In this paper, we focused on solving the perturbed four-banded linear system derived from the traffic process associated with a Markovian queueing model. Utilizing the spectral decomposition of circulant and skew circulant matrices, we computed the product of Toeplitz inversion and a vector, leading to a decomposition algorithm for perturbed four-banded linear systems. This decomposed Toeplitz system features multiple right-hand terms, significantly reducing computational complexity through Toeplitz inversion. Additionally, we introduced an algorithm based on banded LU decomposition, resulting in a banded linear system with multiple right-hand terms, where the sparsity of the banded LU decomposition is pivotal. To evaluate the algorithm's performance, we presented two examples in numerical simulations.
Citation: Jiaqi Qu, Yunlan Wei, Yanpeng Zheng, Zhaolin Jiang. Fast algorithms for a linear system with infinitesimal generator structure of a Markovian queueing model[J]. AIMS Mathematics, 2025, 10(3): 6546-6559. doi: 10.3934/math.2025299
[1] | Saima Rashid, Rehana Ashraf, Fahd Jarad . Strong interaction of Jafari decomposition method with nonlinear fractional-order partial differential equations arising in plasma via the singular and nonsingular kernels. AIMS Mathematics, 2022, 7(5): 7936-7963. doi: 10.3934/math.2022444 |
[2] | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876 |
[3] | Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316 |
[4] | Saima Rashid, Fahd Jarad, Fatimah S. Bayones . On new computations of the fractional epidemic childhood disease model pertaining to the generalized fractional derivative with nonsingular kernel. AIMS Mathematics, 2022, 7(3): 4552-4573. doi: 10.3934/math.2022254 |
[5] | Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046 |
[6] | Ahu Ercan . Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels. AIMS Mathematics, 2022, 7(7): 13325-13343. doi: 10.3934/math.2022736 |
[7] | Hasib Khan, Jehad Alzabut, J.F. Gómez-Aguilar, Praveen Agarwal . Piecewise mABC fractional derivative with an application. AIMS Mathematics, 2023, 8(10): 24345-24366. doi: 10.3934/math.20231241 |
[8] | Kottakkaran Sooppy Nisar, Aqeel Ahmad, Mustafa Inc, Muhammad Farman, Hadi Rezazadeh, Lanre Akinyemi, Muhammad Mannan Akram . Analysis of dengue transmission using fractional order scheme. AIMS Mathematics, 2022, 7(5): 8408-8429. doi: 10.3934/math.2022469 |
[9] | Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052 |
[10] | Eman A. A. Ziada, Salwa El-Morsy, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Monica Botros . Solution of the SIR epidemic model of arbitrary orders containing Caputo-Fabrizio, Atangana-Baleanu and Caputo derivatives. AIMS Mathematics, 2024, 9(7): 18324-18355. doi: 10.3934/math.2024894 |
In this paper, we focused on solving the perturbed four-banded linear system derived from the traffic process associated with a Markovian queueing model. Utilizing the spectral decomposition of circulant and skew circulant matrices, we computed the product of Toeplitz inversion and a vector, leading to a decomposition algorithm for perturbed four-banded linear systems. This decomposed Toeplitz system features multiple right-hand terms, significantly reducing computational complexity through Toeplitz inversion. Additionally, we introduced an algorithm based on banded LU decomposition, resulting in a banded linear system with multiple right-hand terms, where the sparsity of the banded LU decomposition is pivotal. To evaluate the algorithm's performance, we presented two examples in numerical simulations.
The Hermite-Hadamard inequality, which is one of the basic inequalities of inequality theory, has many applications in statistics and optimization theory, as well as providing estimates about the mean value of convex functions.
Assume that f:I⊆R→R is a convex mapping defined on the interval I of R where a<b. The following statement;
f(a+b2)≤1b−ab∫af(x)dx≤f(a)+f(b)2 |
holds and known as Hermite-Hadamard inequality. Both inequalities hold in the reversed direction if f is concave.
The concept of convex function, which is used in many classical and analytical inequalities, especially the Hermite-Hadamard inequality, has attracted the attention of many researchers see [4,7,8,9], and has expanded its application area with the construction of new convex function classes. The introduction of this useful class of functions for functions of two variables gave a new direction to convex analysis. In this sense, in [6], Dragomir mentioned about an expansion of the concept of convex function, which is used in many inequalities in theory and has applications in different fields of applied sciences and convex programming.
Definition 1.1. Let us consider the bidimensional interval Δ=[a,b]×[c,d] in R2 with a<b,c<d. A function f:Δ→R will be called convex on the co-ordinates if the partial mappings fy:[a,b]→R,fy(u)=f(u,y) and fx:[c,d]→R,fx(v)=f(x,v) are convex where defined for all y∈[c,d] and x∈[a,b]. Recall that the mapping f:Δ→R is convex on Δ if the following inequality holds,
f(λx+(1−λ)z,λy+(1−λ)w)≤λf(x,y)+(1−λ)f(z,w) |
for all (x,y),(z,w)∈Δ and λ∈[0,1].
Transferring the concept of convex function to coordinates inspired the presentation of Hermite-Hadamard inequality in coordinates and Dragomir proved this inequality as follows.
Theorem 1.1. (See [6]) Suppose that f:Δ=[a,b]×[c,d]→R is convex on the co-ordinates on Δ. Then one has the inequalities;
f(a+b2,c+d2)≤12[1b−a∫baf(x,c+d2)dx+1d−c∫dcf(a+b2,y)dy]≤1(b−a)(d−c)∫ba∫dcf(x,y)dxdy≤14[1(b−a)∫baf(x,c)dx+1(b−a)∫baf(x,d)dx+1(d−c)∫dcf(a,y)dy+1(d−c)∫dcf(b,y)dy]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4. | (1.1) |
The above inequalities are sharp.
To provide further information about convexity and inequalities that have been established on the coordinates, see the papers [1,2,5,10,11,12,13,14,15]).
One of the trending problems of recent times is to present different types of convex functions and to derive new inequalities for these function classes. Now we will continue by remembering the concept of n-polynomial convex function.
Definition 1.2. (See [16]) Let n∈N. A non-negative function f:I⊂R→R is called n-polynomial convex function if for every x,y∈I and t∈[0,1],
f(tx+(1−t)y)≤1nn∑s=1(1−(1−t)s)f(x)+1nn∑s=1(1−ts)f(y). |
We will denote by POLC(I) the class of all n-polynomial convex functions on interval I.
In the same paper, the authors have proved some new Hadamard type inequalities, we will mention the following one:
Theorem 1.2. (See [16]) Let f:[a,b]→R be an n-polynomial convex function. If a<b and f∈L[a,b], then the following Hermite-Hadaamrd type inequalities hold:
12(nn+2−n−1)f(a+b2)≤1b−ab∫af(x)dx≤f(a)+f(b)nn∑s=1ss+1. | (1.2) |
Since some of the convex function classes can be described on the basis of means, averages have an important place in convex function theory. In [3], Awan et al. gave the harmonic version on the n-polynomial convexity described on the basis of the arithmetic mean as follows. They have also proved several new integral inequalities of Hadamard type.
Definition 1.3. (See [3]) Let n∈N and H⊆(0,∞) be an interval. Then a nonnegative real-valued function f:H→[0,∞) is said to be an n-polynomial harmonically convex function if
f(xytx+(1−t)y)≤1nn∑s=1(1−(1−t)s)f(y)+1nn∑s=1(1−ts)f(x) |
for all x,y∈H and t∈[0,1].
Theorem 1.3. (See [3]) Let f:[a,b]⊆(0,∞)→[0,∞) be an n-polynomial harmonically convex function. Then one has
12(nn+2−n−1)f(2aba+b)≤abb−ab∫af(x)x2dx≤f(a)+f(b)nn∑s=1ss+1 | (1.3) |
if f∈L[a,b].
The main motivation in this study is to give a new modification of (m,n)-harmonically polynomial convex functions on the coordinates and to obtain Hadamard type inequalities via double integrals and by using Hö lder inequality along with a few properties of this new class of functions.
In this section, we will give a new classes of convexity that will be called (m,n)-polynomial convex function as following.
Definition 2.1. Let m,n∈N and Δ=[a,b]×[c,d] be a bidimensional interval. Then a non-negative real-valued function f:Δ→R is said to be (m,n)-harmonically polynomial convex function on Δ on the co-ordinates if the following inequality holds:
f(xztz+(1−t)x,ywsw+(1−s)y)≤1nn∑i=1(1−(1−t)i)1mm∑j=1(1−(1−s)j)f(x,y)+1nn∑i=1(1−(1−t)i)1mm∑j=1(1−sj)f(x,w)+1nn∑i=1(1−ti)1mm∑j=1(1−(1−s)j)f(z,y)+1nn∑i=1(1−ti)1mm∑j=1(1−sj)f(z,w) |
where (x,y),(x,w),(z,y),(z,w)∈Δ and t,s∈[0,1].
Remark 2.1. If one choose m=n=1, it is easy to see that the definition of (m,n)-harmonically polynomial convex functions reduces to the class of the harmonically convex functions.
Remark 2.2. The (2,2)-harmonically polynomial convex functions satisfy the following inequality;
f(xztx+(1−t)z,ywsz+(1−s)w)≤3t−t223s−s22f(x,y)+3t−t222−s−s22f(x,w)+2−t−t223s−s22f(z,y)+2−t−t222−s−s22f(z,w) |
where (x,y),(x,w),(z,y),(z,w)∈Δ and t,s∈[0,1].
Theorem 2.1. Assume that b>a>0,d>c>0,fα:[a,b]×[c,d]→[0,∞) be a family of the (m,n)-harmonically polynomial convex functions on Δ and f(u,v)=supfα(u,v). Then, f is (m,n)- harmonically polynomial convex function on the coordinates if K={x,y∈[a,b]×[c,d]:f(x,y)<∞} is an interval.
Proof. For t,s∈[0,1] and (x,y),(x,w),(z,y),(z,w)∈Δ, we can write
f(xztz+(1−t)x,ywsw+(1−s)y)=supfα(xztz+(1−t)x,ywsw+(1−s)y)≤1nn∑i=1(1−(1−t)i)1mm∑j=1(1−(1−s)j)supfα(x,y)+1nn∑i=1(1−(1−t)i)1mm∑j=1(1−sj)supfα(x,w)+1nn∑i=1(1−ti)1mm∑j=1(1−(1−s)j)supfα(z,y)+1nn∑i=1(1−ti)1mm∑j=1(1−sj)supfα(z,w)=1nn∑i=1(1−(1−t)i)1mm∑j=1(1−(1−s)j)f(x,y)+1nn∑i=1(1−(1−t)i)1mm∑j=1(1−sj)f(x,w)+1nn∑i=1(1−ti)1mm∑j=1(1−(1−s)j)f(z,y)+1nn∑i=1(1−ti)1mm∑j=1(1−sj)f(z,w) |
which completes the proof.
Lemma 2.1. Every (m,n)-harmonically polynomial convex function on Δ is (m,n)-harmonically polynomial convex function on the co-ordinates.
Proof. Consider the function f:Δ→R is (m,n)-harmonically polynomial convex function on Δ. Then, the partial mapping fx:[c,d]→R,fx(v)=f(x,v) is valid. We can write
fx(vwtw+(1−t)v)=f(x,vwtw+(1−t)v)=f(x2tx+(1−t)x,vwtw+(1−t)v)≤1nn∑i=1(1−(1−t)i)f(x,v)+1nn∑i=1(1−ti)f(x,w)=1nn∑i=1(1−(1−t)i)fx(v)+1nn∑i=1(1−ti)fx(w) |
for all t∈[0,1] and v,w∈[c,d]. This shows the (m,n)-harmonically polynomial convexity of fx. By a similar argument, one can see the (m,n)-harmonically polynomial convexity of fy.
Remark 2.3. Every (m,n)-harmonically polynomial convex function on the co-ordinates may not be (m,n)-harmonically polynomial convex function on Δ.
A simple verification of the remark can be seen in the following example.
Example 2.1. Let us consider f:[1,3]×[2,3]→[0,∞), given by f(x,y)=(x−1)(y−2). It is clear that f is harmonically polynomial convex on the coordinates but is not harmonically polynomial convex on [1,3]×[2,3], because if we choose (1,3),(2,3)∈[1,3]×[2,3] and t∈[0,1], we have
RHSf(22t+(1−t),93t+3(1−t))=f(21−t,3)=1+t1−tLHS1nn∑i=1(1−(1−t)i)f(1,3)+1nn∑i=1(1−ti)f(2,3)=0. |
Then, it is easy to see that
f(22t+(1−t),93t+3(1−t))>1nn∑i=1(1−(1−t)i)f(1,3)+1nn∑i=1(1−ti)f(2,3). |
This shows that f is not harmonically polynomial convex on [1,3]×[2,3].
Now, we will establish associated Hadamard inequality for (m,n)-harmonically polynomial convex functions on the co-ordinates.
Theorem 2.2. Suppose that f:Δ→R is (m,n)-harmonically polynomial convex on the coordinates on Δ. Then, the following inequalities hold:
14(mm+2−m−1)(nn+2−n−1)f(2aba+b,2cdc+d)≤14[(mm+2−m−1)abb−a∫baf(x,2cdc+d)x2dx+(nn+2−n−1)cdd−c∫dcf(2aba+b,y)y2dy]≤abcd(b−a)(d−c)∫ba∫dcf(x,y)x2y2dxdy≤12[1n(cd(d−c)∫dcf(a,y)y2dy+cd(d−c)∫dcf(b,y)y2dy)n∑s=1ss+1+1m(ab(b−a)∫baf(x,c)x2dx+ab(b−a)∫baf(x,d)x2dx)m∑t=1tt+1]≤(f(a,c)+f(a,d)+f(b,c)+f(b,d)nm)(n∑s=1ss+1m∑t=1tt+1). | (2.1) |
Proof. Since f is (m,n)-harmonically polynomial convex function on the co-ordinates, it follows that the mapping hx and hy are (m,n)-harmonically polynomial convex functions. Therefore, by using the inequality (1.3) for the partial mappings, we can write
12(mm+2−m−1)hx(2cdc+d)≤cdd−cd∫chx(y)y2dy≤hx(c)+hx(d)mm∑s=1ss+1 | (2.2) |
namely
12(mm+2−m−1)f(x,2cdc+d)≤cdd−cd∫cf(x,y)y2dy≤f(x,c)+f(x,d)mn∑s=1ss+1. | (2.3) |
Dividing both sides of (2.2) by (b−a)ab and by integrating the resulting inequality over [a,b], we have
ab2(b−a)(mm+2−m−1)b∫af(x,2cdc+d)dx≤abcd(b−a)(d−c)b∫ad∫cf(x,y)x2y2dydx≤abb∫af(x,c)x2dx+abb∫af(x,d)x2dxm(b−a)m∑s=1ss+1. | (2.4) |
By a similar argument for (2.3), but now for dividing both sides by (d−c)cd and integrating over [c,d] and by using the mapping hy is (m,n)-harmonically polynomial convex function, we get
cd2(d−c)(nn+2−n−1)d∫cf(2aba+b,y)y2dy≤abcd(b−a)(d−c)b∫ad∫cf(x,y)x2y2dydx≤cdd∫cf(a,y)y2dy+cdd∫cf(b,y)y2dyn(d−c)n∑t=1tt+1. | (2.5) |
By summing the inequalities (2.4) and (2.5) side by side, we obtain the second and third inequalities of (2.1). By the inequality (1.3), we also have:
12(mm+2−m−1)f(2aba+b,2cdc+d)≤cdd−cd∫cf(2aba+b,y)y2dy |
and
12(nn+2−n−1)f(2aba+b,2cdc+d)≤abb−ab∫af(x,2cdc+d)x2dx |
which give by addition the first inequality of (2.1). Finally, by using the inequality (1.3), we obtain
cdd−cd∫cf(a,y)y2dy≤f(a,c)+f(a,d)mn∑s=1ss+1, |
cdd−cd∫cf(b,y)y2dy≤f(b,c)+f(b,d)mn∑s=1ss+1, |
abb−ab∫af(x,c)x2dx≤f(a,c)+f(b,c)nn∑t=1tt+1, |
and
abb−ab∫af(x,d)x2dx≤f(a,d)+f(b,d)nn∑t=1tt+1 |
which give by addition the last inequality of (2.1).
In order to prove our main findings, we need the following identity.
Lemma 2.2. Assume that f:Δ=[a,b]×[c,d]⊂(0,∞)×(0,∞)→R be a partial differentiable mapping on Δ and ∂2f∂t∂s∈L(Δ). Then, one has the following equality:
Φ(f)=f(a,c)+f(b,c)+f(a,d)+f(b,d)4+abcd(b−a)(d−c)∫ba∫dcf(x,y)x2y2dxdy−12[cdd−c∫dcf(a,y)y2dy+cdd−c∫dcf(b,y)y2dy+abb−a∫baf(x,c)x2dx+abb−a∫baf(x,d)x2dx]=abcd(b−a)(d−c)4×∫10∫10(1−2t)(1−2s)(AtBs)2∂2f∂t∂s(abAt,cdBs)dsdt |
where At=tb+(1−t)a,Bs=sd+(1−s)c.
Theorem 2.3. Let f:Δ=[a,b]×[c,d]⊂(0,∞)×(0,∞)→R be a partial differentiable mapping on Δ and ∂2f∂t∂s∈L(Δ). If |∂2f∂t∂s|q is (m,n)-harmonically polynomial convex function on Δ, then one has the following inequality:
|Φ(f)|≤bd(b−a)(d−c)4ac(p+1)2p×[c1|∂2f∂t∂s(a,c)|q+c2|∂2f∂t∂s(a,d)|q+c3|∂2f∂t∂s(b,c)|q+c4|∂2f∂t∂s(b,d)|q]1q | (2.6) |
where
c1=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
c2=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
c3=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
c4=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
and At=tb+(1−t)a,Bs=sd+(1−s)c for fixed t,s∈[0,1],p,q>1 and p−1+q−1=1.
Proof. By using the identity that is given in Lemma 2.2, we can write
|Φ(f)|=abcd(b−a)(d−c)4∫10∫10|(1−2t)||(1−2s)|(AtBs)2|∂2f∂t∂s(abAt,cdBs)|dsdt |
By using the well known Hölder inequality for double integrals and by taking into account the definition of (m,n)-harmonically polynomial convex functions, we get
|Φ(f)|≤abcd(b−a)(d−c)4(∫10∫10|1−2t|p|1−2s|pdtds)1p×(∫10∫10(AtBs)−2q|∂2f∂t∂s(abAt,cdBs)|qdtds)1q≤abcd(b−a)(d−c)4(∫10∫10(AtBs)−2q×(1nn∑i=1(1−(1−t)i)1mm∑j=1(1−(1−s)j)|∂2f∂t∂s(a,c)|q+1nn∑i=1(1−(1−t)i)1mm∑j=1(1−sj)|∂2f∂t∂s(a,d)|q+1nn∑i=1(1−ti)1mm∑j=1(1−(1−s)j)|∂2f∂t∂s(b,c)|q+1nn∑i=1(1−ti)1mm∑j=1(1−sj)|∂2f∂t∂s(b,d)|q)dtds)1q |
By computing the above integrals, we can easily see the followings
∫10∫10(AtBs)−2q(1−(1−t)i)(1−(1−s)j)dtds=(ab)2q[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
∫10∫10(AtBs)−2q(1−(1−t)i)(1−sj)dtds=(ab)2q[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
∫10∫10(AtBs)−2q(1−ti)(1−(1−s)j)dtds=(ab)2q[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
and
∫10∫10(AtBs)−2q(1−ti)(1−sj)dtds=(ab)2q[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)] |
where 2F1 is Hypergeometric function defined by
2F1(2q,1;2;1−ba)=1B(b,c−b)1∫0tb−1(1−t)c−b−1(1−zt)−adt, |
for c>b>0,|z|<1 and Beta function is defind as B(x,y)=1∫0tx−1(1−t)y−1dt,x,y>0. This completes the proof.
Corollary 2.1. If we set m=n=1 in (2.6), we have the following new inequality.
|Φ(f)|≤bd(b−a)(d−c)4ac(p+1)2p×[c11|∂2f∂t∂s(a,c)|q+c22|∂2f∂t∂s(a,d)|q+c33|∂2f∂t∂s(b,c)|q+c44|∂2f∂t∂s(b,d)|q]1q |
where
c11=[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
c22=[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
c33=[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
c44=[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
Corollary 2.2. Suppose that all the conditions of Theorem 2.3 hold. If we set |∂2f(t,s)∂t∂s|q is bounded, i.e.,
‖∂2f(t,s)∂t∂s‖∞=sup(t,s)∈(a,b)×(c,d)|∂2f(t,s)∂t∂s|q<∞, |
we get
|Φ(f)|≤bd(b−a)(d−c)4ac(p+1)2p‖∂2f(t,s)∂t∂s‖∞×[c1+c2+c3+c4]1q |
where c1,c2,c3,c4 as in Theorem 2.3.
c1=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
c2=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
c3=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,1;j+2;1−cd)], |
c4=1nn∑i=1[2F1(2q,1;2;1−ab)−1i+1.2F1(2q,i+1;i+2;1−ab)]×1mm∑j=1[2F1(2q,1;2;1−cd)−1j+1.2F1(2q,j+1;j+2;1−cd)], |
N. Mlaiki and T. Abdeljawad would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.
S. Butt would like to thank H. E. C. Pakistan (project 7906) for their support.
The authors declare that no conflicts of interest in this paper.
[1] | G. Giambene, Queuing theory and telecommunications networks and applications, 2 Eds., New York: Springer, 2005. http://dx.doi.org/10.1007/978-1-4614-4084-0 |
[2] |
T. Oda, Moment analysis for traffic associated with Markovian queueing systems, IEEE T. Commun., 39 (1991), 737–746. http://dx.doi.org/10.1109/26.87164 doi: 10.1109/26.87164
![]() |
[3] |
M. Fumiaki, An infinitely many server queue having Markov renewal arrivals and hyperexponential service times, J. Oper. Res. Soc. Jpn., 29 (2017), 338–351. http://dx.doi.org/10.2307/2582311 doi: 10.2307/2582311
![]() |
[4] |
C. Wen, T. Z. Huang, X. M. Gu, Z. L. Shen, H. F. Zhang, C. Liu, Multipreconditioned GMRES for simulating stochastic automata networks, Open Math., 16 (2018), 986–998. http://dx.doi.org/10.1515/math-2018-0083 doi: 10.1515/math-2018-0083
![]() |
[5] |
D. A. Bini, B. Meini, Effective methods for solving banded Toeplitz systems, SIAM J. Numer. Anal., 20 (1999), 700–719. http://dx.doi.org/10.1137/S0895479897324585 doi: 10.1137/S0895479897324585
![]() |
[6] |
D. Fischer, G. Golub, O. Hald, C. Leiva, O. Widlund, On Fourier-Toeplitz methods for separable elliptic problems, Math. Comput., 28 (1974), 349–368. http://dx.doi.org/10.2307/2005913 doi: 10.2307/2005913
![]() |
[7] |
A. N. Malyshev, M. Sadkane, Fast solution of unsymmetric banded Toeplitz systems by means of spectral factorizations and Woodbury's formula, Numer. Linear Algebra Appl., 21 (2014), 13–23. https://doi.org/10.1002/nla.1853 doi: 10.1002/nla.1853
![]() |
[8] |
Y. L. Zhao, P. Y. Zhu, X. M. Gu, X. L. Zhao, J. Cao, A limited-memory block bi-diagonal Toeplitz preconditioner for block lower triangular Toeplitz system from time-space fractional diffusion equation, J. Comput. Appl. Math., 362 (2019), 99–115. http://dx.doi.org/10.1016/j.cam.2019.05.019 doi: 10.1016/j.cam.2019.05.019
![]() |
[9] |
S. Serra-Capizzano, C. Tablino-Possio, Multigrid methods for multilevel circulant matrices, SIAM J. Sci. Comput., 26 (2004), 55–85. http://dx.doi.org/10.1137/S1064827501388509 doi: 10.1137/S1064827501388509
![]() |
[10] |
M. A. Jandron, A. A. Ruffa, J. Baglama, An asynchronous direct solver for banded linear systems, Numer. Algorithms, 76 (2017), 211–235. http://doi.org/10.1007/s11075-016-0251-3 doi: 10.1007/s11075-016-0251-3
![]() |
[11] |
Y. R. Fu, X. Y. Jiang, Z. L. Jiang, S. Jhang, Fast algorithms for finding the solution of CUPL-Toeplitz linear system from Markov chain, Appl. Math. Comput., 396 (2021), 125859. http://doi.org/10.1016/j.amc.2020.125859 doi: 10.1016/j.amc.2020.125859
![]() |
[12] |
X. Zhang, X. Y. Jiang, Z. L. Jiang, H. Byun, An improvement of methods for solving the CUPL-Toeplitz linear system, Appl. Math. Comput., 421 (2022), 126932. http://doi.org/10.1016/j.amc.2022.126932 doi: 10.1016/j.amc.2022.126932
![]() |
[13] |
X. Zhang, Y. P. Zheng, Z. L. Jiang, H. Byun, Numerical algorithms for corner-modified symmetric Toeplitz linear system with applications to image encryption and decryption, J. Appl. Math. Comput., 69 (2023), 1967–1987. http://doi.org/10.1007/s12190-022-01819-7 doi: 10.1007/s12190-022-01819-7
![]() |
[14] |
X. Zhang, Y. P. Zheng, Z. L. Jiang, H. Byun, Fast algorithms for perturbed Toeplitz-plus-Hankel system based on discrete cosine transform and their applications, Jpn. J. Ind. Appl. Math., 41 (2024), 567–583. http://doi.org/10.1007/s13160-023-00616-4 doi: 10.1007/s13160-023-00616-4
![]() |
[15] |
X. Zhang, Y. P. Zheng, Z. L. Jiang, Fast algorithms for the solution of perturbed symmetric Toeplitz linear system and its applications, Comput. Appl. Math., 43 (2024), 252. http://dx.doi.org/10.1007/s40314-024-02773-9 doi: 10.1007/s40314-024-02773-9
![]() |
[16] |
J. T. Jia, S. M. Li, On the inverse and determinant of general bordered tridiagonal matrices, Comput. Math. Appl., 69 (2015), 503–509. http://dx.doi.org/10.1016/j.camwa.2015.01.012 doi: 10.1016/j.camwa.2015.01.012
![]() |
[17] |
J. T. Jia, T. Sogabe, S. M. Li, A generalized symbolic Thomas algorithm for the solution of opposite-bordered tridiagonal linear systems, J. Comput. Appl. Math., 290 (2015), 423–432. http://dx.doi.org/10.1016/j.cam.2015.05.026 doi: 10.1016/j.cam.2015.05.026
![]() |
[18] |
J. A. Marrero, A numerical solver for general bordered tridiagonal matrix equations, Comput. Math. Appl., 72 (2016), 2731–2740. http://dx.doi.org/10.1016/j.camwa.2016.09.025 doi: 10.1016/j.camwa.2016.09.025
![]() |
[19] |
A. Martin, I. D. Boyd, Variant of the Thomas Algorithm for opposite-bordered tridiagonal systems of equations, Int. J. Numer. Meth. Bio., 26 (2010), 752–759. http://dx.doi.org/10.1002/CNM.1172 doi: 10.1002/CNM.1172
![]() |
[20] |
L. Du, T. Sogabe, S. L. Zhang, A fast algorithm for solving tridiagonal quasi-Toeplitz linear systems, Appl. Math. Lett., 75 (2018), 74–81. http://dx.doi.org/10.1016/j.aml.2017.06.016 doi: 10.1016/j.aml.2017.06.016
![]() |
[21] |
Y. L. Wei, Y. P. Zheng, Z. L. Jiang, S. Shon, A study of determinants and inverses for periodic tridiagonal Toeplitz matrices with perturbed corners involving Mersenne numbers, Mathematics, 7 (2019), 893. http://dx.doi.org/10.3390/math7100893 doi: 10.3390/math7100893
![]() |
[22] |
Y. L. Wei, X. Y. Jiang, Z. L. Jiang, S. Shon, Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices, Adv. Differ. Equ., 2019 (2019), 410. http://dx.doi.org/10.1186/s13662-019-2335-6 doi: 10.1186/s13662-019-2335-6
![]() |
[23] |
Y. L. Wei, X. Y. Jiang, Z. L. Jiang, S. Shon, On inverses and eigenpairs of periodic tridiagonal Toeplitz matrices with perturbed corners, J. Appl. Anal. Comput., 10 (2020), 178–191. http://dx.doi.org/10.11948/20190105 doi: 10.11948/20190105
![]() |
[24] |
T. Sogabe, Numerical algorithms for solving comrade linear systems based on tridiagonal solvers, Appl. Math. Comput., 198 (2008), 117–122. http://dx.doi.org/10.1016/j.amc.2007.08.029 doi: 10.1016/j.amc.2007.08.029
![]() |
[25] |
J. T. Jia, S. M. Li, New algorithms for numerically solving a class of bordered tridiagonal systems of linear equations, Comput. Math. Appl., 78 (2019), 144–151. http://dx.doi.org/10.1016/j.camwa.2019.02.028 doi: 10.1016/j.camwa.2019.02.028
![]() |
[26] | G. Golub, C. Van Loan, Matrix computations, 3 Eds., Baltimore and London: Johns Hopkins University Press, 1996. |
[27] | C. Garoni, S. Serra-Capizzano, Generalized locally Toeplitz sequences: Theory and applications, Cham: Springer, 2017. |
[28] | A. Böttcher, S. M. Grudsky, Spectral properties of banded Toeplitz matrices, Philadelphia: SIAM, 2005. |
[29] |
M. Bogoya, S. M. Grudsky, S. Serra-Capizzano, Fast non-Hermitian Toeplitz eigenvalue computations, joining matrixless algorithms and FDE approximation matrices, SIAM J. Matrix Anal. Appl., 45 (2024), 284–305. http://doi.org/10.1137/22M1529920 doi: 10.1137/22M1529920
![]() |
[30] |
S. Serra-Capizzano, P. Tilli, Extreme singular values and eigenvalues of non-Hermitian block Toeplitz matrices, J. Comput. Appl. Math., 108 (1999), 113–130. http://dx.doi.org/10.1016/S0377-0427(99)00104-1 doi: 10.1016/S0377-0427(99)00104-1
![]() |
[31] |
M. Batista, A. A. Karawia, The use of the Sherman-Morrison-Woodbury formula to solve cyclic block tri-diagonal and cyclic block penta-diagonal linear systems of equations, Appl. Math. Comput., 210 (2009), 558–563. http://dx.doi.org/10.1016/j.amc.2009.01.003 doi: 10.1016/j.amc.2009.01.003
![]() |
[32] | R. H. Chan, X. Q. Jin, An introduction to iterative Toeplitz solvers, Philadelphia: SIAM, 2007. http://dx.doi.org/10.1137/1.9780898718850 |
[33] | X. Q. Jin, Preconditioning techniques for Toeplitz systems, Beijing: Higher Education Press, 2010. |
[34] | M. K. Ng, Iterative methods for Toeplitz systems, New York: Oxford University Press, 2004. |
[35] |
S. L. Lei, Y. C. Huang, Fast algorithms for high-order numerical methods for space fractional diffusion equations, Int. J. Comput. Math., 94 (2017), 1062–1078. http://dx.doi.org/10.1080/00207160.2016.1149579 doi: 10.1080/00207160.2016.1149579
![]() |
[36] |
R. H. Chan, A. M. Yip, M. K. Ng, The best circulant preconditioners for Hermitian Toeplitz systems, SIAM J. Numer. Anal., 38 (2000), 876–896. http://dx.doi.org/10.1137/s0036142999354083 doi: 10.1137/s0036142999354083
![]() |
[37] |
I. Gohberg, V. Olshevsky, Circulants, displacements and decompositions of matrices, Integr. Equat. Oper. Th., 15 (1992), 730–743. http://dx.doi.org/10.1007/BF01200697 doi: 10.1007/BF01200697
![]() |
[38] |
R. H. Chan, M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427–482. http://dx.doi.org/10.1137/S0036144594276474 doi: 10.1137/S0036144594276474
![]() |
1. | Hua Mei, Aying Wan, Bai-Ni Guo, Basil Papadopoulos, Coordinated MT- s 1 , s 2 -Convex Functions and Their Integral Inequalities of Hermite–Hadamard Type, 2021, 2021, 2314-4785, 1, 10.1155/2021/5586377 | |
2. | Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa, Some new integral inequalities for a general variant of polynomial convex functions, 2022, 7, 2473-6988, 20461, 10.3934/math.20221121 | |
3. | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Saowaluck Chasreechai, Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes, 2021, 6, 2473-6988, 11989, 10.3934/math.2021695 | |
4. | Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon, Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for s-convex functions in the second sense with applications, 2021, 6, 2473-6988, 13327, 10.3934/math.2021771 | |
5. | Artion Kashuri, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Tariq, Ahmed A. Hamoud, Homan Emadifar, Faraidun K. Hamasalh, Nedal M. Mohammed, Masoumeh Khademi, Guotao Wang, Integral Inequalities of Integer and Fractional Orders for n –Polynomial Harmonically t g s –Convex Functions and Their Applications, 2022, 2022, 2314-4785, 1, 10.1155/2022/2493944 | |
6. | Farhat Safdar, Muhammad Attique, Some new generalizations for exponentially (s, m)-preinvex functions considering generalized fractional integral operators, 2021, 1016-2526, 861, 10.52280/pujm.2021.531203 | |
7. | Ying-Qing Song, Saad Ihsan Butt, Artion Kashuri, Jamshed Nasir, Muhammad Nadeem, New fractional integral inequalities pertaining 2D–approximately coordinate (r1,ℏ1)-(r2,ℏ2)–convex functions, 2022, 61, 11100168, 563, 10.1016/j.aej.2021.06.044 | |
8. | Waqar Afzal, Sayed M. Eldin, Waqas Nazeer, Ahmed M. Galal, Some integral inequalities for harmonical cr-h-Godunova-Levin stochastic processes, 2023, 8, 2473-6988, 13473, 10.3934/math.2023683 | |
9. | Serap Özcan, Hermite-Hadamard type inequalities for exponential type multiplicatively convex functions, 2023, 37, 0354-5180, 9777, 10.2298/FIL2328777O | |
10. | Serap Özcan, Hermite-Hadamard type inequalities for multiplicatively p-convex functions, 2023, 2023, 1029-242X, 10.1186/s13660-023-03032-x | |
11. | Serap Özcan, Saad Ihsan Butt, Hermite–Hadamard type inequalities for multiplicatively harmonic convex functions, 2023, 2023, 1029-242X, 10.1186/s13660-023-03020-1 | |
12. | Serap Özcan, Simpson, midpoint, and trapezoid-type inequalities for multiplicatively s-convex functions, 2025, 58, 2391-4661, 10.1515/dema-2024-0060 | |
13. | Serap Özcan, Ayça Uruş, Saad Ihsan Butt, Hermite–Hadamard-Type Inequalities for Multiplicative Harmonic s-Convex Functions, 2025, 76, 0041-5995, 1537, 10.1007/s11253-025-02404-4 |