\mathfrak{c}}1\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}-2}{2}} \int_{0}^{\mathfrak{c}}\bigl\Vert\mathfrak{f}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma), \xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \big\Vert^{\mathrm{p}}_{\mathrm{p}}\mathrm{d}\varphi \\\leq& \bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \mathbb{M}^{\frac{\mathrm{p}-2}{2}} \int_{0}^{\mathfrak{c}}2^{\mathrm{p}-1}\bigg(\mathscr{U}_{1}^{\mathrm{p}}(\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}+ \Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\Vert\mathfrak{f}(\varphi,0)\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)\mathrm{d}\varphi \\\leq& \bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \mathbb{M}^{\frac{\mathrm{p}}{2}} 2^{\mathrm{p}-1}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{1}^{\mathrm{p}}(\underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} + \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg). \end{align} (3.29)

    Now, by Burkholder-Davis-Gundy inequality, Eq (3.28), (\mathbb{H}_{1}) , and (\mathbb{H}_{2}) , we obtain

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}\bigg(\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg) \mathfrak{g}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ = & \sum\nolimits_{\iota = 1}^{m}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \mathfrak{g}_{\imath}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}(\varphi)\bigg|^{\mathrm{p}} \\\leq& \sum\nolimits_{\iota = 1}^{m}\mathscr{C}_{\mathrm{p}}\mathrm{E}\big|\int_{0}^{\mathfrak{c}}\Phi^{2}(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big|\mathfrak{g}_{\imath}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\big|^{2} \mathrm{d}\mathrm{w}(\varphi)\big|^{\frac{\mathrm{p}}{2}} \\\leq& \sum\nolimits_{\iota = 1}^{m}\mathscr{C}_{\mathrm{p}}\mathrm{E}\bigg[\bigg(\int_{0}^{\mathfrak{c}}\Phi^{2}(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big|\mathfrak{g}_{\imath}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\big|^{\mathrm{p}} \mathrm{d}\varphi\bigg)^{\frac{2}{\mathrm{p}}} \bigg(\int_{0}^{\mathfrak{c}}\Phi^{2}(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}-2}{\mathrm{p}}}\bigg]^{\frac{\mathrm{p}}{2}} \\ = & \mathscr{C}_{\mathrm{p}}\int_{0}^{\mathfrak{c}}\Phi^{2}(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big\Vert\mathfrak{g}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\big\Vert^{\mathrm{p}}_{\mathrm{p}} \mathrm{d}\varphi \bigg(\int_{0}^{\mathfrak{c}}\Phi^{2}(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}-2}{2}} \\\leq& \mathscr{C}_{\mathrm{p}}\bigg(\int_{0}^{\mathfrak{c}} \Phi^{2}(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}}2^{\mathrm{p}-1} \bigg( 2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}(\underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} + \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg). \end{align} (3.30)

    Thus, we obtain the following:

    \begin{align} &\frac{\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}}(\mathfrak{c},\sigma)\big \Vert_{\mathrm{p}}^{\mathrm{p}}}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)}\\ \leq& \frac{2^{\mathrm{p}}\delta\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \frac{\big\Vert\xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\tilde{\mathfrak{a}}} (\varphi,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} \mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)\mathrm{d}\varphi} {\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} \\&+ 2^{3\mathrm{p}-3}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{1}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} +\underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg)\bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \mathbb{M}^{\frac{\mathrm{p}}{2}} \\&+ 2^{3\mathrm{p}-3}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} +\underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg)\mathscr{C}_{\mathrm{p}}\bigg(\int_{0}^{\mathfrak{c}} \big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \\\leq& \frac{2^{\mathrm{p}}\delta\Gamma(2\mathfrak{a}-1)}{\eta}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}} (\mathfrak{c},\sigma)\big\Vert_{\eta}^{\mathrm{p}} \\&+ 2^{3\mathrm{p}-3}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{1}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} +\underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg)\bigg(\int_{0}^{\mathfrak{c}} \big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}}\mathbb{M}^{\frac{\mathrm{p}}{2}} \\&+ 2^{3\mathrm{p}-3}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} + \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg)\mathscr{C}_{\mathrm{p}} \bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}}. \end{align} (3.31)

    From the above, we have

    \begin{align} &\bigg(1-\frac{2^{\mathrm{p}}\delta\Gamma(2\mathfrak{a}-1)}{\eta}\bigg)\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}} (\mathfrak{c},\sigma)\big\Vert_{\eta}^{\mathrm{p}}\\ \leq& 2^{3\mathrm{p}-3} \bigg( 2^{\mathrm{p}-1} \mathscr{U}_{1}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} + \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg) \bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \mathbb{M}^{\frac{\mathrm{p}}{2}}\\& + 2^{3\mathrm{p}-3}\bigg(2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} + \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg) \mathscr{C}_{\mathrm{p}}\bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}}. \end{align} (3.32)

    Now, we prove the following:

    \begin{equation*} \underset{\tilde{\mathfrak{a}}\rightarrow \mathfrak{a}}{lim}\underset{\mathfrak{c}\in[0,\mathbb{M}]}{sup}\int_{0}^{\mathfrak{c}} \big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big)^{2}\mathrm{d}\varphi = 0. \end{equation*}

    We possess the following:

    \begin{align} \int_{0}^{\mathfrak{c}} \big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big)^{2}\mathrm{d}\varphi = & \int_{0}^{\mathfrak{c}}\frac{(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}}{\Gamma^{2}(\mathfrak{a})} \mathrm{d}\varphi + \int_{0}^{\mathfrak{c}}\frac{(\mathfrak{c}-\varphi)^{2\tilde{\mathfrak{a}}-2}} {{\Gamma^{2}(\tilde{\mathfrak{a}})}} \mathrm{d}\varphi - 2 \int_{0}^{\mathfrak{c}}\frac{(\mathfrak{c}-\varphi)^{\mathfrak{a}+\tilde{\mathfrak{a}}-2}}{{\Gamma(\mathfrak{a})}\Gamma(\tilde{\mathfrak{a}})} \mathrm{d}\varphi \\ = &\; \bigg(\frac{\mathbb{M}^{(2\mathfrak{a}-1)}}{(2\mathfrak{a}-1)}\bigg) \frac{1}{\Gamma^{2}(\mathfrak{a})} + \bigg(\frac{\mathbb{M}^{(2\tilde{\mathfrak{a}}-1)}}{(2\tilde{\mathfrak{a}}-1)}\bigg) \frac{1}{\Gamma^{2}(\tilde{\mathfrak{a}})} - \frac{2\mathbb{M}^{(\mathfrak{a}+\tilde{\mathfrak{a}}-1)}}{(\mathfrak{a}+\tilde{\mathfrak{a}}-1){\Gamma(\mathfrak{a})\Gamma(\tilde{\mathfrak{a}})}}. \end{align} (3.33)

    It thereby demonstrated the necessary outcome.

    Theorem 3.3. For \sigma, \Psi\in\mathbb{A}^{\mathrm{p}}_{0} , we have

    \begin{equation} \Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\Vert_{\mathrm{p}}\leq \mathscr{U} \Vert\sigma-\Psi\Vert_{\mathrm{p}},\; \forall\; \mathfrak{c}\in[0,\; \mathbb{M}]. \end{equation} (3.34)

    Proof. As we have

    \begin{align} &\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\\ = & \frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})} \\&+ \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\bigg(\mathfrak{f}(\varphi, \xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) - \mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg)\mathrm{d}\varphi \\& + \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\big(\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) - \mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\big) \mathrm{d}\mathrm{w}{(\varphi)}. \end{align} (3.35)

    By applying Eq (3.2), we obtain

    \begin{align} &\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi) \big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq&2^{\mathrm{p}-1}\bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert _{\mathrm{p}}^{\mathrm{p}}\\&+ \frac{2^{2\mathrm{p}-2}}{\Gamma^{\mathrm{p}}(\mathfrak{a})}\bigg\Vert \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{f}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)) \bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{2^{2\mathrm{p}-2}}{\Gamma^{\mathrm{p}}(\mathfrak{a})} \bigg\Vert \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \big)-\mathfrak{g}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \bigg) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align} (3.36)

    By Hölder's inequality and (\mathbb{H}_{1}) , we obtain

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))-\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ = & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}_{\imath}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) -\mathfrak{f}_{\imath}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg) \mathrm{d}\varphi\bigg)^{\mathrm{p}} \\\leq& \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\Biggl(\bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\frac{(\mathfrak{a}-1) (\mathrm{p}-2)}{\mathrm{p}-1}} \mathrm{d}\varphi\bigg)^{\mathrm{p}-1} \\& \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big|\mathfrak{f}_{\imath}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{f}_{\imath}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\big| \mathrm{d}\varphi\bigg)\Biggl) \\\leq& 2^{\mathrm{p}-1} \frac{\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M}^{(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)}(\mathrm{p}-1)^{\mathrm{p}-1}} {(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)^{\mathrm{p}-1}} \\& \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\mathfrak{a}}(\varphi,\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)-\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \bigg) \mathrm{d}\varphi. \end{align} (3.37)

    Hence, we have

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))-\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& 2^{\mathrm{p}-1} \frac{\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M}^{(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)}(\mathrm{p}-1)^{\mathrm{p}-1}} {(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)^{\mathrm{p}-1}} \\& \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \bigg(\big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\mathfrak{a}}(\varphi,\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)-\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \bigg) \mathrm{d}\varphi. \end{align} (3.38)

    Now, utilizing (\mathbb{H}_{1}) , Hölder's inequality, and Burkholder–Davis–Gundy inequality, we derive

    \begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{g}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)) \bigg) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ = & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}_{\imath}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{g}_{\imath}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg) \mathrm{d}\mathrm{w}({\varphi})\bigg|^{\mathrm{p}} \\ \leq& \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big| \mathfrak{g}_{\imath}\big(\varphi, \xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- {\mathfrak{g}}_{\imath}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\big|^{2} \mathrm{d}\varphi\bigg|^{\frac{\mathrm{p}}{2}} \\\leq & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\int_{0}^{\mathfrak{c}}(\mathfrak{c}- \varphi)^{2\mathfrak{a}-2}\big|\mathfrak{g}_{\imath}\big(\varphi, \xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- {\mathfrak{g}}_{\imath}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)) \big|^{\mathrm{p}} \mathrm{d}\varphi \\& \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}-2}{2}} \\ \leq& 2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}\mathscr{C}_{\mathrm{p}} \bigg(\big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\mathfrak{a}}(\varphi,\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)-\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \bigg) \mathrm{d}\varphi. \end{align} (3.39)

    By substituting Eqs (3.37) and (3.39) into Eq (3.36), we obtain

    \begin{align} &\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \\ \leq&2^{\mathrm{p}-1} \bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert _{\mathrm{p}}^{\mathrm{p}} +2^{\mathrm{p}}\delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\mathfrak{a}}(\varphi,\Psi) \big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg) \mathrm{d}\varphi. \end{align} (3.40)

    By referring to the Grönwall inequality, we conclude

    \begin{align*} \big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\leq2^{\mathrm{p}-1}\exp\Bigg( 2^{\mathrm{p}}\delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\Bigg)\bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align*}

    Thus, we obtain the following result:

    \begin{align*} \big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \leq2^{\mathrm{p}-1}\mathbb{E}_{2\mathfrak{a}-1}\bigg( 2^{\mathrm{p}}\delta\Gamma(2\mathfrak{a}-1)\mathfrak{c}^{(2\mathfrak{a}-1)}\bigg) \bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align*}

    Hence, we

    \begin{align*} \underset{\sigma\rightarrow \Psi}{\lim}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\big\Vert_{\mathrm{p}} = 0. \end{align*}

    The proof is so done.

    The following result pertains to regularity.

    Theorem 3.4. If (\mathbb{H}_{1}) and (\mathbb{H}_{2}) are valid, then for \mathscr{S} > 0 , we have

    \begin{equation} \Vert\xi_{\mathfrak{a}}(\sigma,\mathfrak{c})-\xi_{\mathfrak{a}}(\sigma,\varsigma)\Vert_{\mathrm{p}}\leq\mathscr{S}|\mathfrak{c}-\varsigma|^{\mathfrak{a}-\frac{1}{2}},\; \forall\mathfrak{c},\varsigma\in[0,\mathbb{M}]. \end{equation} (3.41)

    Proof. For \mathfrak{c} > \varsigma , then from Eq (3.2):

    \begin{align} \label {eq300} &\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& \frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}} \bigg\Vert\int_{\varsigma}^{\mathfrak{c}}(\mathfrak{c}- \varphi)^{\mathfrak{a}-1}\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}} \bigg\Vert\int_{\varsigma}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}(\varphi)({\varphi})\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}} \bigg\Vert\int_{0}^{\varsigma}\big\vert(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- (\varsigma-\varphi)^{\mathfrak{a}-1}\big\vert \mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}} \bigg\Vert\int_{0}^{\varsigma}\big\vert(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- (\varsigma-\varphi)^{\mathfrak{a}-1}\big\vert\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align} (3.42)

    By Hölder's inequality and Burkholder-Davis-Gundy inequality, we obtain

    \begin{align} &\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)- \xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& \frac{(\mathrm{p}-1)^{\mathrm{p}-1}}{(\mathrm{p}\mathfrak{a}-1)^{\mathrm{p}-1}(\mathfrak{c}-\varsigma)^{1-\mathrm{p}}} \big\Vert \mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}} \int_{\varsigma}^{\mathfrak{c}}1 \mathrm{d}\varphi \\&+ \mathscr{C}_{p} \bigg(\big\Vert\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}} \int_{\varsigma}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\bigg) \bigg(\int_{\varsigma}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}-2}{2}} \\&+ \frac{\Vert\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \Vert_{\mathrm{p}}^{\mathrm{p}}}{\mathbb{M}^{\frac{2-\mathrm{p}}{2}}}\int_{0}^{\varsigma}1 \mathrm{d}\varphi \Big(\int_{0}^{\varsigma}\big\vert(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}-(\varsigma-\varphi)^{\mathfrak{a}-1}\big\vert^{2} \mathrm{d}\varphi\Big)^{\frac{\mathrm{p}}{2}} \\&+ \Vert\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))\Vert_{\mathrm{p}}^{\mathrm{p}} \mathscr{C}_{p} \int_{0}^{\varsigma}\bigg((\mathfrak{c}-\varphi)^{\mathfrak{a}-1}-(\varsigma-\varphi)^{\mathfrak{a}-1}\bigg)^{2} \mathrm{d}\varphi \\&\times \Bigg(\int_{0}^{\varsigma}\bigg((\mathfrak{c}-\varphi)^{\mathfrak{a}-1}-(\varsigma-\varphi)^{\mathfrak{a}-1}\bigg)^{2} \mathrm{d}\varphi\Bigg)^{\frac{\mathrm{p}-2}{2}}. \end{align}

    We have

    \begin{equation*} \big\Vert \mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\leq2^{\mathrm{p}-1}\bigg( 2^{\mathrm{p}-1}\mathscr{U}_{1}^{\mathrm{p}} \bigg(\big\Vert\xi_{\mathfrak{a}}(\varphi,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert\xi_{\mathfrak{a}}(\varphi,\sigma-\mathrm{s}))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)+ \Vert \mathfrak{f}(\varphi,0)\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)\leq2^{\mathrm{p}-1}\big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big). \end{equation*}

    And also

    \begin{equation*} \big\Vert\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\leq2^{\mathrm{p}-1}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}\bigg( \big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}} +\big\Vert \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}} \bigg)+\Vert\mathfrak{g}(\varphi,0) \Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)\leq2^{\mathrm{p}-1}\big(2^{\mathrm{p}}\mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big). \end{equation*}

    Furthermore,

    \begin{align} \int_{0}^{\varsigma}\bigg((\mathfrak{c}-&\varphi)^{\mathfrak{a}-1}-(\varsigma-\varphi)^{\mathfrak{a}-1}\bigg)^{2} \mathrm{d}\varphi \leq \frac{(\mathfrak{c}-\varsigma)^{(2\mathfrak{a}-1)}}{(2\mathfrak{a}-1)}. \end{align} (3.43)

    So,

    \begin{align} &\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& \frac{(2\mathrm{p}-2)^{\mathrm{p}-1}}{(2\mathfrak{a}-1)^{\mathrm{p}-1}}\big(\mathfrak{c}-\varsigma\big)^{\frac{(2\mathfrak{a}-1)\mathrm{p}}{2}} \big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big)\mathbb{M}^{\frac{\mathrm{p}}{2}} + \frac{1}{(2\mathfrak{a}-1)^{\frac{\mathrm{p}}{2}}} \big(\mathfrak{c}-\varsigma\big)^{\frac{(2\mathfrak{a}-1)\mathrm{p}}{2}}\big( 2^{\mathrm{p}} \mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big) 2^{\mathrm{p}-1}\mathscr{C}_{\mathrm{p}} \\&+ \frac{2^{\mathrm{p}-1}}{(2\mathfrak{a}-1)^{\mathrm{p}-1}}\big(\mathfrak{c}-\varsigma\big)^{\frac{(2\mathfrak{a}-1)\mathrm{p}}{2}} \big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big)\mathbb{M}^{\frac{\mathrm{p}}{2}} + \frac{1}{(2\mathfrak{a}-1)^{\frac{\mathrm{p}}{2}}} \big(\mathfrak{c}-\varsigma\big)^{\frac{(2\mathfrak{a}-1)\mathrm{p}}{2}}\big( 2^{\mathrm{p}} \mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big) 2^{\mathrm{p}-1}\mathscr{C}_{\mathrm{p}}. \end{align}

    Hence,

    \begin{equation*} \big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}}\leq\mathscr{S}(\mathfrak{c}-\varsigma)^{\mathfrak{a}-\frac{1}{2}}, \end{equation*}

    where

    \begin{align*} \mathscr{S}^{\mathrm{p}} = &2^{2\mathrm{p}-2}\bigg( \frac{(2\mathrm{p}-2)^{\mathrm{p}-1}}{(\mathrm{p}\mathfrak{a}-1)^{\mathrm{p}-1}} \big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big)\mathbb{M}^{\frac{\mathrm{p}}{2}} + \frac{1}{(2\mathfrak{a}-1)^{\frac{\mathrm{p}}{2}}} \big(2^{\mathrm{p}}\mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big) 2^{\mathrm{p}-1}\mathscr{C}_{\mathrm{p}}\bigg)\frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})} \nonumber\\&+ 2^{2\mathrm{p}-2}\bigg(\frac{2^{\mathrm{p}-1}}{(2\mathfrak{a}-1)^{\mathrm{p}-1}} \big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+K^{\mathrm{p}}\big)\mathbb{M}^{\frac{\mathrm{p}}{2}} + \frac{1}{(2\mathfrak{a}-1)^{\frac{\mathrm{p}}{2}}} \big(2^{\mathrm{p}}\mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big) 2^{\mathrm{p}-1}\mathscr{C}_{\mathrm{p}}\bigg){\Gamma^{\mathrm{p}}(\mathfrak{a})}. \end{align*}

    Thus, we obtain the following:

    \begin{equation*} \underset{\varsigma\rightarrow \mathfrak{c}}{\lim} \big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}} = 0. \end{equation*}

    Now, we establish results concerning the average principle in the \mathrm{p} th moment for SFDDEs within the framework of the HFrD.

    Lemma 4.1. For \widetilde{\mathfrak{g}} , when \mathbb{M}_{1}\in[0, \mathbb{M}] , we obtain

    \begin{equation} \notag \Vert\widetilde{\mathfrak{g}}(\ell,\zeta)\Vert^{\mathrm{p}} \leq \mathscr{U}_{6}\left(1+\Vert\ell\Vert^{\mathrm{p}}+\Vert\zeta\Vert^{\mathrm{p}}\right), \end{equation}

    where \mathscr{U}_{6} = \left(2^{\mathrm{p}-1}\aleph_{2}\left(\mathbb{M}_{1}\right)+6^{\mathrm{p}-1}\mathscr{U}_{4}^{\mathrm{p}}\right) .

    Proof. By \left(\mathbb{H}_{4}\right), \left(\mathbb{H}_{5}\right) , and Eq (3.2),

    \begin{align*} \Vert\widetilde{\mathfrak{g}}(\ell,\zeta)\Vert^{\mathrm{p}} &\leq 2^{\mathrm{p}-1}\Vert\mathfrak{g}(\mathfrak{c},\ell,\zeta)-\widetilde{\mathfrak{g}}(\ell,\zeta)\Vert^{\mathrm{p}}+ 2^{\mathrm{p}-1}\Vert\mathfrak{g}(\mathfrak{c},\ell,\zeta)\Vert^{\mathrm{p}} \\&\leq 2^{\mathrm{p}-1}\aleph_{2}\left(\mathbb{M}_{1}\right)\left(1+\Vert\ell\Vert^{\mathrm{p}}+\Vert\zeta\Vert^{\mathrm{p}}\right)+ 2^{\mathrm{p}-1}\mathscr{U}_{4}^{\mathrm{p}}(1+\Vert\ell\Vert+\Vert\zeta\Vert )^{\mathrm{p}} \\&\leq \left(2^{\mathrm{p}-1}\aleph_{2}\left(\mathbb{M}_{1}\right)+6^{\mathrm{p}-1}\mathscr{U}_{4}^{\mathrm{p}}\right) \left(1+\Vert\ell\Vert^{\mathrm{p}}+\Vert\zeta\Vert ^{\mathrm{p}}\right). \end{align*}

    The following is a lemma regarding the time-scale property of the HFrD.

    Lemma 4.2. Suppose the time scale \mathfrak{c} = \mu\gamma , then

    \begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \mu^{\mathfrak{a}}\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mathfrak{c}). \end{equation*}

    Proof. The HFrD of order 0\leq\vartheta\leq1 and 0 < \mathfrak{a} < 1 is defined as

    \begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\gamma}\frac{1}{(\gamma-\varphi)^{1-\vartheta(1-\mathfrak{a})}} \frac{\mathrm{d}}{\mathrm{d}\varphi} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\gamma}\frac{1}{(\gamma-\varphi)^{1-(1-\vartheta)(1-\mathfrak{a})}}\varpi(\mu\varphi)\mathrm{d}\varphi \mathrm{d}\varphi. \end{equation*}

    Let \mu\varphi = \mathscr{A} , and by the chain rule, \frac{\mathrm{d}}{\mathrm{d}\varphi} = \frac{\mathrm{d}}{\mathrm{d}\mathscr{A}}.\frac{\mathrm{d}\mathscr{A}}{\mathrm{d}\varphi} = \frac{\mathrm{d}}{\mathrm{d}\mathscr{A}}.\frac{\mathrm{d}}{\mathrm{d}\varphi}(\mu\varphi) = \mu\frac{\mathrm{d}}{\mathrm{d}\mathscr{A}} . So, we have

    \begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mu\gamma}\frac{1}{(\gamma-\frac{\mathscr{A}}{\mu})^{1-\vartheta(1-\mathfrak{a})}} \mu\frac{\mathrm{d}}{\mathrm{d}\mathscr{A}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mu\gamma}\frac{1}{(\gamma-\frac{\mathscr{A}}{\mu})^{(1-\vartheta)(1-\mathfrak{a})}}\varpi(\mathscr{A}) \frac{\mathrm{d}\mathscr{A}}{\mu} \frac{\mathrm{d}\mathscr{A}}{\mu}. \end{equation*}

    From the above, we have

    \begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \mu^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mu\gamma}\frac{1}{(\mu\gamma-\mathscr{A})^{1-\vartheta(1-\mathfrak{a})}} \frac{\mathrm{d}}{\mathrm{d}\mathscr{A}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mu\gamma}\frac{1}{(\mu\gamma-\mathscr{A})^{(1-\vartheta)(1-\mathfrak{a})}}\varpi(\mathscr{A}) \mathrm{d}\mathscr{A} \mathrm{d}\mathscr{A}, \end{equation*}

    likewise, we obtain

    \begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \mu^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mathfrak{c}}\frac{1}{(\mathfrak{c}-\mathscr{A})^{1-\vartheta(1-\mathfrak{a})}} \frac{\mathrm{d}}{\mathrm{d}\mathscr{A}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mathfrak{c}}\frac{1}{(\mathfrak{c}-\mathscr{A})^{(1-\vartheta)(1-\mathfrak{a})}}\varpi(\mathscr{A}) \mathrm{d}\mathscr{A} \mathrm{d}\mathscr{A}. \end{equation*}

    So, we have the following result:

    \begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \mu^{\mathfrak{a}} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mathfrak{c}). \end{equation*}

    Now, we establish an important result concerning average principle.

    \begin{equation} \begin{cases} &\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mathfrak{c}) = \mathfrak{f}\big(\frac{\mathfrak{c}}{\varepsilon},\varpi(\mathfrak{c}),\varpi(\mathfrak{c}-\mathrm{s})\big) + \mathfrak{g}\big(\frac{\mathfrak{c}}{\varepsilon},\varpi(\mathfrak{c}),\varpi(\mathfrak{c}-\mathrm{s})\big)\frac{\mathrm{d}\mathrm{w}(\mathfrak{c})}{\mathrm{d}\mathfrak{c}}, \\& \varpi(0) = \sigma^{\prime}. \end{cases} \end{equation} (4.1)

    Suppose \frac{\mathfrak{c}}{\varepsilon} = \nu . By Lemma 4.2 and from Eq (4.1):

    \begin{align*} &\varepsilon^{-\mathfrak{a}}\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\varepsilon\nu) = \mathfrak{f}\big(\nu,\varpi(\varepsilon\nu),\varpi(\varepsilon\nu-\varepsilon\mathrm{s})\big) + \mathfrak{g}\big(\nu,\varpi(\varepsilon\nu),\varpi(\varepsilon\nu-\varepsilon\mathrm{s})\big) \frac{\mathrm{d}\mathrm{w}{(\varepsilon\nu)}}{\varepsilon\mathrm{d}\nu}. \end{align*}

    By considering \mathrm{d}\mathrm{w}{(\varepsilon\nu)} = \sqrt{\varepsilon}\mathrm{d}\mathrm{w}{(\nu)} and representing \varpi({\varepsilon\nu}) = \varpi_{\varepsilon}({\nu}) and \varpi(\varepsilon\nu-\varepsilon\mathrm{s}) = \varpi_{\varepsilon}(\nu-\mathrm{s}) , we get

    \begin{align*} &\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi_{\varepsilon}(\nu) = \varepsilon^{\mathfrak{a}} \mathfrak{f}\big(\nu,\varpi_{\varepsilon}(\nu),\varpi_{\varepsilon}(\nu-\mathrm{s})\big) + \varepsilon^{\mathfrak{a}-\frac{1}{2}}\mathfrak{g}\big(\nu,\varpi_{\varepsilon}(\nu),\varpi_{\varepsilon}(\nu-\mathrm{s})\big) \frac{\mathrm{d}\mathrm{w}{(\nu)}}{\mathrm{d}\nu}. \end{align*}

    Despite the loss of generality, \nu = \mathfrak{c} can be stated. The standard form of Eq (1.1) can be obtained by applying \frac{\mathfrak{c}}{\varepsilon} \rightarrow \mathfrak{c} .

    \begin{equation} \begin{cases} &\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi_{\varepsilon}(\mathfrak{c}) = \varepsilon^{\mathfrak{a}} \mathfrak{f}\big(\sigma,\varpi_{\varepsilon}(\mathfrak{c}),\varpi_{\varepsilon}(\mathfrak{c}-\mathrm{s})\big) + \varepsilon^{\mathfrak{a}-\frac{1}{2}}\mathfrak{g}\big(\sigma,\varpi_{\varepsilon}(\mathfrak{c}),\varpi_{\varepsilon}(\mathfrak{c}-\mathrm{s})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{\mathrm{d}\mathfrak{c}}, \\& \varpi_{\varepsilon}(0) = \sigma. \end{cases} \end{equation} (4.2)

    Thus, Eq (4.2) can be expressed integrally as

    \begin{align} \varpi_{\varepsilon}(\mathfrak{c}) = & \frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})} + \varepsilon^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)\mathrm{d}\varphi \\&+ \varepsilon^{\mathfrak{a}-\frac{1}{2}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)\mathrm{d}\mathrm{w}(\varphi), \end{align} (4.3)

    for \varepsilon\in(0, \varepsilon_{0}] . The average of Eq (3.35) is as

    \begin{align} \varpi^{*}_{\varepsilon}(\sigma) = & \frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}+ \varepsilon^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\sigma} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \widetilde{\mathfrak{f}}\big(\varpi^{*}_{\varepsilon}(\varphi),\varpi^{*}_{\varepsilon}(\varphi-\mathrm{s})\big)\mathrm{d}\varphi \\&+ \varepsilon^{\mathfrak{a}-\frac{1}{2}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \widetilde{\mathfrak{g}}\big(\varpi^{*}_{\varepsilon}(\varphi),\varpi^{*}_{\varepsilon}(\tau-\mathrm{s})\big) \mathrm{d}{\mathrm{w}}(\varphi), \end{align} (4.4)

    where \widetilde{\mathfrak{f}}:\mathbb{R}^{\mathfrak{m}}\times\mathbb{R}^{\mathfrak{m}}\rightarrow \mathbb{R}^{\mathfrak{m}}, \widetilde{\mathfrak{g}}:\mathbb{R}^{\mathfrak{m}}\times\mathbb{R}^{\mathfrak{m}}\rightarrow \mathbb{R}^{\varkappa\times\mathfrak{b}} .

    Theorem 4.1. When \mho > 0 and \varrho > 0 , and \varepsilon_{1} \in \left(0, \varepsilon_{0}\right] with \kappa \in \left(0, \mathfrak{a}\mathrm{p} - \frac{\mathrm{p}}{2}\right) , then

    \begin{equation} \mathrm{E}\Big[\sup\limits_{\mathfrak{c}\in[-\mathrm{s},\; \varrho\varepsilon^{-\kappa}]} \big\Vert\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}}\Big] \leq\mho,\; \varepsilon\in(0,\varepsilon_{1}]. \end{equation} (4.5)

    Proof. By Eqs (3.35) and (4.4), for \mathfrak{c} \in [0, \mathfrak{u}] \subseteq [0, \mathbb{M}] , we have

    \begin{align} &\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c}) \\ = & \varepsilon^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{f}}\big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi \\&+ \varepsilon^{\mathfrak{a}-\frac{1}{2}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{g}} \big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}({\varphi}). \end{align} (4.6)

    Via Jensen's inequality, we have

    \begin{align} &\big\Vert\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}} \\ \leq& 2^{\mathrm{p}-1} \bigg\Vert\varepsilon^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi), \varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{f}}\big(\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg\Vert^{\mathrm{p}} \\&+ 2^{\mathrm{p}-1} \bigg\Vert \varepsilon^{\mathfrak{a}-\frac{1}{2}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi), \varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{g}} \big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}({\varphi})\bigg\Vert^{\mathrm{p}} \\ \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{\mathrm{p}-1}\varepsilon^{\mathrm{p}\mathfrak{a}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{f}} \big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg\Vert^{\mathrm{p}} \\&+ \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{\mathrm{p}-1}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{g}}\big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert^{\mathrm{p}}. \end{align} (4.7)

    Utilizing Eq (4.7) in Eq (4.5),

    \begin{align} &\mathrm{E}\bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \big\Vert\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}}\bigg] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{\mathrm{p}-1}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{f}}\big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi \bigg\Vert^{\mathrm{p}}\Bigg] \\&+ \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{\mathrm{p}-1}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{g}} \big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*} (\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert^{\mathrm{p}}\Bigg] \\ = &\mathscr{Q}_{1}+\mathscr{Q}_{2}. \end{align} (4.8)

    From \mathscr{Q}_{1} , we have

    \begin{align} \mathscr{Q}_{1} \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \Big(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi), \varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\Big) \mathrm{d}\varphi\bigg\Vert^{\mathrm{p}}\Bigg] \\&+ \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \Big(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{f}}\big(\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\Big) \mathrm{d}\varphi\bigg\Vert^{\mathrm{p}}\Bigg] \\ = &\mathscr{Q}_{11}+\mathscr{Q}_{12}. \end{align} (4.9)

    By Hölder's inequality, Jensen's inequality, and (\mathbb{H}_{3}) applied to \mathscr{Q}_{11} :

    \begin{align} \mathscr{Q}_{11} \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \left( \int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{\frac{(\mathfrak{a}-1)\mathrm{p}}{\mathrm{p}-1}} \mathrm{d}\varphi\right)^{\mathrm{p}-1} \\& \mathrm{E}\left[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \int_{0}^{\mathfrak{c}} \left\Vert\mathfrak{f}\left(\varphi, \varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\right)- \mathfrak{f}\left(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right)\right\Vert^{\mathrm{p}} \mathrm{d}\varphi\right] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{3\mathrm{p}-3}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathscr{U}_{3}^{\mathrm{p}} \big({\mathfrak{u}^{\frac{(\mathfrak{a}\mathrm{p}-1)}{\mathrm{p}-1}}}\big)^{\mathrm{p}-1} \bigg(\frac{\mathrm{p}-1}{(\mathfrak{a}\mathrm{p}-1)}\bigg)^{\mathrm{p}-1} \\& \Bigg(\mathrm{E}\bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \int_{0}^{\mathfrak{c}} \left\Vert \varpi_{\varepsilon}(\varphi)-\varpi_{\varepsilon}^{*}(\varphi)\right\Vert^{\mathrm{p}}\mathrm{d}\varphi\bigg]+\mathrm{E}\bigg[ \sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \int_{0}^{\mathfrak{c}}\left\Vert\varpi_{\varepsilon}(\varphi-\mathrm{s}) -\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right\Vert^{\mathrm{p}} \mathrm{d}\varphi\bigg]\Bigg) \\ = & \mathscr{Q}_{11}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{(\mathfrak{a}\mathrm{p}-1)} \Bigg(\int_{0}^{\mathfrak{u}} \mathrm{E}\bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert \varpi_{\varepsilon}(\Lambda) -\varpi_{\varepsilon}^{*}(\Lambda)\right\Vert ^{\mathrm{p}} \bigg]\mathrm{d}\varphi \\&+ \int_{0}^{\mathfrak{u}} \mathrm{E}\bigg[\sup\limits_{0\leq\Lambda\leq\varphi} \Vert \varpi_{\varepsilon}(\Lambda-\mathrm{s}) -\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\Vert^{\mathrm{p}}\bigg] \mathrm{d}\varphi\Bigg), \end{align} (4.10)

    here, \mathscr{Q}_{11} = \bigg(\frac{\mathrm{p}-1}{(\mathfrak{a}\mathrm{p}-1)}\bigg)^{\mathrm{p}-1}\big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{3\mathrm{p}-3}\mathscr{U}_{3}^{\mathrm{p}} .

    By Hölder's inequality, Jensen's inequality, and (\mathbb{H}_{5}) on \mathscr{Q}_{12} ,

    \begin{align} \mathscr{Q}_{12} \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \Big(\int_{0}^{\mathfrak{u}} (\mathfrak{u}-\varphi)^{\frac{(\mathfrak{a}-1)\mathrm{p}}{\mathrm{p}-1}} \mathrm{d}\varphi\Big)^{\mathrm{p}-1} \\& \mathrm{E}\bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \int_{0}^{\mathfrak{c}}\bigg\Vert\mathfrak{f} \big(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{f}} \big(\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg\Vert^{\mathrm{p}} \mathrm{d}\varphi\bigg] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \big({\mathfrak{u}^{\frac{(\mathfrak{a}\mathrm{p}-1)}{\mathrm{p}-1}}}\big)^{\mathrm{p}-1} \bigg(\frac{\mathrm{p}-1}{(\mathfrak{a}\mathrm{p}-1)}\bigg)^{\mathrm{p}-1} \aleph_{1}(\mathfrak{u}) \mathfrak{u}\big(1+\mathrm{E}\big\Vert\varpi_{\varepsilon}^{*}(\varphi)\big\Vert ^{\mathrm{p}}+ \mathrm{E}\big\Vert\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}\big) \\ = & \mathscr{Q}_{12}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{\mathfrak{a}\mathrm{p}}, \end{align} (4.11)

    where \mathscr{Q}_{12} = \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2} \big(\frac{\mathrm{p}-1}{(\mathfrak{a}\mathrm{p}-1)}\big)^{\mathrm{p}-1} \aleph_{1}(\mathfrak{u}) \big(1+\mathrm{E}\big\Vert \varpi_{\varepsilon}^{*}(\varphi)\big\Vert^{\mathrm{p}}+ \mathrm{E}\big\Vert\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}\big) .

    The following is provided by \mathscr{Q}_{2} via Jensen's inequality:

    \begin{align} \mathscr{Q}_{2}\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \\& \Bigg(\mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\bigg[\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi), \varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \mathfrak{g}\big(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg] \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert ^{\mathrm{p}}\Bigg]\Bigg) \\+& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \\& \Bigg(\mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\bigg[\mathfrak{g}\big(\varphi,\varpi^{*}_{\varepsilon}(\varphi), \varpi^{*}_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{g}}\big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg] \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert ^{\mathrm{p}}\Bigg]\Bigg) \\ = & \mathscr{Q}_{21}+\mathscr{Q}_{22}. \end{align} (4.12)

    By applying (\mathbb{H}_{3}) , Hölder's inequality, and Burkholder-Davis-Gundy inequality on \mathscr{Q}_{21} ,

    \begin{align} \mathscr{Q}_{21}\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \left(2(\mathrm{p}-1)^{1-\mathrm{p}}\mathrm{p}^{\mathrm{p}+1}\right)^{\frac{\mathrm{p}}{2}} \\& \mathrm{E}\left[\int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{2\mathfrak{a}-2} \left\Vert\mathfrak{g}\left(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\right)- \mathfrak{g}\left(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right)\right\Vert^{2} \mathrm{d}\varphi\right]^{\frac{\mathrm{p}}{2}} \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{3\mathrm{p}-3}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} \mathscr{U}_{3}^{\mathrm{p}} \big(\mathrm{p}^{\mathrm{p}+1}2(1-\mathrm{p})^{\mathrm{p}-1}\big)^{\frac{\mathrm{p}}{2}} \int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \\& \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left[\left\Vert\varpi_{\varepsilon}(\Lambda)-\varpi_{\varepsilon}^{*}(\Lambda)\right \Vert^{\mathrm{p}}+\left\Vert\varpi_{\varepsilon}(\Lambda-\mathrm{s})-\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\right\Vert^{\mathrm{p}}\right] \mathrm{d}\varphi\bigg] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{3\mathrm{p}-3}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} \mathscr{U}_{3}^{\mathrm{p}} \big(\mathrm{p}^{\mathrm{p}+1}2(1-\mathrm{p})^{\mathrm{p}-1}\big)^{\frac{\mathrm{p}}{2}} \int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \\& \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left[\left\Vert\varpi_{\varepsilon}(\Lambda)-\varpi_{\varepsilon}^{*}(\Lambda)\right \Vert^{\mathrm{p}}+\left\Vert\varpi_{\varepsilon}(\Lambda-\mathrm{s})-\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\right\Vert^{\mathrm{p}}\right] \mathrm{d}\varphi\bigg] \\ = &\mathscr{Q}_{21}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} \Bigg(\int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert\varpi_{\varepsilon}(\Lambda)-\varpi_{\varepsilon}^{*}(\Lambda)\right\Vert^{\mathrm{p}}\bigg] \mathrm{d}\varphi \\& +\int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert\varpi_{\varepsilon}(\Lambda-\mathrm{s})-\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\right\Vert^{\mathrm{p}} \bigg] \mathrm{d}\varphi\Bigg), \end{align} (4.13)

    where \mathscr{Q}_{21} = 2^{3\mathrm{p}-3}\mathscr{U}_{3}^{\mathrm{p}} \left(\frac{\mathrm{p}^{\mathrm{p}+1}}{2(\mathrm{p}-1)^{\mathrm{p}-1}}\right)^{\frac{\mathrm{p}}{2}} \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} .

    By Hölder's inequality and Burkholder-Davis-Gundy inequality,

    \begin{align} \mathscr{Q}_{22} \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\big(2(\mathrm{p}-1)^{1-\mathrm{p}}\mathrm{p}^{\mathrm{p}+1}\big)^{\frac{\mathrm{p}}{2}} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \\& \mathrm{E}\left[\int_{0}^{\mathfrak{u}}\left\Vert\mathfrak{f} \left(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right)- \widetilde{\mathfrak{g}}\left(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right) \right\Vert^{2}(\mathfrak{u}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\right]^{\frac{\mathrm{p}}{2}} \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} \big(2(\mathrm{p}-1)^{\mathrm{p}-1}\mathrm{p}^{\mathrm{p}+1}\big)^{\frac{\mathrm{p}}{2}} \mathrm{E}\bigg[\int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \\& \left(\left\Vert\mathfrak{g} \left(\varphi,\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right)\right\Vert^{\mathrm{p}}+ \big\Vert\widetilde{\mathfrak{g}} \left(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*} (\varphi-\mathrm{s})\right)\big\Vert^{\mathrm{p}}\right) \mathrm{d}\varphi\bigg] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} \frac{2^{3\mathrm{p}-3}3^{\mathrm{p}-1} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{((\mathfrak{a}-1)\mathrm{p}+1)} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1}\mathscr{U}_{4}^{\mathrm{p}}\left(\mathscr{U}_{4}^{\mathrm{p}}+ \mathscr{U}_{6}\right)^{\mathrm{p}}} {((\mathfrak{a}-1)\mathrm{p}+1)} \\& \big(2(\mathrm{p}-1)^{1-\mathrm{p}}\mathrm{p}^{\mathrm{p}+1}\big)^{\frac{\mathrm{p}}{2}} \big(1+\mathrm{E}[\left\Vert\varpi_{\varepsilon}^{*}(\varphi)\right\Vert^{\mathrm{p}}]+ \mathrm{E}[\left\Vert\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right\Vert^{\mathrm{p}}]\big) \\ = & \mathscr{Q}_{22} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}, \end{align} (4.14)

    where

    \begin{align*} \mathscr{Q}_{22} = & 2^{3{\mathrm{p}}-3}3^{{\mathrm{p}}-1}\mathscr{U}_{4}^{\mathrm{p}} \left(\mathscr{U}_{4}^{\mathrm{p}}+ \mathscr{U}_{6}\right)^{\mathrm{p}} \frac{1} {(\vartheta(\mathfrak{a}-1)\mathrm{p}+1)} \big(2(\mathrm{p}-1)^{1-\mathrm{p}}\mathrm{p}^{\mathrm{p}+1}\big)^{\frac{\mathrm{p}}{2}}\\& \big(1+\mathrm{E}[\left\Vert\varpi_{\varepsilon}^{*}(\varphi)\right\Vert^{\mathrm{p}}]+\mathrm{E}[ \left\Vert\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right\Vert^{\mathrm{p}}]\big)\big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}}. \end{align*}

    Using Eqs (4.9) to (4.14) in (4.8),

    \begin{align} &\mathrm{E} \bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \big\Vert\varpi_{\varepsilon}(\mathfrak{c})- \varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}}\bigg]\\ \leq& \mathscr{Q}_{12}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathfrak{u}^{\mathfrak{a}\mathrm{p}} + \mathscr{Q}_{22} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} + \int_{0}^{\mathfrak{u}} \bigg(\mathscr{Q}_{11}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{(\mathfrak{a}\mathrm{p}-1)} + \mathscr{Q}_{21}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} (\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \mathrm{d}\varphi \bigg) \\& \mathrm{E}\bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert \varpi_{\varepsilon}(\Lambda) -\varpi_{\varepsilon}^{*}(\Lambda)\right\Vert^{\mathrm{p}} \bigg]\mathrm{d}\varphi\\& + \int_{0}^{\mathfrak{u}} \bigg( \mathscr{Q}_{11}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{(\mathfrak{a}\mathrm{p}-1)} + \mathscr{Q}_{21}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} (\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \bigg) \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert\varpi_{\varepsilon}(\Lambda-\mathrm{s})-\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\right\Vert^{\mathrm{p}} \bigg] \mathrm{d}\varphi. \end{align} (4.15)

    From Eq (4.15),

    \begin{align*} &\mathrm{E} \bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \big\Vert\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}}\bigg] \\\leq& \Bigg(\mathscr{Q}_{12}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{\mathfrak{a}\mathrm{p}} + \mathscr{Q}_{22} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}\Bigg) \exp\left(2\mathscr{Q}_{11} \varepsilon^{\mathrm{p}\mathfrak{a}} \mathfrak{u}^{\mathfrak{a}\mathrm{p}}+ \frac{2\mathscr{Q}_{21}}{((\mathfrak{a}-1)\mathrm{p}+1)} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}\right). \end{align*}

    So, for \varrho > 0 and \kappa\in(0, \mathfrak{a}\mathrm{p}-\frac{\mathrm{p}}{2}) with \mathfrak{c}\in\left[-\mathrm{s}, \varrho\varepsilon^{-\kappa}\right]\subseteq[0, \mathbb{M}] , we obtain

    \begin{equation} \mathrm{E}\left[\sup\limits_{-\mathrm{s}\leq\mathfrak{c}\leq \varrho\varepsilon^{-\kappa}}\left\Vert\varpi_{\varepsilon}(\mathfrak{c})- \varpi_{\varepsilon}^{*}(\mathfrak{c})\right\Vert^{\mathrm{p}}\right]\leq\mathscr{Z}\varepsilon^{1-\kappa}, \end{equation} (4.16)

    where

    \begin{align*} \mathscr{Z} = \varepsilon^{\kappa-1}&\Bigg(\mathscr{Q}_{12}\varepsilon^{\mathrm{p}\mathfrak{a}}(\varrho\varepsilon^{-\kappa})^{\mathfrak{a}\mathrm{p}} + \mathscr{Q}_{22} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} (\varrho\varepsilon^{-\kappa})^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}\Bigg) \\& \exp\left(2\mathscr{Q}_{11} \varepsilon^{\mathrm{p}\mathfrak{a}} (\varrho\varepsilon^{-\kappa})^{\mathfrak{a}\mathrm{p}}+ \frac{2\mathscr{Q}_{21}}{((\mathfrak{a}-1)\mathrm{p}+1)} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} (\varrho\varepsilon^{-\kappa})^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}\right). \end{align*}

    So, proved the required result.

    To better understand the theoretical results established in this research, we present examples along with graphical comparisons of the original and averaged solutions. Figures 14 illustrate these comparisons, supporting the validity of our theoretical findings.

    Example 1. Consider the following:

    \begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi_{\varepsilon}(\mathfrak{c}) = 6\varepsilon^{0.95}\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2})+\varepsilon^{0.95}\varpi_{\varepsilon} (\mathfrak{c}-\frac{1}{2})\cos^{2}(\mathfrak{c}) \\ \quad\quad\quad\quad\quad\quad+3\varepsilon^{0.95-\frac{1}{2}} \varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2}) \cos^{2}(\mathfrak{c})\sin(\varpi_{\varepsilon}(\mathfrak{c})) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}},\; \mathfrak{c}\in[0,\pi], \\ \varpi(0) = \sigma, \end{array}\right. \end{align} (5.1)

    where \mathfrak{a} = 0.95 , \mathrm{s} = \frac{1}{2} , and

    \begin{align*} \mathfrak{f}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = 6\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2})+\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2})\cos^{2}(\mathfrak{c}), \\ \mathfrak{g}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = 3\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2})\cos^{2}(\mathfrak{c})\sin(\varpi_{\varepsilon}(\mathfrak{c})). \end{align*}

    The criteria of existence and uniqueness are fulfilled by \mathfrak{f}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) and \mathfrak{g}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) .

    Figure 1.  Red: original equation; blue: averaged equation for \epsilon = 0.001 .
    Figure 2.  The red curve indicates the solution of the original equation, while the blue curve represents the solution of the averaged equation for \epsilon = 0.001 .
    Figure 3.  The red curve shows the solution of the original model, while the blue curve depicts the solution of the averaged model for \epsilon = 0.001 .
    Figure 4.  The solution of the original equation is shown in red, while the solution of the averaged equation is shown in blue for \epsilon = 0.001 .

    The averages of \mathfrak{f} and \mathfrak{g} are as

    \begin{align*} \widetilde{\mathfrak{f}}(\varpi(\mathfrak{c}),\varpi(\mathfrak{c}-\mathrm{s})) & = \frac{1}{\pi}\int_{0}^{\pi} \bigg(6\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c})+\varpi_{\varepsilon}(\mathfrak{c})\cos^{2}\big(\frac{1}{2}\mathfrak{c}\big)\bigg)d\mathfrak{c} = \frac{7}{2}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{2}), \\ \widetilde{\mathfrak{g}}(\varpi(\mathfrak{c}),\varpi(\mathfrak{c}-\mathrm{s}))& = \frac{1}{\pi}\int_{0}^{\pi}3\varpi_{\varepsilon}(\mathfrak{c})\cos^{2}(\mathfrak{c})\sin(\varpi_{\varepsilon}(\mathfrak{c})) d\mathfrak{c} = \frac{3}{2}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{2})\sin(\varpi^{*}_{\varepsilon}(\mathfrak{c})). \end{align*}

    The corresponding average is

    \begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}) = \frac{7}{2}\varepsilon^{0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{2})+ \frac{3}{2}\varepsilon^{0.95-\frac{1}{2}} \varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{2})\sin(\varpi^{*}_{\varepsilon}(\mathfrak{c})) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}}, \\ \varpi^{*}_{\varepsilon}(0) = \sigma. \end{array}\right. \end{align} (5.2)

    All conditions in Theorem 4.1 are satisfied by system (5.1). As a result, solutions \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) are equivalent at the \mathrm{p} th moment in the limit as \varepsilon\rightarrow0 . Figure 1 presents a graphical comparison between solutions of the original system (5.1) and averaged system (5.2), demonstrating a strong agreement between solutions \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) and confirming the accuracy of our theoretical conclusions.

    Example 2. Take the following:

    \begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.90}\varpi_{\varepsilon}(\mathfrak{c}) = 3\varepsilon^{0.90}\sin\big(\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c})\\ \quad\quad\quad\quad\quad\quad+ \varepsilon^{0.90-\frac{1}{2}} \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}},\; \mathfrak{c}\in[0,\pi], \\ \varpi(0) = \sigma^{\prime}, \end{array}\right. \end{align} (5.3)

    where \mathfrak{a} = 0.90 , \mathrm{s} = \frac{1}{3} , and

    \begin{align*} \mathfrak{f}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = 3\sin\big(\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c}), \\ \mathfrak{g}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big). \end{align*}

    The criteria of existence and uniqueness are fulfilled by \mathfrak{f}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) and \mathfrak{g}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) .

    The averages of \mathfrak{f} and \mathfrak{g} are as

    \begin{align*} \widetilde{\mathfrak{f}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{1}{\pi}\int_{0}^{\pi}3\sin\big(\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c})d\mathfrak{c} = \frac{3}{2} \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\varpi^{*}_{\varepsilon}(\mathfrak{c}), \\ \widetilde{\mathfrak{g}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \frac{1}{\pi}\int_{0}^{\pi}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) d\mathfrak{c} = \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big). \end{align*}

    The corresponding average is

    \begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.90}\varpi^{*}_{\varepsilon}(\mathfrak{c}) = \frac{3}{2} \varepsilon^{0.90}\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\varpi^{*}_{\varepsilon}(\mathfrak{c})+ \varepsilon^{0.90-\frac{1}{2}} \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big){d\mathfrak{c}}, \\ \varpi^{*}_{\varepsilon}(0) = \sigma^{\prime}. \end{array}\right. \end{align} (5.4)

    All requirements in Theorem 4.1 are fulfilled by Example 2. Consequently, solutions \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) are equivalent at the \mathrm{p} th moment in the limit as \varepsilon\rightarrow0 . Figure 2 provides a graphical comparison between solutions of the original system (5.3) and the averaged system (5.4), illustrating a strong agreement between \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) and validating the accuracy of our theoretical findings.

    Example 3. Examine the following:

    \begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi_{\varepsilon}(\mathfrak{c}) = \frac{1}{3}\varepsilon^{0.95}\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{4}) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \\ \quad\quad\quad\quad\quad\quad+ \frac{3\pi}{4} \varepsilon^{0.95-\frac{1}{2}} \sin^{3}\mathfrak{c} \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}},\; \mathfrak{c}\in[0,\pi], \\ \varpi(0) = \sigma^{\prime}, \end{array}\right. \end{align} (5.5)

    where \mathfrak{a} = 0.95 , \mathrm{s} = \frac{1}{4} , and

    \begin{align*} \mathfrak{f}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{1}{3}\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{4}) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big), \\ \mathfrak{g}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \frac{3\pi}{4} \sin^{3}\mathfrak{c} \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c})\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big). \end{align*}

    \mathfrak{f}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) and \mathfrak{g}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) satisfy the needs of existence and uniqueness.

    The following are the averages:

    \begin{align*} \widetilde{\mathfrak{f}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{1}{\pi}\int_{0}^{\pi}\frac{1}{3}\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{4}) \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)d\mathfrak{c} = \frac{1}{3}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{4})\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) , \\ \widetilde{\mathfrak{g}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \frac{1}{\pi}\int_{0}^{\pi} \frac{3\pi}{4} \sin^{3}\mathfrak{c} \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c})\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) d\mathfrak{c} = \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)\cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)\varpi^{*}_{\varepsilon}(\mathfrak{c}). \end{align*}

    Thus,

    \begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}) = \frac{1}{3}\varepsilon^{0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{4})\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)\\ \quad\quad\quad\quad\quad\quad+\varepsilon^{0.95-\frac{1}{2}} \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)\varpi^{*}_{\varepsilon}(\mathfrak{c}) \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}}, \\ \varpi_{\varepsilon}^{*}(0) = \sigma^{\prime}. \end{array}\right. \end{align} (5.6)

    All conditions stated in Theorem 4.1 are satisfied by Example 3. As a result, solutions \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) are equivalent at the \mathrm{p} th moment in the limit as \varepsilon\rightarrow0 . Figure 3 depicts a graphical comparison between solutions of the original system (5.5) and the averaged system (5.6), demonstrating a strong agreement between \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) and confirming the accuracy of our theoretical results.

    Example 4. Take the following:

    \begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi_{\varepsilon}(\mathfrak{c}) = \frac{9}{2}\varepsilon^{0.95}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\exp^{-\mathfrak{c}} \\\quad\quad\quad\quad\quad\quad+\varepsilon^{0.95-\frac{1}{2}} \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}-\frac{2}{3}) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}},\; \mathfrak{c}\in[0,\pi], \\ \varpi(0) = \sigma^{\prime}, \end{array}\right. \end{align} (5.7)

    where \mathfrak{a} = 0.95 , \mathrm{s} = \frac{2}{3} , and

    \begin{align*} \mathfrak{f}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{9}{2}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\exp^{-\mathfrak{c}}, \\ \mathfrak{g}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big). \end{align*}

    The \frac{9}{2}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\exp^{-\mathfrak{c}} and \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) satisfy the conditions of existence and uniqueness.

    The averages of \mathfrak{f} and \mathfrak{g} :

    \begin{align*} \widetilde{\mathfrak{f}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{1}{\pi}\int_{0}^{\pi} \bigg(\frac{9}{2}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\exp^{-\mathfrak{c}}\bigg)d\mathfrak{c} \nonumber\\& = \frac{9}{2\pi}\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)(1-\exp^{-\pi}), \\ \widetilde{\mathfrak{g}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \frac{1}{\pi}\int_{0}^{\pi}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) d\mathfrak{c} = \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big). \end{align*}

    So, we get

    \begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}) = \varepsilon^{0.95}\frac{9}{2\pi}\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c}))\big)(1-\exp^{-\pi})\\ \quad\quad\quad\quad\quad\quad+\varepsilon^{0.95-\frac{1}{2}} \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}}, \\ \varpi_{\varepsilon}^{*}(0) = \sigma^{\prime}. \end{array}\right. \end{align} (5.8)

    Figure 4 presents the same results as in Examples 1–3.

    Our research work is important as follows: First, by proving results of existence and uniqueness, Con-D, regularity, and average principle in the \mathrm{p} th moment, we extend the outcomes for \mathrm{p} = 2 . Secondly, for the first time in the literature, we construct well-posedness and average principle results in the context of HFrD of SFDDEs. Third, we consider SFDDEs, which represent a more generalized class of FSDEs, and we present some graphical results to prove the validity of our results.

    The following are the main points we can work on in the future: We can explore the important concept of controllability for SFDDEs concerning HFrD. We can establish well-posedness, regularity, and average principle results for stochastic Volterra-Fredholm integral equations.

    W. Albalawi, M. I. Liaqat, F. U. Din, K. S. Nisar and A. H. Abdel-Aty: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing–original draft preparation, Writing–review and editing, Visualization, Resources, Funding acquisition. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The research work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R157), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors are thankful to the Deanship of Graduate Studies and Scientific Research at University of Bisha for supporting this work through the Fast-Track Research Support Program.

    The authors declare no conflicts of interest.



    [1] Z. S. Xu, J. Chen, Approach to group decision making based on interval-valued intuitionistic judgment matrices, Syst. Eng., 27 (2007), 126–133. https://doi.org/10.1016/S1874-8651(08)60026-5 doi: 10.1016/S1874-8651(08)60026-5
    [2] M. Akram, S. Zahid, Group decision-making method with Pythagorean fuzzy rough number for the evaluation of best design concept, Granular Comput., 8 (2023), 1121–1148. https://doi.org/10.1007/s41066-023-00391-0 doi: 10.1007/s41066-023-00391-0
    [3] M. Akram, C. Kahraman, K. Zahid, Group decision-making based on complex spherical fuzzy VIKOR approach, Knowl. Based Syst., 216 (2023), 106793. https://doi.org/10.1016/j.knosys.2021.106793 doi: 10.1016/j.knosys.2021.106793
    [4] Y. Liu, L. Zhu, R. M. Rodríguez, L. Martínez, Personalized fuzzy semantic model of PHFLTS: Application to linguistic group decision making, Inf. Fusion, 103 (2024), 102118. https://doi.org/10.1016/j.inffus.2023.102118 doi: 10.1016/j.inffus.2023.102118
    [5] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [6] I. Grattan‐Guinness, Fuzzy membership mapped onto intervals and many‐valued quantities, Math. Log. Q., 22 (1976), 149–160. https://doi.org/10.1002/malq.19760220120 doi: 10.1002/malq.19760220120
    [7] K. Atanassov, S. Stoeva, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (1986), 343–349. https://doi.org/10.1007/978-3-030-35445-9-10 doi: 10.1007/978-3-030-35445-9-10
    [8] G. Demir, Fuzzy multi-griteria decision-making based security management: risk assessment and countermeasure selection in smart cities, Knowl. Decis. Syst. Appl., 1 (2025), 70–91. https://doi.org/10.59543/kadsa.v1i.13701 doi: 10.59543/kadsa.v1i.13701
    [9] S. Moslem, Evaluating commuters' travel mode choice using the Z-number extension of parsimonious best worst method, Appl. Soft Comput., 173 (2025), 112918. https://doi.org/10.1016/j.asoc.2025.112918 doi: 10.1016/j.asoc.2025.112918
    [10] W. Y. Zeng, H. S. Cui, Y. Q. Liu, Z. S. Xu, Novel distance measure between intuitionistic fuzzy sets and its application in pattern recognition, Iran. J. Fuzzy Syst., 19 (2022), 127–137. https://doi.org/10.22111/IJFS.2022.6947 doi: 10.22111/IJFS.2022.6947
    [11] R. J. Kuo, C. C. Hsu, T. P. Q. Nguyen, C. Y. Tsai, Hybrid multi-objective metaheuristic and possibilistic intuitionistic fuzzy c-means algorithms for cluster analysis, Soft Comput., 28 (2024), 991–1008. https://doi.org/10.1007/s00500-023-09367-3 doi: 10.1007/s00500-023-09367-3
    [12] K. Rahman, Q. Iqbal, Optimizing railway train selection in Pakistan using confidence-driven intuitionistic fuzzy methods with einstein-based operators, J. Intell Manag. Decis., 4 (2025), 66–77. https://doi.org/10.56578/jimd040105 doi: 10.56578/jimd040105
    [13] K. T. Atanassov, Interval valued intuitionistic fuzzy sets, In: K. T. Atanassov, Intuitionistic fuzzy sets, Springer, 1999,139–177. https://doi.org/10.1007/978-3-7908-1870-3_2
    [14] S. M. Chen, C. H. Tan, Handling multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Sets Syst., 67 (1994), 163–172. https://doi.org/10.1016/0165-0114(94)90084-1 doi: 10.1016/0165-0114(94)90084-1
    [15] R. Şahin, Fuzzy multicriteria decision making method based on the improved accuracy function for interval-valued intuitionistic fuzzy sets, Soft Comput., 20 (2016), 2557–2563. https://doi.org/10.1007/s00500-015-1657-x doi: 10.1007/s00500-015-1657-x
    [16] K. Kumar, S. M. Chen, Multiattribute decision making based on interval-valued intuitionistic fuzzy values, score function of connection numbers, and the set pair analysis theory, Inf. Sci., 551 (2021), 100–112. https://doi.org/10.1016/j.ins.2020.11.032 doi: 10.1016/j.ins.2020.11.032
    [17] E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Sets Syst., 114 (2000), 505–518. https://doi.org/10.1016/S0165-0114(98)00244-9 doi: 10.1016/S0165-0114(98)00244-9
    [18] H. M. Zhang, L. Y. Yu, New distance measures between intuitionistic fuzzy sets and interval-valued fuzzy sets, Inf. Sci., 245 (2013), 181–196. https://doi.org/10.1016/j.ins.2013.04.040 doi: 10.1016/j.ins.2013.04.040
    [19] W. Huang, F. Zhang, S. Wang, F. Kong, A novel knowledge-based similarity measure on intuitionistic fuzzy sets and its applications in pattern recognition, Expert Syst. Appl., 249 (2024), 123835. https://doi.org/10.1016/j.eswa.2024.123835 doi: 10.1016/j.eswa.2024.123835
    [20] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [21] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [22] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [23] M. Sarfraz, Interval-value Pythagorean fuzzy prioritized aggregation operators for selecting an eco-friendly transportation mode selection, Spec. Eng. Manage. Sci., 2 (2024), 172–201. https://doi.org/10.31181/sems21202422g doi: 10.31181/sems21202422g
    [24] M. Asif, U. Ishtiaq, I. K. Argyros, Hamacher aggregation operators for pythagorean fuzzy set and its application in multi-attribute decision-making problem, Spec. Oper. Res., 2 (2025), 27–40. https://doi.org/10.31181/sor2120258 doi: 10.31181/sor2120258
    [25] P. Liu, P. Wang, Some q‐rung orthopair fuzzy aggregation operators and their applications to multiple‐attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280. https://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
    [26] P. Mahalakshmi, J. Vimala, K. Jeevitha, S. N. Sri, Advancing cybersecurity strategies for multinational corporations: novel distance measures in q-rung orthopair multi-fuzzy systems, J. Oper. Strategic Anal., 2 (2024), 49–55. https://doi.org/10.56578/josa020105 doi: 10.56578/josa020105
    [27] M. Radovanović, S. Jovčić, A. Petrovski, E. Cirkin, Evaluation of university professors using the spherical fuzzy AHP and grey MARCOS multi-criteria decision-making model: a case study, Spec. Decis. Mak. Appl., 2 (2025), 198–218. https://doi.org/10.31181/sdmap21202518 doi: 10.31181/sdmap21202518
    [28] Z. Xu, H. Hu, Projection models for intuitionistic fuzzy multiple attribute decision making, Int. J. Inf. Technol. Decis. Mak., 9 (2010), 267–280. https://doi.org/10.1142/S0219622010003816 doi: 10.1142/S0219622010003816
    [29] S. Zeng, T. Baležentis, J. Chen, G. Luo, A projection method for multiple attribute group decision making with intuitionistic fuzzy information, Informatica, 24 (2013), 485–503. https://doi.org/10.15388/informatica.2013.407 doi: 10.15388/informatica.2013.407
    [30] J. Zeng, Y. M. Wang, K. Zhang, J. Q. Gao, L. H. Yang, A heterogeneous multi-attribute case retrieval method for emergency decision making based on bidirectional projection and TODIM, Expert Syst. Appl., 203 (2022), 117382. https://doi.org/10.1016/j.eswa.2022.117382 doi: 10.1016/j.eswa.2022.117382
    [31] K. T. Atanassov, Circular intuitionistic fuzzy sets, J. Intell. Fuzzy Syst., 39 (2020), 5981–5986. https://doi.org/10.3233/JIFS-189072 doi: 10.3233/JIFS-189072
    [32] K. T. Atanassov, E. Marinov, Four distances for circular intuitionistic fuzzy sets, Mathematics, 9 (2021), 1121. https://doi.org/10.3390/math9101121 doi: 10.3390/math9101121
    [33] C. Kahraman, N. Alkan, Circular intuitionistic fuzzy TOPSIS method with vague membership functions: supplier selection application context, Notes Intuit. Fuzzy Sets, 27 (2021), 24–52. https://doi.org/10.7546/nifs.2021.27.1.24-52 doi: 10.7546/nifs.2021.27.1.24-52
    [34] N. Alkan, C. Kahraman, Circular intuitionistic fuzzy TOPSIS method: pandemic hospital location selection, J. Intell. Fuzzy Syst., 42 (2022), 295–316. https://doi.org/10.3233/JIFS-219193 doi: 10.3233/JIFS-219193
    [35] C. Xu, Y. Wen, New measure of circular intuitionistic fuzzy sets and its application in decision making, AIMS Math., 8 (2023), 24053–24074. https://doi.org/10.3934/math.20231226 doi: 10.3934/math.20231226
    [36] M. J. Khan, J. C. R. Alcantud, P. Kumam, N. A. Alreshidi, Expanding Pythagorean fuzzy sets with distinctive radii: disc Pythagorean fuzzy sets, Complex Intell. Syst., 9 (2023), 7037–7054. https://doi.org/10.1007/s40747-023-01062-y doi: 10.1007/s40747-023-01062-y
    [37] S. Ashraf, M. S. Chohan, S. Ahmad, M. S. Hameed, F. Khan, Decision aid algorithm for kidney transplants under disc spherical fuzzy sets with distinctive radii information, IEEE Access, 11 (2023), 122029–122044. https://doi.org/10.1109/ACCESS.2023.3327830 doi: 10.1109/ACCESS.2023.3327830
    [38] T. Y. Chen, A circular intuitionistic fuzzy assignment model with a parameterized scoring rule for multiple criteria assessment methodology, Adv. Eng. Inf., 61 (2024), 102479. https://doi.org/10.1016/j.aei.2024.102479 doi: 10.1016/j.aei.2024.102479
    [39] J. C. Wang, T. Y. Chen, A compromise decision-support technique with an augmented scoring function within circular intuitionistic fuzzy settings, Eng. Appl. Artif. Intell., 128 (2024), 107359. https://doi.org/10.1016/j.engappai.2023.107359 doi: 10.1016/j.engappai.2023.107359
    [40] E. Çakır, M. A. Taş, Z. Ulukan, Circular intuitionistic fuzzy sets in multi criteria decision making, 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence - ICSCCW-2021, 2021. https://doi.org/10.1007/978-3-030-92127-9_9
    [41] J. Ye, Bidirectional projection method for multiple attribute group decision making with neutrosophic numbers, Neural Comput. Appl., 28 (2017), 1021–1029. https://doi.org/10.1007/s00521-015-2123-5 doi: 10.1007/s00521-015-2123-5
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(425) PDF downloads(63) Cited by(0)

Figures and Tables

Figures(5)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog