Loading [MathJax]/jax/output/SVG/jax.js
Research article

Hybrid mean value involving some two-term exponential sums and fourth Gauss sums

  • Received: 06 November 2024 Revised: 19 February 2025 Accepted: 03 March 2025 Published: 18 March 2025
  • Let q3 be a positive integer. For any integers m, n, k, h, the two-term exponential sums C(m,n,k,h;q) is defined as C(m,n,k,h;q)=qa=1e(mak+nahq), where k>h2. The main purpose of this paper is to use analytic methods and the properties of classical Gauss sums to study the mean value involving two-term exponential sums and fourth Gauss sums, and to provide some asymptotic formulas and identities. Previously, only the case of h=1 had been studied.

    Citation: Zhefeng Xu, Xiaoying Liu, Luyao Chen. Hybrid mean value involving some two-term exponential sums and fourth Gauss sums[J]. Electronic Research Archive, 2025, 33(3): 1510-1522. doi: 10.3934/era.2025071

    Related Papers:

    [1] Jianghua Li, Zepeng Zhang, Tianyu Pan . On two-term exponential sums and their mean values. Electronic Research Archive, 2023, 31(9): 5559-5572. doi: 10.3934/era.2023282
    [2] Li Rui, Nilanjan Bag . Fourth power mean values of one kind special Kloosterman's sum. Electronic Research Archive, 2023, 31(10): 6445-6453. doi: 10.3934/era.2023326
    [3] Li Wang, Yuanyuan Meng . Generalized polynomial exponential sums and their fourth power mean. Electronic Research Archive, 2023, 31(7): 4313-4323. doi: 10.3934/era.2023220
    [4] Jin Zhang, Xiaoxue Li . The sixth power mean of one kind generalized two-term exponential sums and their asymptotic properties. Electronic Research Archive, 2023, 31(8): 4579-4591. doi: 10.3934/era.2023234
    [5] Jiafan Zhang . On the distribution of primitive roots and Lehmer numbers. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350
    [6] Shuting Chang, Yaojun Ye . Upper and lower bounds for the blow-up time of a fourth-order parabolic equation with exponential nonlinearity. Electronic Research Archive, 2024, 32(11): 6225-6234. doi: 10.3934/era.2024289
    [7] Hongjian Li, Kaili Yang, Pingzhi Yuan . The asymptotic behavior of the reciprocal sum of generalized Fibonacci numbers. Electronic Research Archive, 2025, 33(1): 409-432. doi: 10.3934/era.2025020
    [8] Jun Liu, Yue Liu, Xiaoge Yu, Xiao Ye . An efficient numerical method based on QSC for multi-term variable-order time fractional mobile-immobile diffusion equation with Neumann boundary condition. Electronic Research Archive, 2025, 33(2): 642-666. doi: 10.3934/era.2025030
    [9] Tingting Du, Zhengang Wu . On the reciprocal sums of products of $ m $th-order linear recurrence sequences. Electronic Research Archive, 2023, 31(9): 5766-5779. doi: 10.3934/era.2023293
    [10] Qingjie Chai, Hanyu Wei . The binomial sums for four types of polynomials involving floor and ceiling functions. Electronic Research Archive, 2025, 33(3): 1384-1397. doi: 10.3934/era.2025064
  • Let q3 be a positive integer. For any integers m, n, k, h, the two-term exponential sums C(m,n,k,h;q) is defined as C(m,n,k,h;q)=qa=1e(mak+nahq), where k>h2. The main purpose of this paper is to use analytic methods and the properties of classical Gauss sums to study the mean value involving two-term exponential sums and fourth Gauss sums, and to provide some asymptotic formulas and identities. Previously, only the case of h=1 had been studied.



    Let q3 be a positive integer. For any integers m, n, k, h, the two-term exponential sums C(m,n,k,h;q) is defined as

    C(m,n,k,h;q)=qa=1e(mak+nahq),

    where k>h. When n=0, this sum reduces to the k-th Gauss sum, defined by

    G(m,k;q)=qa=1e(makq).

    These summations are very important in additive number theory because there are close relations between the summation and the Waring's problem. About its arithmetical properties, many authors had studied it. For example, Davenport and Heilbronn [1] proved that

    C(m,n,k,1;pr)kpθr(b,pr),ifpm. (1.1)

    where θ=23 if k=3, and θ=34 if k3. Applying Weil's estimate for exponential sums over finite fields, Hua [2] proved that θ=12 for all k2. Loxton and Smith [3], Smith [4], Loxton and Vaughan [5], Dabrowski and Fisher [6], among others, have made improvements to (1.1). Recently, Li [7], utilizing the recursive formula for the fourth Gauss sum and relevant results on two-term exponential sums, further extended the study to derive a fourth-order linear recurrence formula for the fourth Gauss sum and the two-term exponential sum

    Mk(p)=p1m=1(p1a=0e(ma4p))k|p1a=0e(ma4+ap)|2

    in the case where p1mod4.

    We have been exploring the properties of two-term exponential sums, specifically |p1a=1e(ma4+a2p)|t. The main challenge arises when the lower-order terms of the two-term exponential sum are 2. If a passes through a residue system modulo p while a2 does not pass through the same residue system, direct application of properties of Gauss sums or trigonometric identity becomes complex. Yuan and Wang [8], utilizing the orthogonality and parity properties of characters modulo p, ingeniously transformed the problem and ultimately provided a concise formula. Specifically, for p3mod4, the following identity holds:

    p1m=0|p1a=1e(ma4+a2p)|4=p(7p214p5), (1.2)

    however, when p1mod4, the research on the problem becomes relatively complex, and they did not provide relevant results.

    For the sake of convenience, we have introduced some symbols

    α=α(p)=p12a=1(a+¯ap);γ=p1a=1ψ(a21)¯ψ(a2+1).

    The main purpose of this paper is to study the asymptotic properties of the t-th power mean

    p1m=1|p1a=0e(ma4p)|k|p1a=1e(ma4+a2p)|t, (1.3)

    and give some exact formulas for (1.3) with t=2; for convenience, we will denote it as Tk(p). That is, we shall prove the following:

    Theorem 1. Let p be a prime with p5mod8. Then we have the identity

    T2(p)=6p36p5215p2+6p323p4pα(1+αp).

    Corollary 1. Let p be an odd prime with p5mod8. Then we have

    T2(p)=6p36p52+O(p2).

    Theorem 2. Let p be a prime with p1mod8. Then we have the identity

    T2(p)=6p3+6p5223p2+6p323p+4pα(3αp)+2p(τ2(ψ)γ+τ2(¯ψ)¯γ),

    where τ(ψ)=p1a=0ψ(a)e(ap), which usually denotes the classical Gauss sums.

    Corollary 2. Let p be an odd prime with p1mod8. Then we have

    T2(p)=6p3+O(p52).

    Theorem 3. Let p be a prime with p3mod4. Then for any integer k4, we have

    p1m=1|p1a=0e(ma4p)|2k|p1a=1e(ma4+a2p)|4=pk+1(7p214p5).

    Some notes:

    (1) When p3mod4, we have (1p)=1. In this case, for any integer m with (m,p)=1, according to Theorem 7.5.4 in reference [9], we have

    G(m,2;p)=i(mp)p,

    where i2=1. Combining with the properties of Gauss sums, we obtain

    G(m,4;p)=1+p1a=1(1+(ap))e(ma2p)=(mp)ip,

    then

    |G(m,4;p)|2=p, (1.4)

    when p3mod4, the hybrid means of Tk(p) are easily obtained. Hence, in this section, we only consider the case when p1mod4.

    (2) From the recursive formula for G4(m,4;p)=(p1a=0e(ma4p))4 in [10], we can derive a fourth-order linear recurrence formula for Tk(p).

    When p=8k+5, the recursive formula for G4(m,4;p) is as follows:

    G4(m,4;p)=2pG2(m,4;p)+4pG(m,4;p)(p1a=1(a+¯ap))9p2+p(p1a=1(a+¯ap))2=2pG2(m,4;p)+8pαG(m,4;p)9p2+4pα2.

    Through simple calculations, we obtain the recursive formula for Tk(p) as follows:

    Tk(p)=p1m=1(p1a=0e(ma4p))k|p1a=1e(ma4+a2p)|2=p1m=1Gk(m,4;p)|p1a=1e(ma4+a2p)|2=p1m=1G4(m,4;p)Gk4(m,4;p)|p1a=1e(ma4+a2p)|2=p1m=1((2pG2(m,4;p)+8pαG(m,4;p)9p2+4pα2)Gk4(m,4;p))|p1a=1e(ma4+a2p)|2=2pTk2(p)+8pαTk3(p)+(4pα29p2)Tk4(p).

    Similarly, when p=8k+1, according to [10], we know

    G4(m,4;p)=6pG2(m,4;p)+4pG(m,4;p)(p1a=1(a+¯ap))p2+p(p1a=1(a+¯ap))2=6pG2(m,4;p)+8pαG(m,4;p)p2+4pα2,

    then we have

    Tk(p)=6pTk2(p)+8pαTk3(p)+(4pα2p2)Tk4(p).

    (3) When p1mod4 and k is any positive integer, for the hybrid mean given by

    p1m=1|p1a=0e(ma4p)|2k|p1a=1e(ma4+a2p)|2,

    as k increases, the computation becomes increasingly complex. Whether precise computational formulas or corresponding recurrence relations can be obtained remains a question worth investigating.

    In this section, we give some lemmas, which will be applied to prove the main results.

    Lemma 1. Let p be an odd prime with p1mod4. For any fourth-order character ψ modulo p, we have

    p1a=1ψ(a41)=1+ψ(1)p(τ2(ψ)p), (2.1)
    p1a=1ψ2(a41)=2+ψ(1)p(τ2(ψ)+τ2(¯ψ)), (2.2)
    p1a=1¯ψ(a41)=1+¯ψ(1)p(τ2(¯ψ)p), (2.3)

    where ψ2=χ2 and χ2=(p) denotes the Legendre symbol.

    Proof. In fact, this is Lemma 2.1 of [11], so its proof is omitted.

    Lemma 2. Let p be an odd prime with p1mod4. For any fourth-order character ψ modulo p, we have

    τ2(ψ)+τ2(¯ψ)=2pα.

    Proof. See Lemma 2.2 in [11].

    Lemma 3. Let p be an odd prime with p1mod4, and a be any integer with (a,p)=1. For any fourth-order character ψ modulo p, we have

    p1m=1ψ(m)|p1a=1e(ma4+a2p)|2={2(τ(ψ)τ(¯ψ)p)+τ(ψ)pγ,if p1 mod 8,τ(ψ)pγ,if p5 mod 8.

    Proof. First, using the trigonometric identity

    qm=1e(nmq)={q,if qn,0,if qn. (2.4)

    Then, utilizing the properties of Dirichlet characters, ψ4=¯ψ4=χ0 and ¯ψχ2=ψ, we can obtain

    p1m=1ψ(m)|p1a=1e(ma4+a2p)|2=p1m=1ψ(m)p1a=1p1b=1e(m(a4b4)+(a2b2)p)=p1a=1p1b=1e(b2(a21)p)p1m=1ψ(m)e(mb4(a41)p)=τ(ψ)p1a=1p1b=1¯ψ(b4)¯ψ(a41)e(b2(a21)p)=τ(ψ)p1a=1p1b=1¯ψ(a41)e(b2(a21)p)=τ(ψ)p1a=1¯ψ(a41)(p1b=1(1+χ2(b))e(b(a21)p))=τ(ψ)p1a=1¯ψ(a41)p1b=1e(b(a21)p)+τ(ψ)p1a=1¯ψ(a41)p1b=1χ2(b)e(b(a21)p)=τ(ψ)p1a=1¯ψ(a41)+τ(ψ)τ(χ2)p1a=1¯ψ(a41)χ2(a21)=τ(ψ)p1a=1¯ψ(a41)+τ(ψ)τ(χ2)p1a=1ψ(a21)¯ψ(a2+1).

    When p1mod4, τ(χ2)=p, combined with (2.3) in Lemma 1, we obtain

    p1m=1ψ(m)|p1a=1e(ma4+a2p)|2=τ(ψ)(1+¯ψ(1)p(τ2(¯ψ)p))+τ(ψ)pγ=(1+¯ψ(1))(τ(ψ)ψ(1)τ(¯ψ)p)+τ(ψ)pγ.

    When p1mod8, ψ(1)=¯ψ(1)=1; when p5mod8, ψ(1)=¯ψ(1)=1. Therefore, we have

    p1m=1ψ(m)|p1a=1e(ma4+a2p)|2={2(τ(ψ)τ(¯ψ)p)+τ(ψ)pγ,if p1 mod 8,τ(ψ)pγ,if p5 mod 8.

    This proves Lemma 3.

    Lemma 4. Let p be an odd prime with p1mod4, then

    p1m=1χ2(m)|p1a=1e(ma4+a2p)|2={2p(1αp),if p1 mod 8,2p(1+αp),if p5 mod 8.

    Proof. From the proof of Lemma 3, we obtain

    p1m=1χ2(m)|p1a=1e(ma4+a2p)|2=p1m=1χ2(m)p1a=1p1b=1e(m(a4b4)+(a2b2)p)=p1a=1p1b=1e(b2(a21)p)p1m=1χ2(m)e(mb4(a41)p)=τ(χ2)p1a=1p1b=1χ2(b4)χ2(a41)e(b2(a21)p)=τ(χ2)p1a=1p1b=1χ2(a41)e(b2(a21)p)=τ(χ2)p1a=1χ2(a41)(p1b=1(1+χ2(b))e(b(a21)p))=τ(χ2)p1a=1χ2(a41)p1b=1e(b(a21)p)+τ(χ2)p1a=1χ2(a41)p1b=1χ2(b)e(b(a21)p)=τ(χ2)p1a=1χ2(a41)+τ2(χ2)p1a=1χ2(a41)χ2(a21)=τ(χ2)p1a=1χ2(a41)+τ2(χ2)p1a=1χ2(a2+1).

    Utilizing the properties of the Legendre symbol, then

    p1a=0χ2(a2+n)={1,if (p,n)=1,p1,if (p,n)=p. (2.5)

    Combining (2.5) with (2.2) from Lemma 1, we obtain

    p1m=1χ2(m)|p1a=1e(ma4+a2p)|2=τ(χ2)(2+ψ(1)p(τ2(ψ)+τ2(¯ψ)))2p,

    from Lemma 2, then

    p1m=1χ2(m)|p1a=1e(ma4+a2p)|2=τ(χ2)(2+ψ(1)2α)2p=p(2ψ(1)2α)2p={2p(1αp),if p1 mod 8,2p(1+αp),if p5 mod 8.

    This proves Lemma 4.

    Lemma 5. Let p be an odd prime with p1mod4, then

    p1m=1|p1a=1e(ma4+a2p)|2={2p2+2p325p+2p121,if p1 mod 8,2p22p325p+2p121,if p5 mod 8.

    Proof. From the properties of quadratic Gauss sums, we obtain

    |p1a=1e(a2p)|2=|pa=1e(a2p)1|2={p2p+1,p1 mod 4,p+1,p3 mod 4. (2.6)

    Further calculations yield

    p1m=1|p1a=1e(ma4+a2p)|2=p1m=0|p1a=1e(ma4+a2p)|2|p1a=1e(a2p)|2=p1a=1p1b=1p1m=0e(mb4(a41)+b2(a21)p)|p1a=1e(a2p)|2=pp1a=1p1b=1a41 mod pe(b2(a21)p)(p2p+1)=pp1a=1p1b=1a41 mod p(1+χ2(b))e(b(a21)p)(p2p+1)=pp1a=1p1b=1a41 mod pe(b(a21)p)+pp1a=1p1b=1a41 mod pχ2(b)e(b(a21)p)(p2p+1)=pp1a=1p1b=1a41 mod pa21 mod p1+pp1a=1p1b=1a41 mod pa21 mod pe(b(a21)p)+pτ(χ2)p1a=1a41 mod pχ2(a21)(p2p+1)=2p(p1)2p+2pτ(χ2)(2p)(p2p+1)=2p25p+2pp(2p)+2p1,

    using the properties of the Legendre symbol, then

    (2p)=(1p)(2p)=(1)p12(1)p218={1,ifp1or3 mod 8,1,ifp5or7 mod 8. (2.7)

    According to (2.7), we can obtain

    p1m=1|p1a=1e(ma4+a2p)|2={2p2+2p325p+2p121,if p1 mod 8,2p22p325p+2p121,if p5 mod 8.

    This proves Lemma 5.

    Lemma 6. Let p be an odd prime with p1mod4, then

    χ mod p|p1a=1ψ(a21)¯ψ(a2+1)|2=2(p1)(p3).

    Proof. According to the properties of the character modulo p, we have

    χ mod pχ(a)¯χ(n)={ϕ(p),an mod p,0,an mod p. (2.8)

    Noting that p(a2+1), p(a21), and using (2.8), we obtain

    χ mod p|p1a=1ψ(a21)¯ψ(a2+1)|2=(p1)p2a=2p2b=2(a21)¯(a2+1)(b21)¯(b2+1) mod p1=(p1)p2a=2p2b=2(b2+1)(a21)(a2+1)(b21) mod p1=(p1)p2a=2p2b=2a2b2 mod p1=2(p1)(p3).

    This proves Lemma 6.

    For any integer m satisfying (m,p)=1, based on the classical properties of Gauss sums and the properties of the fourth-order character ψ, combined with (2.4), we have

    G(m,4;p)=p1a=0e(ma4p)=1+p1a=1(1+ψ(a)+χ2(a)+¯ψ(a))e(map)=p1a=0e(map)+p1a=1ψ(a)e(map)+p1a=1χ2(a)e(map)+p1a=1¯ψ(a)e(map)=χ2(m)p+¯ψ(m)τ(ψ)+ψ(m)τ(¯ψ). (3.1)

    Let us start by proving Theorem 1.

    When p5mod8, we have ψ(1)=1. Utilizing the property ¯τ(ψ)=ψ(1)τ(¯ψ)=τ(¯ψ), it follows that in this scenario, ¯¯ψ(m)τ(ψ)+ψ(m)τ(¯ψ)=(¯ψ(m)τ(ψ)+ψ(m)τ(¯ψ)). Additionally, since χ2(m)p is a real number; based on (3.1), we obtain

    ¯G(m,4;p)=χ2(m)p¯ψ(m)τ(ψ)ψ(m)τ(¯ψ). (3.2)

    In this particular case, according to (3.1) and (3.2), we derive

    |G(m,4;p)|2=G(m,4;p)¯G(m,4;p)=p(¯ψ(m)τ(ψ)+ψ(m)τ(¯ψ))2=3pχ2(m)(τ2(ψ)+τ2(¯ψ)). (3.3)

    Now, considering (3.3) and incorporating Lemmas 2, 4, and 5, we obtain

    T2(p)=p1m=1|G(m,4;p)|2|p1a=1e(ma4+a2p)|2=p1m=1(3pχ2(m)(τ2(ψ)+τ2(¯ψ)))|p1a=1e(ma4+a2p)|2=3pp1m=1|p1a=1e(ma4+a2p)|2(τ2(ψ)+τ2(¯ψ))p1m=1χ2(m)|p1a=1e(ma4+a2p)|2=3p(2p22p325p+2p121)2pα(2p(1+αp))=6p36p5215p2+6p323p4pα(1+αp).

    This proves Theorem 1.

    When p1mod8, it holds that ψ(1)=1. For any integer m with (m,p)=1, as stated in (3.1), we establish that ¯G(m,4;p)=G(m,4;p), implying that G(m,4;p) is a real number, then

    T2(p)=p1m=1|G(m,4;p)|2|p1a=1e(ma4+a2p)|2=p1m=1(χ2(m)p+¯ψ(m)τ(ψ)+ψ(m)τ(¯ψ))2|p1a=1e(ma4+a2p)|2=p1m=1(p+¯ψ2(m)τ2(ψ)+ψ2(m)τ2(¯ψ)+2τ(ψ)τ(¯ψ)+2χ2(m)p(¯ψ(m)τ(ψ)+ψ(m)τ(¯ψ)))|p1a=1e(ma4+a2p)|2=3pp1m=1|p1a=1e(ma4+a2p)|2+(τ2(ψ)+τ2(¯ψ))p1m=1χ2(m)|p1a=1e(ma4+a2p)|2+2pp1m=1(ψ(m)τ(ψ)+¯ψ(m)τ(¯ψ))|p1a=1e(ma4+a2p)|2.

    Since τ(ψ)τ(¯ψ)=ψ(1)p=p, combining with Lemmas 2, 3, 4, and 5, we obtain

    T2(p)=p1m=1|G(m,4;p)|2|p1a=1e(ma4+a2p)|2=3p(2p2+2p325p+2p121)+2pα(2p(1αp))+2pτ(ψ)p1m=1ψ(m)|p1a=1e(ma4+a2p)|2+2pτ(¯ψ)p1m=1¯ψ(m)|p1a=1e(ma4+a2p)|2=3p(2p2+2p325p+2p121)+2pα(2p(1αp))+2pτ(ψ)(2(τ(ψ)τ(¯ψ)p)+τ(ψ)pγ)+2pτ(¯ψ)(2(τ(¯ψ)τ(ψ)p)+τ(¯ψ)p¯γ)=3p(2p2+2p325p+2p121)+2pα(2p(1αp))+4pτ2(ψ)4pτ(ψ)τ(¯ψ)+2pτ2(ψ)γ+4pτ2(¯ψ)4pτ(ψ)τ(¯ψ)+2pτ2(¯ψ)¯γ=6p3+6p5223p2+6p323p+4pα(3αp)+2p(τ2(ψ)γ+τ2(¯ψ)¯γ).

    This proves Theorem 2.

    When p3mod4, as stated in (1.2) and (1.4), we obtain

    p1m=1|p1a=0e(ma4p)|2k|p1a=1e(ma4+a2p)|4=pk+1(7p214p5).

    This completes the proof of Theorem 3.

    For p5mod8, considering |α|p and Theorem 1, we obtain

    T2(p)=p1m=1|p1a=0e(ma4p)|2|p1a=1e(ma4+a2p)|2=6p36p52+O(p2).

    This completes the proof of Corollary 1.

    In the case of p1mod8, where |τ2(ψ)|=p, combining with Lemma 6 and Theorem 2, we have

    T2(p)=p1m=1|p1a=0e(ma4p)|2|p1a=1e(ma4+a2p)|2=6p3+O(p52).

    This completes the proof of all our theorems and corollaries.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the N.S.F. (12471006, 12371007) of China and Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSY007).

    The authors declare there are no conflicts of interest.



    [1] H. Davenport, H. Heilbronn, On an exponential sum, Proc. London Math. Soc., 41 (1936), 449–453. https://doi.org10.1112/plms/s2-41.6.449 doi: 10.1112/plms/s2-41.6.449
    [2] L. K. Hua, On exponential sums, Sci. Record, 1 (1957), 1–4.
    [3] J. H. Loxton, R. A. Smith, On Hua's estimate for exponential sums, J. London Math. Soc., 26 (1982), 15–20. https://doi.org/10.1112/jlms/s2-26.1.15 doi: 10.1112/jlms/s2-26.1.15
    [4] R. A. Smith, Estimate for exponential sums, Proc. Amer. Math. Soc., 79 (1980), 365–368. https://doi.org/10.1090/s0002-9939-1980-0567973-5 doi: 10.1090/s0002-9939-1980-0567973-5
    [5] J. H. Loxton, R. C. Vaughan, The estimate of complete exponential sums, Canad. Math. Bull, 26 (1985), 440–454. https://doi.org/10.4153/cmb-1985-053-7 doi: 10.4153/cmb-1985-053-7
    [6] R. Dabrowski, B. Fisher, A stationary phase formula for exponential sums over Z/pmZ and applications to GL(3)-Kloosterman sums, Acta Arith, 80 (1997), 1–48. https://doi.org/10.4064/aa-80-1-1-48 doi: 10.4064/aa-80-1-1-48
    [7] X. X. Li, The hybrid power mean of the quartic Gauss sums and the two-term exponentials sums, Adv. Differ. Equations, 2018 (2018), 236. https://doi.org/10.1186/s13662-018-1658-z doi: 10.1186/s13662-018-1658-z
    [8] R. J. Yuan, T. T. Wang, On the fourth power mean value of one kind two-term exponential sums, J. Northwest Univ., 53 (2023), 453–458. https://doi.org/10.16152/j.cnki.xdxbzr.2023-03-016 doi: 10.16152/j.cnki.xdxbzr.2023-03-016
    [9] L. K. Hua, Introduction to Number Theory, Beijing: Science Press, 1979.
    [10] S. M. Shen, W. P. Zhang, On the quartic Gauss sums and their recurrence property, Adv. Differ. Equations, 2017 (2017), 1–9. https://doi.org/10.1186/s13662-017-1097-2 doi: 10.1186/s13662-017-1097-2
    [11] X. C. Du, X. X. Li, On the fourth power mean of the generalized quartic Gauss sums, Acta Math. Sin. Chin. Ser., 61 (2018), 541–548. https://doi.org/10.12386/A2018sxxb0048 doi: 10.12386/A2018sxxb0048
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(447) PDF downloads(30) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog