Processing math: 88%
Research article Topical Sections

On pairs of equations with unequal powers of primes and powers of 2

  • Received: 22 November 2024 Revised: 12 February 2025 Accepted: 17 February 2025 Published: 27 February 2025
  • MSC : 11P05, 11P55

  • It is proved that every pair of sufficiently large even integers can be represented in the form of a pair of equations, each containing two squares of primes, two cubes of primes, two biquadrates of primes, and 30 powers of 2. Moreover, we also proved that every sufficiently large even integer can be expressed as the sum of two squares of primes, two cubes of primes, two biquadrates of primes, and 14 powers of 2. These two theorems constitute improvements upon the previous results.

    Citation: Li Zhu. On pairs of equations with unequal powers of primes and powers of 2[J]. AIMS Mathematics, 2025, 10(2): 4153-4172. doi: 10.3934/math.2025193

    Related Papers:

    [1] Min Zhang, Fei Xue, Jinjiang Li . On the Waring–Goldbach problem for two squares and four cubes. AIMS Mathematics, 2022, 7(7): 12415-12436. doi: 10.3934/math.2022689
    [2] Gen Li, Liqun Hu, Xianjiu Huang . On pairs of equations in eight prime cubes and powers of 2. AIMS Mathematics, 2023, 8(2): 3940-3948. doi: 10.3934/math.2023197
    [3] Jinjiang Li, Yiyang Pan, Ran Song, Min Zhang . Exceptional set in Waring–Goldbach problem for sums of one square and five cubes. AIMS Mathematics, 2022, 7(2): 2940-2955. doi: 10.3934/math.2022162
    [4] Hong Kang . The power sum of balancing polynomials and their divisible properties. AIMS Mathematics, 2024, 9(2): 2684-2694. doi: 10.3934/math.2024133
    [5] Xinyan Li, Wenxu Ge . A Diophantine approximation problem with unlike powers of primes. AIMS Mathematics, 2025, 10(1): 736-753. doi: 10.3934/math.2025034
    [6] M. Haris Mateen, Muhammad Khalid Mahmmod, Dilshad Alghazzawi, Jia-Bao Liu . Structures of power digraphs over the congruence equation xpy(modm) and enumerations. AIMS Mathematics, 2021, 6(5): 4581-4596. doi: 10.3934/math.2021270
    [7] Qiang Li, Jina Zhao . Extremal solutions for fractional evolution equations of order 1<γ<2. AIMS Mathematics, 2023, 8(11): 25487-25510. doi: 10.3934/math.20231301
    [8] Tingting Wen . On the number of integers which form perfect powers in the way of x(y21+y22+y23+y24)=zk. AIMS Mathematics, 2024, 9(4): 8732-8748. doi: 10.3934/math.2024423
    [9] Kexin Ouyang, Yu Wei, Huiqin Lu . Positive ground state solutions for a class of fractional coupled Choquard systems. AIMS Mathematics, 2023, 8(7): 15789-15804. doi: 10.3934/math.2023806
    [10] Yang Zhang, Shuxia Liu, Liwei Zeng . A symplectic fission scheme for the association scheme of rectangular matrices and its automorphisms. AIMS Mathematics, 2024, 9(11): 32819-32830. doi: 10.3934/math.20241570
  • It is proved that every pair of sufficiently large even integers can be represented in the form of a pair of equations, each containing two squares of primes, two cubes of primes, two biquadrates of primes, and 30 powers of 2. Moreover, we also proved that every sufficiently large even integer can be expressed as the sum of two squares of primes, two cubes of primes, two biquadrates of primes, and 14 powers of 2. These two theorems constitute improvements upon the previous results.



    The Goldbach conjecture is one of the most famous problems, and numerous variations have been derived from it. In the 1950s, Linnik [9,10] showed that every sufficiently large even integer can be represented as a sum of two primes and K powers of 2, where K is an absolute constant. In 1975, Gallagher [2] established an asymptotic formula for the number of such representations. In 1998, the explicit value of K was first obtained by Liu, Liu, and Wang [11]. They showed that K=54000 is acceptable. Afterwards, many mathematicians improved the value of K (see [4,7,8,12,15,16,19]). The best result so far is due to Pintz and Ruzsa [16], who proved that K=8 is acceptable.

    In 2017, motivated by the works of Linnik [9,10], Liu [13] studied a Goldbach–Linnik problem with unequal powers of primes. To be specific, he considered the problem on the representation of the large even integer N in the form

    N=p21+p22+p33+p34+p45+p46+2v1++2vk, (1.1)

    where pi are prime numbers and vj are positive integers. He proved that (1.1) is solvable for k=41. Subsequently, the acceptable value of k was successively refined by Lü [14], Zhao [23], and Zhang [20]. Very recently, based on the work of [21,22], Zhu [24] further improved the result to k=17.

    On the other hand, in 2023, Huang [5] studied Eq (1.1) in an extended way. He attempted to simultaneously represent pairs of positive even integers N1 and N2 with N2<N1N2, in the form

    {N1=p21+p22+p33+p34+p45+p46+2v1++2vkN2=p27+p28+p39+p310+p411+p412+2v1++2vk. (1.2)

    In [5], he proved that the simultaneous equations (1.2) are solvable for k=105. In 2024, Han, Liu, and Yue [3] improved the value of k to 36.

    In this paper, we shall continue to improve the results of [3] and [24] and establish the following sharper results:

    Theorem 1. For k=30, the simultaneous equations (1.2) are solvable for every sufficiently large positive even integers N1 and N2 satisfying N2<N1N2.

    Theorem 2. For k=14, the Eq (1.1) is solvable for every sufficiently large positive even integer N.

    In this paper, we assume that N1 and N2 are sufficiently large even integers satisfying N2<N1N2. We fix a positive constant η satisfying η10100. Let ε be an arbitrarily small positive number, and the value of ε may change from line to line. The letter p, with or without a subscript, is reserved for a prime number. As usual, we use e(α) to denote e2πiα, and φ(n) stands for the Euler function. Moreover, we write

    P+i,j=((16+η)Nj)1i,Pi,j=((16η)Nj)1i,L=log(N1/logN1)log2,Si,j(α)=Pi,jpP+i,je(piα)logp,H(α)=1vLe(2vα).

    In order to apply the circle method, we set

    Pj=N3202εjandQj=N1720+εj. (2.1)

    Then we can define

    M=M1×M2={(α1,α2):α1M1,α2M2},m=[1Q1,1+1Q1]×[1Q2,1+1Q2]M,mj=[1Qj,1+1Qj]Mj, (2.2)

    where

    Mj=qPjqa=1(a,q)=1Mj(q,a),Mj(q,a)=(aq1qQj,aq+1qQj]. (2.3)

    Now let

    R(k,N1,N2)=(logp1)(logp2)(logp12)

    be the weighted number of solutions of (1.2) in (p1,,p12,v1,,vk) with

    P2,1p1,p2P+2,1,P3,1p3,p4P+3,1,P4,1p5,p6P+4,1,P2,2p7,p8P+2,2,P3,2p9,p10P+3,2,P4,2p11,p12P+4,2,1v1,,vkL.

    Then by orthogonality, we have

    R(k,N1,N2)=10101j2(S22,j(αj)S23,j(αj)S24,j(αj)e(αjNj))Hk(α1+α2)dα1dα2=(M+m)1j2(S22,j(αj)S23,j(αj)S24,j(αj)e(αjNj))Hk(α1+α2)dα1dα2:=R1(k,N1,N2)+R2(k,N1,N2). (2.4)

    For k30, we shall prove

    R1(k,N1,N2)9.946N761N762I2Lk,|R2(k,N1,N2)|8.6372N761N762I2Lk, (2.5)

    where I is the positive constant defined as (3.4).

    We first state some auxiliary results. Let

    Ck(q,a)=qm=1(m,q)=1e(amkq),B(n,q)=qa=1(a,q)=1C22(q,a)C23(q,a)C24(q,a)e(anq),A(n,q)=1φ6(q)B(n,q),S(n)=q=1A(n,q),gk(λ)=16+η16ηe(tλ)t1k1dt,J(n)=g2(λ)2g3(λ)2g4(λ)2e(nλ)dλ.

    Lemma 3.1. Let Mj be defined as (2.3). Then we have

    MjS22,j(α)S23,j(α)S24,j(α)e(nα)dα=S(n)J(nNj)N76j223242+O(N76jL1),

    where S(n)1 for n0(mod2).

    Proof. Let

    Jj(n)=m1+m2++m6=n(16η)Njmi(16+η)Nj(1i6)(m1m2)12(m3m4)23(m5m6)34.

    It follows from [13, Lemma 2.1] that

    MjS2,j(α)2S3,j(α)2S4,j(α)2e(nα)dα=S(n)Jj(n)223242+O(N76jL1),

    and S(n)1 for n0(mod2). Therefore, it suffices to show that

    Jj(n)=J(nNj)N76j+O(N76jL1). (3.1)

    Write

    uk,j(λ)=((16+η)Nj)1k((16η)Nj)1ke(tkλ)dt,vk,j(λ)=1k(16η)Njm(16+η)Njm1k1e(mλ).

    Then we can deduce from the orthogonality that

    Jj(n)223242=1212v2,j(λ)2v3,j(λ)2v4,j(λ)2e(nλ)dλ=|λ|logNjNjv2,j(λ)2v3,j(λ)2v4,j(λ)2e(nλ)dλ+O(12logNjNj1λ6N236jdλ)=|λ|logNjNju2,j(λ)2u3,j(λ)2u4,j(λ)2e(nλ)dλ+O(N76jlog5Nj), (3.2)

    where the elementary estimates

    vk,j(λ)|λ|1N1kkj,uk,j(λ)=1k(16+η)Nj(16η)Nje(tλ)t1k1dt=vk,j(λ)+O(1)

    are used. Since uk,j(λ)=1kN1kj16+η16ηe(tNjλ)t1k1dt=1kN1kjgk(Njλ). Then we have

    |λ|logNjNju2,j(λ)2u3,j(λ)2u4,j(λ)2e(nλ)dλ=N136j223242|λ|logNjNjg2(Njλ)2g3(Njλ)2g4(Njλ)2e(nλ)dλ=N76j223242|λ|logNjg2(λ)2g3(λ)2g4(λ)2e(nNjλ)dλ=N76jJ(nNj)223242+O(N76jlogNj1λ6dλ)=N76jJ(nNj)223242+O(N76jlog5Nj), (3.3)

    where the bound gk(λ)|λ|1 (see [17, Lemma 4.3]) is used. Now (3.1) follows from (3.2) and (3.3).

    Lemma 3.2. Let

    I=η<ui<η(1i5)η<u1+u2+u3+u4+u5<η1du1du5. (3.4)

    Suppose that nNj=1+O(1logNj). Then we have

    (i)I(η5)5>0,(ii)J(nNj)(16+2η)236I.

    Proof. For (i), it is easy to see that

    Iη10<ui<η10(1i5)η<u1+u2+u3+u4+u5<η1du1du5=η10<ui<η10(1i5)1du1du5=(η5)5>0.

    For (ii), write t6=s5i=1ti, then we have

    J(nNj)=g22(λ)g23(λ)g24(λ)e(nNjλ)dλ=16+η16η16+η16η(t1t2)12(t3t4)23(t5t6)34dt1dt6e(λ(6i=1tinNj))dλ=1+6η16ηϕ(s)dse(λ(snNj))dλ,

    where

    ϕ(s)=16η<ti<16+η(1i5)16η<st1t2t3t4t5<16+η(t1t2)12(t3t4)23t345(s5i=1ti)34dt1dt5.

    Note that RRe(λu)dλ=sin2πRuπu. Thus

    J(nNj)=limR1+6η16ηϕ(s)sin2πR(snNj)π(snNj)ds. (3.5)

    Since ϕ(s) is bounded and 16η<nNj=1+O(1logNj)<1+6η. Hence, we can deduce from the Fourier's integral theorem (see [1, P.22]) that

    limR1+6η16ηϕ(s)sin2πR(snNj)π(snNj)ds=ϕ(nNj). (3.6)

    For ϕ(nNj), by the trivial estimate, we can obtain

    ϕ(nNj)=16η<ti<16+η(1i5)16η<nNjt1t2t3t4t5<16+η(t1t2)12(t3t4)23t345(nNj5i=1ti)34dt1dt5(16+η)23616η<ti<16+η(1i5)16η<nNjt1t2t3t4t5<16+η1dt1dt5. (3.7)

    Let ti=ui+16, then we have

    16η<ti<16+η(1i5)16η<nNjt1t2t3t4t5<16+η1dt1dt5=η<ui<η(1i5)16η<nNj56u1u2u3u4u5<16+η1du1du5=η<ui<η(1i5)1nNjη<u1+u2+u3+u4+u5<1nNj+η1du1du5=I+R, (3.8)

    where I is defined as (3.4) and

    R=η<ui<η(1i5)η<u1+u2+u3+u4+u5<1nNj+η1du1du5+η<ui<η(1i5)1nNjη<u1+u2+u3+u4+u5<η1du1du5.

    From the condition 1nNj=O(1logNj), we can obtain

    Rηηdu1ηηdu2ηηdu3ηη(1nNj)du41logNj. (3.9)

    Now by combining (3.5)–(3.9), we obtain

    J(nNj)(16+η)236(I+O(1logNj))(16+2η)236I.

    Lemma 3.3. Suppose that (a,p)=1. Then we have

    (i)|Cj(p,a)|(j1)p12+1,(ii)C3(p,a)=1,ifp2(mod3).

    Proof. It follows easily from [18, Lemma 4.3].

    Lemma 3.4. We have

    (1+A(n,17))p23(1+A(n,p))0.9792.

    Proof. For p=17 or 23p199, we can directly calculate min1np(1+A(n,p)) by computer and obtain that

    1+A(n,17)0.9994659,1+A(n,23)0.9999786,,1+A(n,199)0.9999972.

    Thus

    (1+A(n,17))23p199(1+A(n,p))0.994943. (3.10)

    For 199<p105, if p2(mod3) and (a,p)=1, then we can deduce from Lemma 3.3 (i) and (ii) that

    1+A(n,p)1p1a=1|C22(p,a)C24(p,a)|(p1)61(p+1)2(3p+1)2(p1)5. (3.11)

    If p1(mod3), then by Lemma 3.3 (i), we have

    1+A(n,p)1(p+1)2(2p+1)2(3p+1)2(p1)5. (3.12)

    Combining (3.11) and (3.12), we can deduce from numerical calculation that

    199<p105(1+A(n,p))199<p105p1(mod3)(1(p+1)2(2p+1)2(3p+1)2(p1)5)×199<p105p2(mod3)(1(p+1)2(3p+1)2(p1)5)0.98425×0.9999890.984239. (3.13)

    For p>105, it follows from [13, Section 3, P.443] that

    p>105(1+A(n,p))p>105(11(p1)2)370.99994. (3.14)

    Now we can conclude from (3.10) and (3.13)–(3.14) that

    (1+A(n,17))p23(1+A(n,p))0.994943×0.984239×0.999940.9792.

    Lemma 3.5. Let

    Ξ(N1,N2,k)={(n1,n2):{n1=N12v12v22vkn2=N22v12v22vk,1v1,,vkL},Ξ(N1,k)={n:n=N12v12v22vk,1v1,,vkL}.

    Then for N1N20(mod2), we have

    (i)(n1,n2)Ξ(N1,N2,k)n1n20(mod2)S(n1)S(n2)3.57Lk,ifk30,(ii)nΞ(N1,k)n0(mod2)S(n)1.91267Lk,ifk14.

    Proof. According to [13,(3.3)], we have

    S(n)=p2(1+A(n,p)). (3.15)

    Set C=0.9792 and P={3,5,7,11,13,19}. Then by applying Lemma 3.4, we obtain

    S(n)C(1+A(n,2))pP(1+A(n,p))=2CpP(1+A(n,p)), (3.16)

    where the obvious fact 1+A(n,2)=2 for n0(mod2) is used. Write q=pPp=285285, t=N2N1. Thus

    (n1,n2)Ξ(N1,N2,k)n1n20(mod2)S(n1)S(n2)4C2(n1,n2)Ξ(N1,N2,k)n1n20(mod2)pP(1+A(n1,p))(1+A(n2,p))=4C21jq(n1,n2)Ξ(N1,N2,k)n1n20(mod2)n1j(modq)n2t+j(modq)pP(1+A(n1,p))(1+A(n2,p))=4C21jqpP(1+A(j,p))(1+A(t+j,p))(n1,n2)Ξ(N1,N2,k)n1n20(mod2)n1j(modq)n2t+j(modq)1. (3.17)

    Let S denote the innermost sum in (3.17). Since N1N20(mod2), we have

    S=1v1,,vkLN12v12vkj(modq)N22v12vkN2N1+j(modq)1=1v1,,vkL2v1++2vkN1j(modq)1.

    Let ρ(q) denote the smallest positive integer ρ such that 2ρ1(modq). Thus

    S=(Lρ(q)+O(1))k1v1,,vkρ(q)2v1++2vkN1j(modq)1=(Lρ(q)+O(1))k1qqr=1e(r(jN1)q)(1vρ(q)e(r2vq))k. (3.18)

    When q=285285 and k30, with the help of a computer, we can verify that ρ(q)=180 and

    q1r=1(1ρ(q)|1vρ(q)e(r2vq)|)k285284r=1(1180|1v180e(r2v285285)|)302.37×106. (3.19)

    Therefore, from (3.18) and (3.19), we have

    S(Lρ(q)+O(1))k1q(ρk(q)q1r=1|1vρ(q)e(r2vq)|k)Lkq(1q1r=1(1ρ(q)|1vρ(q)e(r2vq)|)k)+O(Lk1)Lkq(12.37×106)+O(Lk1)0.999997Lkq. (3.20)

    Inserting (3.20) into (3.17), we obtain

    (n1,n2)Ξ(N1,N2,k)n1n20(mod2)S(n1)S(n2)4C2×0.999997Lkq1jqpP(1+A(j,p))(1+A(t+j,p)). (3.21)

    Note that q=pPp, we can deduce from the Chinese remainder theorem that

    1jqpP(1+A(j,p))(1+A(j+t,p))=1j131j251j371j4111j5131j619(1+A(j1,3))(1+A(j1+t,3))×(1+A(j2,5))(1+A(j2+t,5))(1+A(j6,19))(1+A(j6+t,19))=pP(1jp(1+A(j,p))(1+A(j+t,p)))pPmin1tp(1jp(1+A(j,p))(1+A(j+t,p))). (3.22)

    By the numerical calculation, we can obtain

    pPmin1tp(1jp(1+A(j,p))(1+A(j+t,p)))265611.695. (3.23)

    Thus, we can conclude from (3.21)–(3.23) that

    (n1,n2)Ξ(N1,N2,k)n1n20(mod2)S(n1)S(n2)4C2×0.999997×265611.695Lkq3.57Lk. (3.24)

    The proof of (ii) is similar. From (3.16)–(3.17), we have

    nΞ(N1,k)n0(mod2)S(n)2CnΞ(N1,k)n0(mod2)pP(1+A(n,p))=2C1jqpP(1+A(j,p))nΞ(N1,k)n0(mod2)nj(modq)1. (3.25)

    The innermost sum can be estimated using the same method as in (3.18)–(3.20), except by replacing k30 with k14. By numerical calculation, we have

    nΞ(N1,k)n0(mod2)nj(modq)1Lkq(1285284r=1(1180|1v180e(r2v285285)|)14)+O(Lk1)Lkq(10.023347)+O(Lk1)0.976652Lkq. (3.26)

    Similar to (3.22), we have

    1jqpP(1+A(j,p))=pP(1jp(1+A(j,p))). (3.27)

    Moreover, by applying the bound 1jpe(ajp)=0 for a0(modp), we can obtain

    1jp(1+A(j,p))=p+1ap1C22(p,a)C23(p,a)C24(p,a)1jpe(ajp)(p1)6=p. (3.28)

    Now by combining (3.25)–(3.28), we can derive that

    nΞ(N1,k)n0(mod2)S(n)2C×0.976652LkqpP(1jp(1+A(j,p)))1.91267LkqpPp=1.91267Lk.

    Proposition 3.1. Suppose that k30 and N1N20(mod2). Then we have

    R1(k,N1,N2)9.946I2N761N762Lk. (3.29)

    Proof. Note that Hk(α1+α2)e(N1α1α2N2)=(n1,n2)Ξ(N1,N2,k)n1n20(mod2)e(n1α1)e(n2α2), then by Lemma 3.1, Lemma 3.2 (ii) and Lemma 3.5 (i), we have

    R1(k,N1,N2)=M1j2S22,j(αj)S23,j(αj)S24,j(αj)Hk(α1+α2)e(α1N1α2N2)dα1dα2=(n1,n2)Ξ(N1,N2,k)n1n20(mod2)M1S22,1(α1)S23,1(α1)S24,1(α1)e(n1α1)dα1×M2S22,2(α2)S23,2(α2)S24,2(α2)e(n2α2)dα2=(n1,n2)Ξ(N1,N2,k)n1n20(mod2)(S(n1)S(n2)J(n1N1)J(n2N2)N761N762243444+O(N761N762L1))(16+2η)233I2N761N762243444(n1,n2)Ξ(N1,N2,k)n1n20(mod2)S(n1)S(n2)+O(N761N762Lk1)9.946I2N761N762Lk, (3.30)

    where the trivial bound (n1,n2)Ξ(N1,N2,k)n1n20(mod2)1Lk is used.

    In this section, we will give the upper bound for R2(k,N1,N2). For this purpose, we need to introduce a further division of the minor arcs m. Let

    E(u)={(α1,α2)m:|H(α1+α2)|uL}.

    Then we have

    |R2(k,N1,N2)|m|1j2S22,j(αj)S23,j(αj)S24,j(αj)Hk(α1+α2)|dα1dα2=(mE(u)+mE(u))|1j2S22,j(αj)S23,j(αj)S24,j(αj)Hk(α1+α2)|dα1dα2:=R3(k,N1,N2,u)+R4(k,N1,N2,u). (4.1)

    In order to estimate R3(k,N1,N2,u), we define

    Mj(q,a)=(aqlogNjNj,aq+logNjNj],Mj=qlogNjqa=1(a,q)=1Mj(q,a),mj=[1Qj,1+1Qj]Mj,J=|g2(λ)2g3(λ)2g4(λ)2|dλ,A(q)=1φ6(q)qa=1(a,q)=1|C22(q,a)C23(q,a)C24(q,a)|,S=q=1A(q).

    Lemma 4.1. We have

    S3.394.

    Proof. See [22, Lemma 3.1].

    Lemma 4.2. We have

    Mj|S2,j(α)2S3,j(α)2S4,j(α)2|dα=SJN76j223242+O(N76jL1).

    Proof. It follows from the standard major arcs techniques in the Waring-Goldbach problem.

    Lemma 4.3. We have

    10|S2,j(α)2S3,j(α)2S4,j(α)2|dα(8+2η)SJN76j223242.

    Proof. Let

    Jj=m1m2+m3m4+m5m6=0(16η)Njmi(16+η)Nj(1i6)(m1m2)12(m3m4)23(m5m6)34.

    Then from [22, Proof of Lemma 4.1, P.417] with k=4, we have

    10|S2,j(α)2S3,j(α)2S4,j(α)2|dα(8+η)SJj223242. (4.2)

    For Jj, it follows from the same argument leading to (3.2) and (3.3) that

    Jj223242=1212|v2,j(λ)2v3,j(λ)2v4,j(λ)2|dλ=|λ|logNjNj|u2,j(λ)2u3,j(λ)2u4,j(λ)2|dλ+O(N76jlog5Nj)=JN76j223242+O(N76jlog5Nj). (4.3)

    Now by substituting (4.3) into (4.2), we obtain

    10|S2,j(α)2S3,j(α)2S4,j(α)2|dα(8+η)SJN76j223242+O(N76jlog5Nj)(8+2η)SJN76j223242.

    Lemma 4.4. We have

    mj|S2,j(α)2S3,j(α)2S4,j(α)2|dα(7+3η)SJN76j223242.

    Proof. By Lemmas 4.2 and 4.3, we have

    mj|S2,j(α)2S3,j(α)2S4,j(α)2|dα=10|S2,j(α)2S3,j(α)2S4,j(α)2|dαMj|S2,j(α)2S3,j(α)2S4,j(α)2|dα(8+2η)1223242SJN76j+O(N76jL1)(7+3η)SJN76j223242.

    Lemma 4.5. Let I be defined as (3.4). Then we have

    J(16η)236I. (4.4)

    Proof. The proof of Lemma 4.5 is similar to that of Lemma 3.2 (ii). Let t6=t1t2+t3t4+t5s, then we can obtain

    J=|g22(λ)g23(λ)g24(λ)|dλ=6η6ηϕ(s)dse(λs)dλ, (4.5)

    where

    ϕ(s)=16η<ti<16+η(1i5)16η<t1t2+t3t4+t5s<16+η(t1t2)12(t3t4)23t345(t1t2+t3t4+t5s)34dt1dt5.

    Applying the Fourier integral theorem, we can obtain

    6η6ηϕ(s)dse(λs)dλ=limR6η6ηϕ(s)sin2πRsπsds=ϕ(0). (4.6)

    Write ti=ui+16. Thus

    ϕ(0)=16η<ti<16+η(1i5)16η<t1t2+t3t4+t5<16+η(t1t2)12(t3t4)23t345(t1t2+t3t4+t5)34dt1dt5(16η)236η<ui<η(1i5)η<u1u2+u3u4+u5<η1du1du5. (4.7)

    Making the change of variables u2=s2,u4=s4, we find that

    η<ui<η(1i5)η<u1u2+u3u4+u5<η1du1du2du5=η<u1,s2,u3,s4,u5<ηη<u1+s2+u3+s4+u5<η1du1ds2du5=I. (4.8)

    Now the desired result follows from (4.5)–(4.8).

    Proposition 4.1. We have

    R3(k,N1,N2,u)2021.835ukI2N761N762Lk.

    Proof. Note that |H(α1+α2)|<uL for (α1,α2)mE(u). Then we have

    R3(k,N1,N2,u)(uL)kmE(u)1j2|S22,j(αj)S23,j(αj)S24,j(αj)|dα1dα2. (4.9)

    It is easy to see that m1m1,m2(M2M2)m2 and m2(M2M2)=. Hence

    m1dα1dα2=M11dα1m21dα2+m11dα1m21dα2+m11dα1M21dα2=101dα1m21dα2+m11dα1M21dα2=101dα1m21dα2+m11dα1M2M21dα2+m11dα1M21dα2101dα1m21dα2+101dα1M2M21dα2+m11dα1M21dα2101dα1m21dα2+m11dα1M21dα2. (4.10)

    From (4.9)–(4.10) and Lemmas 4.1–4.5, we can obtain

    R3(k,N1,N2,u)(uL)k10|S22,1(α1)S23,1(α1)S24,1(α1)|dα1m2|S22,2(α2)S23,2(α2)S24,2(α2)|dα2+(uL)km1|S22,1(α1)S23,1(α1)S24,1(α1)|dα1M2|S22,2(α2)S23,2(α2)S24,2(α2)|dα2(uL)k((8+2η)(7+3η)243444(SJ)2N761N762+(7+3η)(1+η)243444(SJ)2N761N762)(16η)233(63+50η)243444×3.3942ukN761N762I2Lk2021.835ukN761N762I2Lk. (4.11)

    Lemma 4.6. We have

    (i)mj|S2,j(α)2S3,j(α)3S4,j(α)2|dαN3524+εj,(ii)10|S2,j(α)2S4,j(α)4|dαN1+εj,(iii)10|S2,j(α)2S3,j(α)2S4,j(α)2|dαN76+εj.

    Proof. See [24, Lemma 4.5 and Lemma 4.1].

    Lemma 4.7. Let

    E(u)={α(0,1]:|H(α)|uL}.

    Write meas(E(u)) for the measure of the set E(u). Then we have

    meas(E(0.83372131685))N2310201.

    Proof. See [6, Lemma 5 and (3.10)].

    Proposition 4.2. Let u=0.83372131685. Then we have

    R4(k,N1,N2,u)N761N762Lk1.

    Proof. For brevity, we write

    F2(α1)=α2m2|H(α1+α2)|uL|S22,2(α2)S23,2(α2)S24,2(α2)|dα2,F1(α2)=α1m1|H(α1+α2)|uL|S22,1(α1)S23,1(α1)S24,1(α1)|dα1.

    From the definition of m and E(u), we have

    R4(k,N1,N2,u)Lk((α1,α2)[0,1]×m2|H(α1+α2)|uL+(α1,α2)m1×[0,1]|H(α1+α2)|uL)|1j2S22,j(αj)S23,j(αj)S24,j(αj)|dα1dα2=Lk10|S22,1(α1)S23,1(α1)S24,1(α1)F2(α1)|dα1+Lk10|S22,2(α2)S23,2(α2)S24,2(α2)F1(α2)|dα2, (4.12)

    where the trivial bound H(\alpha_1+\alpha_2)\ll L is used. By applying Hölder's inequality, Hua's inequality and Lemma 4.6 (i), (ii), we can obtain

    \begin{eqnarray} F_2(\alpha_1)&\ll&\left(\int_{0}^{1}|S^2_{2,2}(\alpha_2)S^4_{4,2}(\alpha_2)|d\alpha_2\right)^{\frac{1}{6}}\left(\int_{0}^{1}|S_{2,2}^4(\alpha_2)|d\alpha_2\right)^{\frac{1}{12}}\\ &&\times\left(\int_{\mathfrak{m}_2}|S^2_{2,2}(\alpha_2)S^3_{3,2}(\alpha_2)S^2_{4,2}(\alpha_2)|d\alpha_2\right)^{\frac{2}{3}}\left(\int_{\alpha_2\in [0,1] \atop{|H(\alpha_1+\alpha_2)|\geq uL}}1 d\alpha_2\right)^{\frac{1}{12}}\\ &\ll&N_2^{\frac{11}{9}+\varepsilon}\left(\int_{\alpha_2\in [0,1] \atop{|H(\alpha_1+\alpha_2)|\geq uL}}1 d\alpha_2\right)^{\frac{1}{12}}. \end{eqnarray} (4.13)

    Thus

    \begin{eqnarray} &&\int_0^1\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)F_2(\alpha_1)\bigg|d\alpha_1\\ &\ll& N_2^{\frac{11}{9}+\varepsilon}\int_0^1\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)\bigg|\left(\int_{\alpha_2\in [0,1]\atop{|H(\alpha_1+\alpha_2)|\geq uL}}1 d\alpha_2\right)^{\frac{1}{12}}d\alpha_1\\ & = & N_2^{\frac{11}{9}+\varepsilon}\int_0^1\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)\bigg|\left(\int_{\beta\in[\alpha_1,1+\alpha_1]\atop{|H(\beta)|\geq uL}}1 d\beta\right)^{\frac{1}{12}}d\alpha_1, \end{eqnarray} (4.14)

    where we used the integral transformation \beta = \alpha_1+\alpha_2 . Note that H(\beta) is of period one. Hence

    \begin{eqnarray} \int_{\beta\in[\alpha_1,1+\alpha_1]\atop{|H(\beta)|\geq uL}}1 d\beta = \int_{\beta\in[0,1]\atop{|H(\beta)|\geq uL}}1 d\beta. \end{eqnarray} (4.15)

    On substituting (4.15) into (4.14), we obtain

    \begin{eqnarray} &&\int_0^1\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)F_2(\alpha_1)\bigg|d\alpha_1\\ &\ll\!\!\!\!\!\! &N_2^{\frac{11}{9}+\varepsilon}\int_0^1\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)\bigg|\left(\int_{\beta\in[0,1]\atop{|H(\beta)|\geq uL}}1 d\beta\right)^{\frac{1}{12}}d\alpha_1\\ &\ll&\!\!\!\! N_2^{\frac{11}{9}+\varepsilon}N_1^{-\frac{1}{18}-10^{-22}}\!\!\!\int_0^1\!\!\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)\bigg|d\alpha_1\!\ll\! N_2^{\frac{11}{9}+\varepsilon}N_1^{\frac{10}{9}-10^{-23}}, \end{eqnarray} (4.16)

    where Lemma 4.7 and Lemma 4.6 (iii) are used. In a similar manner, we have

    \begin{eqnarray} &&\int_0^1\bigg|S^2_{2,2}(\alpha_2)S^2_{3,2}(\alpha_2)S^2_{4,2}(\alpha_2)F_1(\alpha_2)\bigg|d\alpha_2\\ &\ll&N_1^{\frac{11}{9}+\varepsilon}\int_0^1\bigg|S^2_{2,2}(\alpha_2)S^2_{3,2}(\alpha_2)S^2_{4,2}(\alpha_2)\bigg|\left(\int_{\beta\in[0,1]\atop{|H(\beta)|\geq uL}}1 d\beta\right)^{\frac{1}{12}}d\alpha_2\\ &\ll&N_1^{\frac{7}{6}-10^{-22}+\varepsilon}\int_0^1\bigg|S^2_{2,2}(\alpha_2)S^2_{3,2}(\alpha_2)S^2_{4,2}(\alpha_2)\bigg|d\alpha_2\ll N_1^{\frac{7}{6}-10^{-23}}N_2^{\frac{7}{6}+\varepsilon}. \end{eqnarray} (4.17)

    Since N_2 < N_1\ll N_2 , then we can conclude from (4.12) and (4.16)–(4.17) that

    \begin{eqnarray*} \mathcal{R}_4(k,N_1,N_2,u)\ll L^kN_2^{\frac{11}{9}+\varepsilon}N_1^{\frac{10}{9}-10^{-23}}+L^kN_1^{\frac{7}{6}-10^{-23}}N_2^{\frac{7}{6}+\varepsilon}\ll N^{{\frac{7}{6}}}_1N^{{\frac{7}{6}}}_2L^{k-1}. \end{eqnarray*}

    Now we turn to give the estimate for |\mathcal{R}_2(k, N_1, N_2)| . Suppose that k\geq 30 . Then by combining (4.1) and Propositions 4.1–4.2 with u = 0.83372131685 , we have

    \begin{eqnarray} |\mathcal{R}_2(k,N_1,N_2)| &\leq& \mathcal{R}_3(k,N_1,N_2,u)+\mathcal{R}_4(k,N_1,N_2,u)\\ &\leq&2021.835\times0.83372131685^{30}I^2N^{{\frac{7}{6}}}_1N^{{\frac{7}{6}}}_2L^k+ O\left(N_1^{\frac{7}{6}}N_2^{\frac{7}{6}}L^{k-1}\right)\\ &\leq&8.6372I^2N^{{\frac{7}{6}}}_1N^{{\frac{7}{6}}}_2L^k. \end{eqnarray} (4.18)

    When k\geq 30 , by combining Proposition 3.1, (2.4), and (4.18), we can obtain

    \begin{eqnarray} \mathcal{R}(k,N_1,N_2)&\geq&\mathcal{R}_1(k,N_1,N_2)-|\mathcal{R}_2(k,N_1,N_2)|\\ &\geq& (9.946-8.6372)I^2N_1^{\frac{7}{6}}N_2^{\frac{7}{6}}L^k\\ & > &1.308I^2N_1^{\frac{7}{6}}N_2^{\frac{7}{6}}L^k > 0, \end{eqnarray} (5.1)

    where Lemma 3.2 (i) is used in the last step. Now the proof of Theorem 1 is completed.

    We sketch the proof of Theorem 2, since the idea of the proof is similar to that of Theorem 1. We only give the changes that are necessary for our Theorem 2. Let

    \begin{eqnarray*} \mathcal{R}(k,N_1) = \sum\limits_{N_1 = p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4+2^{v_{1}}+\dots+2^{v_{k}}\atop{P^-_{2,1}\leq p_1,p_2\leq P^+_{2,1},\,\,P^-_{3,1}\leq p_3,\,p_4\leq P^+_{3,1},\atop{P^-_{4,1}\leq p_5,\,p_6\leq P^+_{4,1},\,\,1\leq v_1,\dots,v_k\leq L}}}(\log p_1)\dots(\log p_6). \end{eqnarray*}

    Suppose that k\geq 14 and u = 0.83372131685 . Then from the orthogonality, we have

    \begin{eqnarray} &&\mathcal{R}(k,N_1)\\ & = &\left(\int_ {\mathfrak{M}_1}+\int_ {\mathfrak{m}_1\backslash\mathcal{E}^*{(u)}}+\int_ {\mathfrak{m}_1\bigcap\mathcal{E}^*{(u)}}\right)S_{2,1}(\alpha)^2S_{3,1}(\alpha)^2S_{4,1}(\alpha)^2H(\alpha)^{k}e(-N_1\alpha)d\alpha\\ &: = &\mathcal{R}_1(k,N_1)+\mathcal{R}_2(k,N_1,u)+\mathcal{R}_3(k,N_1,u). \end{eqnarray} (6.1)

    Applying Lemmas 3.1–3.2 and Lemma 3.5 (ii), we have

    \begin{eqnarray} \mathcal{R}_1(k,N_1) & = &\sum\limits_{n\in \Xi(N_1, k)\atop{n\equiv 0\pmod 2}}\left(\frac{\mathfrak{S}(n)\mathfrak{J}\bigg({\frac{n}{N}_1}\bigg)N_1^{\frac{7}{6}}}{2^{2}\cdot3^2\cdot4^2}+O\left(N_1^{\frac{7}{6}}L^{-1}\right)\right)\\ &\geq&\frac{\big({\frac{1}{6}}+2\eta\big)^{-\frac{23}{6}}IN_1^{{\frac{7}{6}}}}{2^{2}\cdot3^2\cdot4^2}\sum\limits_{n\in \Xi(N_1, k)\atop{n\equiv 0\pmod 2}}\mathfrak{S}(n)+O\left(N_1^{\frac{7}{6}}L^{-1}\sum\limits_{n\in \Xi(N_1, k)\atop{n\equiv 0\pmod 2}}1\right)\\ &\geq& 3.192498IN_1^{{\frac{7}{6}}}L^k+O\left(N_1^{\frac{7}{6}}L^{k-1}\right) \geq 3.19249IN_1^{{\frac{7}{6}}}L^k. \end{eqnarray} (6.2)

    Since \mathfrak{m}_1\backslash\mathcal{E}^*{(u)}\subset\mathfrak{m}_1^* , we can deduce from Lemma 4.1 and Lemmas 4.4–4.5 that

    \begin{eqnarray} \mathcal{R}_2(k,N_1,u) &\leq&(u L)^k\int_{\mathfrak{m}_1\backslash\mathcal{E}^*{(u)}}|S_{2,1}(\alpha)^2S_{3,1}(\alpha)^2S_{4,1}(\alpha)^2|d\alpha\\ &\leq& \frac{(7+3\eta)u^kL^k}{2^2\cdot3^2\cdot4^2}\mathfrak{S}^*\mathfrak{J}^*N_1^{\frac{7}{6}}\leq 39.6553u^kIN_1^{\frac{7}{6}}L^k. \end{eqnarray} (6.3)

    Moreover, by Hölder's inequality, Hua's inequality, and Lemmas 4.6–4.7, we have

    \begin{eqnarray} \mathcal{R}_3(k,N_1,u)&\ll& L^k\left(\int_{0}^{1}|S_{2,1}(\alpha)^2S_{4,1}(\alpha)^4|d\alpha\right)^{\frac{1}{6}}\left(\int_{0}^{1}|S_{2,1}^4(\alpha)|d\alpha\right)^{\frac{1}{12}}\\ &&\times\left(\int_{\mathfrak{m}_1}|S_{2,1}(\alpha)^2S_{3,1}(\alpha)^3S_{4,1}(\alpha)^2|d\alpha\right)^{\frac{2}{3}}\left(\int_{\mathcal{E}^*{(0.83372131685)}}1d\alpha\right)^{\frac{1}{12}}\\ &\ll& N_1^{\frac{1}{6}+\frac{1}{12}+\frac{35}{36}-\frac{1}{18}-10^{-22}+\varepsilon}\ll N_1^{\frac{7}{6}-\varepsilon}. \end{eqnarray} (6.4)

    From (6.1)–(6.4), we can conclude that

    \begin{eqnarray} \mathcal{R}(k,N_1)&\geq& \mathcal{R}_1(k,N_1)-|\mathcal{R}_2(k,N_1,u)|-|\mathcal{R}_3(k,N_1,u)|\\ &\geq& (3.19249-39.6553\times0.83372131685^{14})IN_1^{{\frac{7}{6}}}L^{k}+O(N_1^{{\frac{7}{6}}-\varepsilon})\\ & > &0.08IN_1^{{\frac{7}{6}}}L^{k}. \end{eqnarray}

    Now the proof of Theorem 2 is complete.

    The author declares that he has not used Artificial Intelligence (AI) tools in the creation of this article.

    The author thanks the referees for their time and comments. The author would like to express the most sincere gratitude to Professor Yingchun Cai for his valuable advice and constant encouragement.

    The author declares that there is no conflict of interest regarding the publication of this paper.



    [1] H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities, 2 Eds., Cambridge: Cambridge University Press, 2005. https://doi.org/10.1017/CBO9780511542893
    [2] P. X. Gallagher, Primes and powers of 2, Invent. Math., 29 (1975), 125–142. https://doi.org/10.1007/BF01390190 doi: 10.1007/BF01390190
    [3] X. Han, H. F. Liu, R. Y. Yue, Goldbach-Linnik type problems involving unequal powers of primes and powers of 2, Bull. Belg. Math. Soc. Simon Stevin, 31 (2024), 220–237. https://doi.org/10.36045/j.bbms.231113 doi: 10.36045/j.bbms.231113
    [4] D. R. Heath-Brown, J.-C. Puchta, Integers represented as a sum of primes and powers of two, Asian J. Math., 6 (2002), 535–565. https://doi.org/10.4310/AJM.2002.v6.n3.a7 doi: 10.4310/AJM.2002.v6.n3.a7
    [5] E. X. Huang, On pairs of equations with unequal powers of primes, Czech. Math. J., 73 (2023), 1219–1228. https://doi.org/10.21136/CMJ.2023.0470-22 doi: 10.21136/CMJ.2023.0470-22
    [6] A. Languasco, A. Zaccagnini, On a Diophantine problem with two primes and s powers of two, Acta Arith., 145 (2010), 193–208. https://doi.org/10.4064/aa145-2-7 doi: 10.4064/aa145-2-7
    [7] H. Z. Li, The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes, Acta Arith., 92 (2000), 229–237. https://doi.org/10.4064/aa-92-3-229-237 doi: 10.4064/aa-92-3-229-237
    [8] H. Z. Li, The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes II, Acta Arith., 96 (2001), 369–379. https://doi.org/10.4064/aa96-4-7 doi: 10.4064/aa96-4-7
    [9] Yu. V. Linnik, Prime numbers and powers of two, (Russian), Trudy Matematicheskogo Instituta imeni VA Steklova 38 (1951), 151–169.
    [10] Yu. V. Linnik, Addition of prime numbers with powers of one and the same number, (Russian), Matematicheskii Sbornik, 32 (1953), 3–60.
    [11] J. Y. Liu, M. C. Liu, T. Z. Wang, The number of powers of two in a representation of large even integers II, Sci. China Ser. A-Math., 41 (1998), 1255–1271. https://doi.org/10.1007/BF02882266
    [12] Z. X. Liu, G. S. Lü, Density of two squares of primes and powers of 2, Int. J. Number Theory, 7 (2011), 1317–1329. https://doi.org/10.1142/S1793042111004605 doi: 10.1142/S1793042111004605
    [13] Z. X. Liu, Goldbach-Linnik type problems with unequal powers of primes, J. Number Theory, 176 (2017), 439–448. https://doi.org/10.1016/j.jnt.2016.12.009 doi: 10.1016/j.jnt.2016.12.009
    [14] X. D. Lü, On unequal powers of primes and powers of 2, Ramanujan J., 50 (2019), 111–121. https://doi.org/10.1007/s11139-018-0128-2 doi: 10.1007/s11139-018-0128-2
    [15] J. Pintz, I. Z. Ruzsa, On Linnik's approximation to Goldbach's problem. I, Acta Arith., 109 (2003), 169–194. https://doi.org/10.4064/aa109-2-6 doi: 10.4064/aa109-2-6
    [16] J. Pintz, I. Z. Ruzsa, On Linnik's approximation to Goldbach's problem. II., Acta Math. Hungar., 161 (2020), 569–582. https://doi.org/10.1007/s10474-020-01077-8 doi: 10.1007/s10474-020-01077-8
    [17] E. C. Titchmarsh, D. R. Heath-Brown, The theory of the Riemann zeta-function, 2 Eds., Oxford: Oxford University Press, 1986.
    [18] R. C. Vaughan, The Hardy–Littlewood method, 2 Eds., Cambridge: Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511470929
    [19] T. Z. Wang, On Linnik's almost Goldbach theorem, Sci. China Ser. A-Math., 42 (1999), 1155–1172. https://doi.org/10.1007/BF02875983 doi: 10.1007/BF02875983
    [20] R. Zhang, Goldbach-Linnik type problems with mixed powers of primes, Ramanujan J., 60 (2023), 1069–1080. https://doi.org/10.1007/s11139-022-00662-5 doi: 10.1007/s11139-022-00662-5
    [21] L. L. Zhao, On the Waring-Goldbach problem for fourth and sixth powers, Proc. Lond. Math. Soc., 108 (2014), 1593–1622. https://doi.org/10.1112/plms/pdt072 doi: 10.1112/plms/pdt072
    [22] L. L. Zhao, On unequal powers of primes and powers of 2, Acta Math. Hungar., 146 (2015), 405–420. https://doi.org/10.1007/s10474-015-0535-4 doi: 10.1007/s10474-015-0535-4
    [23] X. D. Zhao, Goldbach-Linnik type problems on cubes of primes, Ramanujan J., 57 (2022), 239–251. https://doi.org/10.1007/s11139-020-00303-9 doi: 10.1007/s11139-020-00303-9
    [24] L. Zhu, Goldbach-Linnik type problems with unequal powers of primes, J. Korean Math. Soc., 59 (2022), 407–420. https://doi.org/10.4134/JKMS.j210371 doi: 10.4134/JKMS.j210371
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(383) PDF downloads(25) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog