Research article Special Issues

Riemann solitons on Egorov and Cahen-Wallach symmetric spaces

  • In this paper, we consider Egorov and Cahen-Wallach symmetric spaces and study the Riemann solitons on these spaces. We prove that Egorov and Cahen-Wallach symmetric spaces admit the Riemann solitons. Also, we classify the Riemann solitons on these spaces and show that the potential vector fields of the Riemann solitons are Killing, Ricci collineation, and Ricci bi-conformal vector fields.

    Citation: Shahroud Azami, Rawan Bossly, Abdul Haseeb. Riemann solitons on Egorov and Cahen-Wallach symmetric spaces[J]. AIMS Mathematics, 2025, 10(1): 1882-1899. doi: 10.3934/math.2025087

    Related Papers:

    [1] Yusuf Dogru . $ \eta $-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection. AIMS Mathematics, 2023, 8(5): 11943-11952. doi: 10.3934/math.2023603
    [2] Shahroud Azami, Mehdi Jafari, Nargis Jamal, Abdul Haseeb . Hyperbolic Ricci solitons on perfect fluid spacetimes. AIMS Mathematics, 2024, 9(7): 18929-18943. doi: 10.3934/math.2024921
    [3] Xiaosheng Li . New Einstein-Randers metrics on certain homogeneous manifolds arising from the generalized Wallach spaces. AIMS Mathematics, 2023, 8(10): 23062-23086. doi: 10.3934/math.20231174
    [4] Nasser Bin Turki, Sharief Deshmukh, Olga Belova . A note on closed vector fields. AIMS Mathematics, 2024, 9(1): 1509-1522. doi: 10.3934/math.2024074
    [5] Sharief Deshmukh, Mohammed Guediri . Some new characterizations of spheres and Euclidean spaces using conformal vector fields. AIMS Mathematics, 2024, 9(10): 28765-28777. doi: 10.3934/math.20241395
    [6] Amira Ishan . On concurrent vector fields on Riemannian manifolds. AIMS Mathematics, 2023, 8(10): 25097-25103. doi: 10.3934/math.20231281
    [7] Yanlin Li, Aydin Gezer, Erkan Karakaş . Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Mathematics, 2023, 8(8): 17335-17353. doi: 10.3934/math.2023886
    [8] Mohd Danish Siddiqi, Fatemah Mofarreh . Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds. AIMS Mathematics, 2024, 9(12): 36069-36081. doi: 10.3934/math.20241711
    [9] Tong Wu, Yong Wang . Super warped products with a semi-symmetric non-metric connection. AIMS Mathematics, 2022, 7(6): 10534-10553. doi: 10.3934/math.2022587
    [10] Fahad Sikander, Tanveer Fatima, Sharief Deshmukh, Ayman Elsharkawy . Curvature analysis of concircular trajectories in doubly warped product manifolds. AIMS Mathematics, 2024, 9(8): 21940-21951. doi: 10.3934/math.20241066
  • In this paper, we consider Egorov and Cahen-Wallach symmetric spaces and study the Riemann solitons on these spaces. We prove that Egorov and Cahen-Wallach symmetric spaces admit the Riemann solitons. Also, we classify the Riemann solitons on these spaces and show that the potential vector fields of the Riemann solitons are Killing, Ricci collineation, and Ricci bi-conformal vector fields.



    On a pseudo-Riemannian manifold (M,g) with the Ricci tensor S, the Ricci flow was introduced by Hamilton [1] as follows:

    tg=2S.

    The Ricci soliton [2] is a special solution to the Ricci flow and is a generalization of the Einstein metric and is defined by

    LYg+S+λg=0,

    for some constant λ and the vector field Y, where LYg denotes the Lie derivative of the metric g in the direction of Y. A Ricci soliton has applications in physics [3,4,5,6,7]. The Ricci solitons have been investigated in a pseudo-Riemannian setting [8,9]. Many authors have generalized the Ricci flow and introduced new geometric flows. For instance, on a manifold (M,g) with the Riemann curvature tensor R, the Riemann flow was introduced by Udrişte [10] as

    tG(t)=2R(g(t)),

    where G=12gg, and denotes the Kulkarni-Nomizu product. The Kulkarni-Nomizu product of two (0,2)-tensors ω and θ is defined by

    (ωθ)(U1,U2,U3,U4)=ω(U1,U4)θ(U2,U3)+ω(U2,U3)θ(U1,U4)ω(U1,U3)θ(U2,U4)ω(U2,U4)θ(U1,U3),

    for all vector fields U1,U2,U3 and U4. A complete pseudo-Riemannian manifold (Mn,g) is called the Riemann soliton [11] and denoted by (Mn,g,μ,Y) if it satisfies

    2R+μgg+gLYg=0, (1.1)

    for some constant μ and the vector field Y. If μ>0, or μ<0, or μ=0, then the Riemann soliton is called expanding, or shrinking, or steady. If Y=gradh (for some smooth function h), then the Riemann soliton is said to be a gradient Riemann soliton, and the equation of the Riemann soliton turns to

    2R+μgg+2g2h=0.

    A lot of studies have been carried out on the Riemann solitons on different kinds of manifolds. For instance, Venkatesha et al. [12,13] studied the Riemann solitons on contact geometry and almost Kenmotsu manifolds, Biswas et al. [14] investigated the Riemann solitons on a 3-dimensional almost co-Kahler manifold, and De et al. [15] investigated almost Riemann solitons on para-Sasakian manifolds and in a non-cosymplectic normal almost contact metric manifold [16]. In [17] explored some remarks on almost Riemann solitons with gradient or torse-forming vector field. In [18], the authors studied four classes of Riemann solitons on α-cosymplectic manifolds. Also, see [19,20,21,22].

    On the other hand, Egorov spaces and ϵ-spaces are Lorentzian manifolds. Egorov spaces and ϵ-spaces have constant curvature, and we can write these manifolds as Nn+1×R. If the dimension of an isometry group of a Riemannian manifold Mn is at least 12n(n1)+1 (this manifold is called a manifold with a large isometry group), then the manifold is either of constant curvature or a product of an (n1)-dimensional manifold of constant curvature with a circle or a line. In 2003, Patrangenaru [23] proved that if the dimension of an isometry group of a Lorentzian manifold Mn is at least 12n(n1)+2, then the manifold has constant curvature. In [23], all Lorentzian manifolds with a large isometry group of dimension n4, n7 are classified. Let (M,g) be a pseudo-Riemannian manifold. A neutral metric g is called a Walker metric if there is a null distribution D with respect to g on M. Also, (M,g) is locally conformally flat if for each point xM, there exists a neighborhood U of x and a smooth function f defined on U such that (U,e2fg) is flat, meaning its curvature of e2fg vanishes in U. Egorov spaces and ϵ-spaces are Walker manifolds and are locally conformally flat while Egorov spaces are not homogeneous and ϵ-spaces are locally symmetric [24,25,26]. Also, Egorov spaces are geodesically complete. A pseudo-Riemannian manifold is called indecomposable if the holonomy group, acting at each point pM, stabilizes only nontrivial degenerate subspaces VTpM. Indecomposable Lorentzian symmetric spaces are either irreducible or the Cahen-Wallach symmetric spaces [27,28]. On Egorov and Cahen-Wallach symmetric spaces, the Ricci solitons [29], algebraic properties of curvature operators [24,25], and Killing magnetic trajectories [30] have been studied. Also, see [23,26].

    The exploration of geometric solitons, particularly the Riemann soliton, holds significant importance in the fields of differential geometry and physics, as previously noted. In general, verifying the existence of a Riemann soliton on a manifold poses significant challenges due to the involvement of non-linear differential equations, and in some cases, it may be impossible to ascertain.

    Motivated by the above-mentioned works, we study the Riemann solitons on Egorov and Cahen-Wallach symmetric spaces. We demonstrate that the Egorov and Cahen-Wallach symmetric spaces support the existence of Riemann solitons and gradient Riemann solitons. Furthermore, we provide a classification of the Riemann solitons within these spaces and establish that the potential vector fields associated with the Riemann solitons are characterized as Killing, Ricci collineation, and Ricci bi-conformal vector fields.

    The paper is organized as follows: In the following section, we recall some fundamental concepts on Egorov and Cahen-Wallach symmetric spaces, which will be used in the next sections. The non-vanishing Christoffel symbols of the Levi-Civita connection associated with the metric, Ricci tensor, and the Lie derivative of both the metric tensor and Ricci tensor along an arbitrary vector field are described in Egorov and Cahen-Wallach symmetric spaces. In Section 3, we study the Riemann solitons on Egorov spaces. We categorize all possible vector fields associated with Riemann solitons in Egorov spaces. Subsequently, we derive gradient Riemann solitons within these spaces. Additionally, we examine which of the potential vector fields related to Riemann solitons in Egorov spaces qualify as Killing fields, Ricci collineations, and Ricci bi-conformal vector fields. Similar to Section 3, in Section 4 we classify the Riemann solitons on Cahen-Wallach symmetric spaces.

    In this section, we recall some fundamental concepts on Egorov and Cahen-Wallach symmetric spaces.

    In this subsection, we will discuss the Levi-Civita connection, the curvature tensor, and the Ricci tensor of Egorov spaces, focusing on their components relative to the basis of coordinate vector fields. This analysis equips us with the essential geometric tools necessary for our investigation. Subsequently, we will calculate the Lie derivative of both the metric and the Ricci tensor in relation to an arbitrary vector field Y.

    An Egorov space [24,25] is a Lorentzian manifold (Rn+2,gf), where f:R(0,+) is a positive function, and with respect to the coordinates {u,v,x1,,xn} on Rn+2, the metric gf is respectively defined by

    gf(u,v,x1,,xn)=2dudv+f(u)ni=1(dxi)2. (2.1)

    Let be the Levi-Civita connection of (Rn+2,gf), and let R be its curvature tensor, where

    R(X1,X2)X3=[X1,X2]X3[X1,X2]X3,

    for all vector fields X1,X2, and X3. The Ricci tensor [29] is defined by

    S(X1,X2)=trace(X3R(X1,X3)X2).

    As proved in [24,29], on (Rn+2,gf), with respect to the basis {u=u,v=v,i=xi} for i=1,2,,n, the non-zero components of the covariant derivative are

    ii=12fv,iu=f2fi,i=1,2,...,n.

    The only non-zero components of the Riemann curvature tensor [25] are determined by

    Ruiui=14f(f22ff),i=1,2,...,n, (2.2)

    and the only non-zero component of the Ricci tensor is given by

    Suu=n4f2(f22ff).

    Suppose Y=Yuu+Yvv+ni=1Yii is an arbitrary vector field on (Rn+2,gf), where Yu=Yu(u,v,x1,,xn), Yv=Yv(u,v,x1,,xn), and Yi=Yi(u,v,x1,,xn),i=1,,n are smooth functions. By the direct computation, we obtain

    (LYgf)(u,u)=2uYv,(LYgf)(u,v)=uYu+vYv,(LYgf)(u,i)=iYv+fuYi,1in,(LYgf)(v,v)=2vYu,(LYgf)(v,i)=iYu+fvYi,1in,(LYgf)(i,j)=iYj+jYi,1ijn,(LYgf)(i,i)=fYu+2fiYi,1in, (2.3)

    and

    (LYS)(u,u)=Yu(n4f2(f22ff))+2(uYu)(n4f2(f22ff)),(LYS)(u,v)=nvYu4f2(f22ff),(LYS)(u,i)=niYu4f2(f22ff),1in,(LYS)(v,v)=0,(LYS)(v,i)=0,1in,(LYS)(i,j)=0,1ijn,(LYS)(i,i)=0,1in. (2.4)

    This subsection explores the Levi-Civita connection, curvature tensor, and Ricci tensor of Cahen-Wallach symmetric spaces, focusing on their components in relation to coordinate vector fields. We will then compute the Lie derivative of the metric and Ricci tensor with respect to an arbitrary vector field Y.

    ϵ-spaces [29] are Lorentzian manifolds (Rn+2,gϵ), and with respect to the coordinates {u,v,x1,,xn} on Rn+2, the metrics gϵ are defined by

    gϵ=ϵ(ni=1x2i)(du)2+dudv+ni=1(dxi)2.

    Cahen-Wallach symmetric spaces [27,28] are Lorentzian manifolds (Rn+2,gcw), where the metric gcw is defined by

    gcw(u,v,x1.,xn)=(ni=1kix2i)(du)2+dudv+ni=1(dxi)2, (2.5)

    where ki, i=1,,n are non-zero constants. If k1=k2==kn, then Cahen-Wallach symmetric spaces are locally conformally flat and conversely. In this case, a Cahen-Wallach symmetric space becomes ϵ-space, and ki (i=1,..,n) are non-zero constants. As proved in [29], on (Rn+2,gcw), the non-vanishing Christoffel symbols of the Levi-Civita connection are described by

    uu=ni=1kixii,iu=kixiv,i=1,2,...,n.

    The only non-zero components of the Riemann curvature tensor are defined by

    Ruiui=ki,i=1,2,...,n, (2.6)

    and the only non-zero component of the Ricci tensor is given by

    Suu=ni=1ki.

    Let Y=Yuu+Yvv+ni=1Yii be an arbitrary vector field on (Rn+2,gcw), where Yu=Yu(u,v,x1,,xn), Yv=Yv(u,v,x1,,xn), and Yi=Yi(u,v,x1,,xn),i=1,,n are smooth functions. We obtain

    (LYgcw)(u,u)=2ni=1kixiYi+2(ni=1kix2i)uYu+2uYv,(LYgcw)(u,v)=(ni=1kix2i)vYu+uYu+vYv,(LYgcw)(u,i)=(ni=1kix2i)iYu+iYv+uYi,1in,(LYgcw)(v,v)=2vYu,(LYgcw)(v,i)=iYu+vYi,1in,(LYgcw)(i,j)=iYj+jYi,1ijn,(LYgcw)(i,i)=2iYi,1in,

    and

    (LYS)(u,u)=2(ni=1ki)uYu,(LYS)(u,v)=(ni=1ki)vYu,(LYS)(u,i)=(ni=1ki)iYu,1in,(LYS)(v,v)=0,(LYS)(v,i)=0,1in,(LYS)(i,j)=0,1ijn,(LYS)(i,i)=0,1in.

    In this section, we study the Riemann solitons on (Rn+2,gf).

    Theorem 3.1. (Rn+2,gf,μ,Y) is a Riemann soliton if and only if μ and Y=Yuu+Yvv+ni=1Yii are admitted by

    {Yu=b1u+b2,Yv=(μ+b1)v+14f2(f22ff)du+b3+ni=1(12dx2i+eixi),Yi=(dxi+ei)1fdu+axi+nj=1jicijxj+αi,1in,(b1u+b2)f2fd1fdu+a=12μ, (3.1)

    or

    {Yu=b1u+b2+ni=1cixi,Yv=(μ+b1)v+b3+ni=1eixi,Yi=cikveiku12μxi+nj=1jicijxj+αi,1in, (3.2)

    or

    {Yu=(b1+ni=1aixi)u+b2+ni=1clalaixi,Yv=(μ+b1+ni=1aixi)v+b3+ni=1(12βal(clb1b2al)x2i+eixi),Yi=aialβ(alu+cl)vβal(clb1b2al)xi+eialu+cl(12μ+b1)xi12aix2inj=1jiajxixjnj=1ji12aix2j+nj=1jicijxj+αi, (3.3)

    where bi,b2,b3,d,a,ci,cij,ei,αi,ai are constants for 1i,jn.

    Proof. From (1.1), we get

    2R(U1,U2,U3,U4)=2μ[g(U1,U4)g(U2,U3)g(U1,U3)g(U2,U4)][g(U1,U4)LYg(U2,U3)+g(U2,U3)LYg(U1,U4)]+[g(U1,U3)LYg(U2,U4)+g(U2,U4)LYg(U1,U3)] (3.4)

    for any vector fields U1,U2,U3,U4. By using (3.4), (Rn+2,gf,μ,Y) becomes a Riemann soliton if and only if

    2Riuiv=2μgiiguv+gii(LYg)(u,v)+guv(LYg)(i,i),1in,2Riuui=gii(LYg)(u,u),1in,2Riuuv=guv(LYg)(i,u),1in,2Rivvu=guv(LYg)(i,v),1in,2Rivvi=gii(LYg)(v,v),1in,2Ruvuv=2μguvguv2guv(LYg)(u,v),2Riujv=guv(LYg)(i,j),1ijn.

    Applying (2.1) and (2.2) in the above equations, we respectively have

    (LYg)(u,u)=12f2(f22ff),(LYg)(u,v)=μ,(LYg)(u,i)=0,1in,(LYg)(v,v)=0,(LYg)(v,i)=0,1in,(LYg)(i,j)=0,1ijn,(LYg)(i,i)=μf,1in. (3.5)

    Applying (2.3) in the above equations, one respectively gets

    uYv=14f2(f22ff), (3.6)
    uYu+vYv=μ, (3.7)
    iYv+fuYi=0,1in, (3.8)
    vYu=0, (3.9)
    iYu+fvYi=0,1in, (3.10)
    iYj+jYi=0,1ijn, (3.11)
    fYu+2fiYi=μf,1in. (3.12)

    Now, we solve the above system of partial differential equations. Equation (3.9) implies that

    Yu=F(u,x1,,xn) (3.13)

    for some smooth function F. Inserting (3.13) in (3.7), we conclude that

    Yv=(μ+uF)v+G(u,x1,,xn) (3.14)

    for some smooth function G. Plugging (3.14) in (3.6), it follows that

    2uuFv+uG=14f2(f22ff). (3.15)

    Equation (3.15) is a polynomial with respect to v, then 2uuF=0 and uG=14f2(f22ff). Thus, we have

    F=F1(x1,,xn)u+F2(x1,,xn),G=14f2(f22ff)du+G1(x1,,xn),

    for some smooth functions F1,F2, and G1. From (3.10), we deduce

    Yi=1f(iF1u+iF2)v+Hi(u,x1,,xn),i=1,,n (3.16)

    for some smooth functions Hi, i=1,,n. Substituting (3.14) and (3.16) in (3.8), we obtain

    iF1v+iG1+(iF1+ff(iF1u+iF2))v+fuHi=0,i=1,,n.

    Equation (3.15) is a polynomial with respect to v, then

    2iF1+ff(iF1u+iF2)=0,iG1+fuHi=0,i=1,,n. (3.17)

    Hence,

    Hi=iG11fdu+Li(x1,,,xn),i=1,,n,

    for some smooth functions Li, i=1,,n. Equation (3.11) yields

    21f(2ijF1u+2ijF2)v22ijG11fdu+iLj+jLi=0,1ijn,

    and consequently,

    2ijF1=2ijF2=0,2ijG1=0,iLj+jLi=0,1ijn. (3.18)

    Equation (3.12) leads to

    (F1u+F2)f2f1f(2iiF1u+2iiF2)v2iiG11fdu+iLi=μ2,i=1,,n.

    The last equation implies that

    2iiF1=2iiF2=0,(F1u+F2)f2f2iiG11fdu+iLi=μ2,i=1,,n, (3.19)

    and

    2iiG1=211G1iLi=1L1,i=2,,n. (3.20)

    From (3.18) and (3.19), we find

    F1=b1+ni=1aixi,F2=b2+ni=1cixi,

    for some constants a1.,an,c1.,cn,b1, and b2. If ai=0 for all i=1,,n. Then F1=b1, and (3.17) implies that fci=0, i=1,,n. If ci=0 for all i=1,,n, then F2=b2 and

    G1=b3+ni=1(12dx2i+eixi),Li=axi+nj=1jicijxj+αi

    for some constants b3,d,a,αi,ei,cij, i,j=1,,n such that cij+cji=0. In this case, we have (3.1).

    Now, we assume that ai=0 for all i=1,,n and there exists l(1ln) such that cl0. In this case, f=k for some constant k, and thus we have

    G1=b3+ni=1eixi,Li=12xi+nj=1jicijxj+αi

    such that cij+cji=0. Hence, we infer (3.2). Now, suppose that there is l(1ln) such that al0. Then (3.17) implies that f=β(alu+cl)2 for some constant β. In this case, ci=clalai,i=1,,n. From (3.18) and (3.20), it follows that

    F2=b2+ni=1clalaixi,G1=b3+ni=1(12dx2i+eixi).

    Using (3.19), we get

    [(b1+ni=1aixi)u+b2+ni=1clalaixi]al+dβal=(12μ+iLi)(alu+cl),

    which is a polynomial with respect to u, then

    12μ+iLi=(b1+ni=1aixi),d=βal(clb1b2al).

    Since jLi+iLj=0 for 1ijn, we arrive at

    Li=(12μ+b1)xi12aix2inj=1jiajxixjnj=1ji12aix2j+nj=1jicijxj+αi,

    where cij+cji=0. Hence, we have (3.3). This completes the proof of theorem.

    Now we investigate the gradient Riemann soliton on (Rn+2,gf).

    Corollary 3.1. A Riemann soliton (Rn+2,gf,μ,Y) is a gradient Riemann soliton with the potential function h, which satisfies

    h=12μuv+b2v+14f2(f22ff)dudu+b3u+ni=1(12ax2i+αixi)+γ (3.21)

    or

    h=12μuv+b2v+b3u+ni=1(14μx2i+αixi)+γ (3.22)

    for some constant γ.

    Proof. From (2.1) and Theorem 3.1, the Riemann soliton (Rn+2,gf,μ,Y) is a gradient Riemann soliton with Y=h=vhu+uhv+ni=1ihi for some smooth function h, if and only if vh=Yu,uh=Yv,ih=Yi,i=1,,n.

    Since h is a smooth function, for the case (3.1), from the equation uYu=uvh=vuh=vYv, we conclude that b1=12μ. Similarly, using equation iYv=iuh=uih=uYi, we deduce d=ei=0 for i=1,,n. Also, for 1ijn by applying jYi=jih=ijh=iYj, we arrive at cij=0. Then, we have

    {vh=12μu+b2,uh=12μv+14f2(f22ff)du+b3ih=axi+αi,1in,(12μu+b2)f2f+a=12μ. (3.23)

    Integrating the first equation in (3.23), we get

    h=12μuv+b2v+h1(u,x1,,xn) (3.24)

    for some function h1. By deriving Eq (3.24) with respect to u and using the second equation in (3.23), it is concluded that

    12μv+uh1(u,x1,,xn)=12μv+14f2(f22ff)du+b3. (3.25)

    Then

    h1=14f2(f22ff)dudu+b3u+h1(x1,,xn)

    and

    h=12μuv+b2v+14f2(f22ff)dudu+b3u+h2

    for some function h2. Putting the last equation in the third equation in (3.23) gives ih2=axi+αi for 1in. Hence, h2=ni=1(12ax2i+αixi)+γ and we infer (3.21). For the case (3.2), from the equation uYu=uvh=vuh=vYv, we find b1=12μ. Applying iYv=iuh=uih=uYi, we deduce ei=0 for i=1,,n. Also, for 1ijn, by applying jYi=jih=ijh=iYj, we arrive at cij=0. From iYu=ivh=vih=vYi, we get ci=0 for i=1,,n. Thus, we have

    {vh=12μu+b2,uh=12μv+b3,ih=12μxi+αi,1in. (3.26)

    After an integration process of (3.26), we have (3.22). For the case (3.3), from the equation uYu=uvh=vuh=vYv, we arrive at b1+ni=1aixi=12μ. Using iYu=ivh=vih=vYi, we deduce al=0, which is a contradiction. Then, in this case, the Riemann soliton is not a gradient Riemann soliton.

    Remark 3.1. A vector field Y on an n-dimensional pseudo-Riemannian manifold (M,g) is called a Killing vector field if LYg=0 [31,32,33]. Since any Riemann soliton on (Rn+2,gf) admits (3.5), we conclude any potential vector field of a Riemann soliton on (Rn+2,gf) is a Killing vector field if μ=0, and f=(pu+q)2 for some constants p,q.

    Remark 3.2. A vector field Y on an n-dimensional pseudo-Riemannian manifold (M,g) is said to be a Ricci collineation vector field if LYS=0. From Theorem 3.1 and (2.4), if Yu=0 or f=(pu+q)2 for some constants p,q, then any potential vector field of Riemann soliton on (Rn+2,gf) is a Ricci collineation vector field.

    Remark 3.3. A vector field Y on a pseudo-Riemannian manifold (M,g) is said to be a Ricci bi-conformal vector field [34] if there are two smooth functions α and β such that

    LYg=αg+βS,LYS=αS+βg. (3.27)

    I recommend the papers [36,37] for the study of Ricci bi-conformal vector fields on different spacetimes. Also see [38,39,40]. From Theorem 3.1 and (3.27), any potential vector field of the Riemann soliton on (Rn+2,gf) is a Ricci bi-conformal vector field for α=μ and β=0 if f=(pu+q)2 for some constants p,q.

    In this section, we investigate the Riemann solitons on (Rn+2,gcw).

    Theorem 4.1. A Cahen-Wallach space is a steady Riemann soliton where its potential vector field Y=Yuu+Yvv+ni=1Yii satisfies

    {Yu=c2,Yv=(b(u)+nj=1jidij(u)xj)xinr=1k1xr(b(u)du+nj=1jrdij(u)duxj)k1u+˜B(x1,,xi1,xi+1,,xn),Yi=b(u)+nj=1jidij(u)xj,i=1,,n, (4.1)

    where

    b(u)=a1ek1u+a2ek1u,dij(u)=aij1ek1u+aij2ek1u

    for k1>0,

    b(u)=a1sin(k1u)+a2cos(k1u),dij(u)=aij1sin(k1u)+aij2cos(k1u)

    for k1<0, and a1,a2,aij1,aij2, are constants such that aij1+aji1=0 and aij2+aji2=0. Also, ˜B is a smooth function.

    Proof. Using (3.4), (Rn+2,gcw,μ,Y) is a Riemann soliton if and only if

    2Ruiui=2μguugii+guu(LYg)(i,i)+gii(LYg)(u,u),1in,2Rvivi=gii(LYg)(v,v),1in,2Ruiuv=guv(LYg)(i,u)+guu(LYg)(i,v),1in,2Ruivi=2μguvgii+guv(LYg)(i,i)+gii(LYg)(u,v),1in,2Ruviv=guv(LYg)(v,i),1in,2Ruiuj=guu(LYg)(i,j),1ijn,2Ruvuv=2μg2uu2guv(LYg)(u,v).

    Applying gcw and (2.6) in the above equations, we respectively have

    (LYg)(u,u)=2kiμni=1kix2i,1in,(LYg)(u,v)=μ,(LYg)(u,i)=0,1in,(LYg)(v,v)=0,(LYg)(v,i)=0,1in,(LYg)(i,j)=0,1ijn,(LYg)(i,i)=μ,1in. (4.2)

    From the first equation in (4.2), one gets ki=k1 for i=2,,n. Applying (2.7) in the above equations, we respectively have

    2ni=1k1xiYi+2(ni=1k1x2i)uYu+2uYv=2k1μni=1k1x2i, (4.3)
    (ni=1k1x2i)vYu+uYu+vYv=μ, (4.4)
    (ni=1k1x2i)iYu+iYv+uYi=0,1in, (4.5)
    2vYu=0, (4.6)
    iYu+vYi=0,1in, (4.7)
    iYj+jYi=0,1ijn, (4.8)
    2iYi=μ,1in. (4.9)

    Now, we solve the above system of partial differential equations. Equation (4.6) yields

    Yu=A(u,x1,,xn), (4.10)

    for some smooth function A. Inserting (4.10) in (4.4) one gets

    Yv=(μ+uA)v+B(u,x1,,xn),

    for some smooth function B. Replacing (4.10) in (4.7), it follows that

    Yi=iAv+Ci(u,x1,,xn),i=1,,n (4.11)

    for some smooth functions Ci, i=1,,n. Applying (4.11) in (4.9), we deduce

    2iiAv+iCi=12μ,i=1,,n. (4.12)

    Equation (4.12) is a polynomial with respect to v, then 2iiA=0 and iCi=12μ for i=1,,n. Also, substituting (4.11) in (4.8), we obtain

    22ijAv+jCi+iCj=0,1ijn.

    Then, 2ijA=0 and jCi+iCj=0 for 1ijn. From (4.5), we get

    (k1ni=1x2i)iA22iuAv+uCi+iB=0,1ijn. (4.13)

    Hence, 2iuA=0 and (k1ni=1x2i)iA+uCi+iB=0 for i=1,,n. Therefore, we can write

    A=A1(u)+ni=1aixi,

    for some constants a1,,an and function A1. The Eq (4.3) leads to

    12k1(2+μni=1x2i)=(ni=1k1aixi)vni=1k1Cixi(k1ni=1x2i)A1(u)+A1(u)vuB.

    The last equation is a polynomial with respect to v, then ni=1k1aixi+A1(u)=0, and

    ni=1k1Cixi+(k1ni=1x2i)A1(u)+uB=12k1(2+μni=1x2i). (4.14)

    Since ni=1k1aixi+A1(u)=0 is a polynomial with respect to xi, we conclude that ai=0 for i=1,,n and A1(u)=c1u+c2 for some constants c1 and c2. Equation (4.13) yields uCi+iB=0. Taking the derivative of this relation with respect to xi and using iCi=12μ, we obtain 2iiB=0. Differentiating (4.14) with respect to xi to obtain

    k1iCixi+k1Ci+2k1c1xi+2iuB=k1μxi.

    Since iCi=12μ, we deduce k1Ci+2k1c1xi+2iuB=12μxi. Taking the derivative of the last equation with respect to xi, one gets c1=0. Thus, we have

    ni=1k1Cixi+uB=12k1(2+μni=1x2i). (4.15)

    Equations jCi+iCj=0 and iCi=12μ for 1ijn yield 2jjCi=2jkCi=0 for ij,k and jk. Therefore, we have

    Ci=b(u)+nj=1jidij(u)xj,i=1,,n,

    such that dij+dji=0 for some smooth functions b and dij. From the relation uCi+iB=0, we arrive at

    B=(b(u)+nj=1jidij(u)xj)xi+ˉB(u,x1,,xi1,xi+1,,xn),

    for some smooth functions ˉB. Equation (4.15) implies that

    nr=1k1xr(b(u)+nj=1jrdij(u)xj)(b(u)+nj=1jidij(u)xj)xi+uˉB=12k1(2+μni=1x2i).

    This is a polynomial with respect to xi, then μ=0,

    nr=1k1xr(b(u)+nj=1jrdij(u)xj)+uˉB=k1,

    and

    k1(b(u)+nj=1jrdij(u)xj)(b(u)+nj=1jidij(u)xj)=0.

    Also, the last equation is a polynomial with respect to xj, then k1b(u)b(u)=0 and k1dij(u)dij(u)=0 for 1ijn. If k1>0, then

    b(u)=a1ek1u+a2ek1u,dij(u)=aij1ek1u+aij2ek1u

    and if k1<0, then

    b(u)=a1sin(k1u)+a2cos(k1u),dij(u)=aij1sin(k1u)+aij2cos(k1u)

    for some constants a1,a2,aij1,aij2 such that aij1+aji1=0 and aij2+aji2=0. Therefore, we have (4.1).

    This completes the proof of theorem.

    Corollary 4.1. If a Cahen-Wallach space admits a Riemann soliton then it becomes an ϵ-space.

    Now, we investigate gradient Riemann solitons on (Rn+2,gcw).

    Corollary 4.2. The Riemann soliton (Rn+2,gcw,μ,Y) is a gradient Riemann soliton with Y=h if and only if h=12k1u2+˜bu+a for some constants k1, ˜b and a.

    Proof. From (2.5) and (4.1), we can conclude that any potential vector field of a Riemann soliton on (Rn+2,gcw) is as h=vhu+(uh(ni=1k1x2i)vh)v+ihi, if and only if

    uh=Yv+(ni=1k1x2i)Yu,vh=Yu,ih=Yi,i=1,,n.

    Equation

    uYi=uih=iuh=iYv+(ni=1k1x2i)iYu+2k1xiYu

    leads to c2=b(u)=dij(u)=0 for 1ijn. Also, the equation jYi=jih=ijh=iYj for 1ijn yields ˜B=˜b is a constant. Then uh=k1u+˜b,vh=ih=0,i=1,,n.

    Remark 4.1. Theorem 4.1 leads to any potential vector field of the Riemann soliton (Rn+2,gcw) not being a Killing vector field, a Ricci bi-conformal vector field, or a Ricci collineation vector field, because (LYgcw)(u,u)=2k10.

    In this paper, we study the Riemann solitons on Egorov and Cahen-Wallach symmetric spaces. We prove that the Egorov spaces admit a steady, shrinking, and expanding Riemann soliton, and the Cahen-Wallach symmetric spaces admit just a steady Riemann soliton. We prove any potential vector field of the Riemann soliton on Egorov spaces (Rn+2,gf) is a Killing vector field if the Riemann soliton is steady and f=(pu+q)2 for some constants p,q. Also, we conclude that any potential vector field of the Riemann soliton on (Rn+2,gf) is a Ricci collineation vector field and a Ricci bi-conformal vector field with certain conditions. Also, we prove that any potential vector field of the Riemann soliton on Cahen-Wallach symmetric space is not a Killing vector field, a Ricci collineation vector field, or a Ricci bi-conformal vector field.

    Shahroud Azami: Conceptualization, investigation, methodology, writing – original draft; Rawan Bossly: Conceptualization, investigation, methodology, writing – review & editing; Abdul Haseeb: Conceptualization, investigation, methodology, writing – review & editing. All authors have read and approved the final version of the manuscript for publication

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are thankful to the reviewers for the careful reading of our manuscript and their insightful comments and suggestions that have improved the quality of our manuscript. Also, the authors Rawan Bossly and Abdul Haseeb express their gratitude to the authorities of Jazan University for the continuous support and encouragement to carry out this research work.

    All authors declare no conflicts of interest in this paper.



    [1] R. S. Hamilton, The Ricci flow on surfaces, In: Contemporary mathematics, 71 (1988), 237–261. https://doi.org/10.1090/conm/071/954419
    [2] C. Calin, M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Soc., 33 (2010), 361–368.
    [3] M. M. Akbar, E. Woolgar, Ricci solitons and Einstein-scalar field theory, Class. Quantum Grav., 26 (2009), 055015. https://doi.org/10.1088/0264-9381/26/5/055015 doi: 10.1088/0264-9381/26/5/055015
    [4] T. Chave, G. Valent, Quasi-Einstein metrics and their renormalizability properties, Helv. Phys. Acta., 69 (1996) 344–347.
    [5] T. Chave, G. Valent, On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nuclear Phys. B, 478 (1996), 758–778. https://doi.org/10.1016/0550-3213(96)00341-0 doi: 10.1016/0550-3213(96)00341-0
    [6] D. H. Friedan, Nonlinear models in 2+ϵ dimensions, Ann. Phys., 163 (1985), 318–419. https://doi.org/10.1016/0003-4916(85)90384-7 doi: 10.1016/0003-4916(85)90384-7
    [7] A. L. Kholodenko, Towards physically motivated proofs of the Poincaré and geometrization conjectures, J. Geom. Phys., 58 (2008), 259–290. /https://doi.org/10.1016/j.geomphys.2007.11.003 doi: 10.1016/j.geomphys.2007.11.003
    [8] M. Brozes-Vázquez, G. Calvaruso, E. García-Rio, S. Gavino-Fernándz, Three-dimensional Lorentzian homogeneous Ricci solitons, Isr. J. Math., 188 (2012), 385–403. https://doi.org/10.1007/s11856-011-0124-3 doi: 10.1007/s11856-011-0124-3
    [9] G. Calvaruso, Homogeneous structures on three-dimensional homogeneous Lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279–1291. https://doi.org/10.1016/j.geomphys.2006.10.005 doi: 10.1016/j.geomphys.2006.10.005
    [10] C. Udrişte, Riemann flow and Riemann wave via bialternate product Riemannian metric, 2012, arXiv: 1112.4279. https://doi.org/10.48550/arXiv.1112.4279
    [11] I. E. Hiricǎ, C. Udrişte, Ricci and Riemann solitons, Balkan J. Geom. Appl., 21 (2016), 35–44.
    [12] M. N. Devaraja, H. A. Kumara, V. Venkatesha, Riemannian soliton within the frame work of contact geometry, Quaest. Math., 44 (2021), 637–651.
    [13] V. Venkatesha, H. A. Kumara, D. M. Naika, Riemann solitons and almost Riemann solitons on almost Kenmotsu manifolds, Int. J. Geom. Methods M., 17 (2020), 2050105. https://doi.org/10.1142/S0219887820501054 doi: 10.1142/S0219887820501054
    [14] G. G. Biswas, X. Chen, U. C. De, Riemann solitons on almost co-Kahler manifolds, Filomat, 36 (2022), 1403–1413. https://doi.org/10.2298/FIL2204403B doi: 10.2298/FIL2204403B
    [15] K. De, U. C. De, Riemann solitons on para-Sasakian geometry, Carpathian Math. Publ., 14 (2022), 395–405. https://doi.org/10.15330/cmp.14.2.395-405 doi: 10.15330/cmp.14.2.395-405
    [16] K. De, U. C. De, A note on almost Riemann solitons and gradient almost Riemann solitons, Afr. Mat., 33 (2022), 74. https://doi.org/10.1007/s13370-022-01010-y doi: 10.1007/s13370-022-01010-y
    [17] A. M. Blaga, Remarks on almost Riemann solitons with gradient or torse-forming vector field, Bull. Malays. Math. Sci. Soc., 44 (2021), 3215–3227. https://doi.org/10.1007/s40840-021-01108-9 doi: 10.1007/s40840-021-01108-9
    [18] M. R. Bakshi, K. K. Baishya, Four classes of Riemann solitons on α-cosymplectic manifolds, Afr. Mat., 32 (2020), 577–588. https://doi.org/10.1007/s13370-020-00846-6 doi: 10.1007/s13370-020-00846-6
    [19] S. Azami, U. C. De, Relativistic spacetimes admitting h-almost conformal ω-Ricci-Bourguignon solitons, Int. J. Geom. Methods M., 2025. https://doi.org/10.1142/S0219887825500677
    [20] S. Azami, M. Jafari, Riemann solitons on relativistic space-times. Gravit. Cosmol., 30 (2024), 306–311. https://doi.org/10.1134/S020228932470021X doi: 10.1134/S020228932470021X
    [21] S. Azami, M. Jafari, Riemann solitons on perfect fluid spacetimes in f(r,T)-gravity, Rend. Circ. Mat. Palermo, Ⅱ. Ser, 74 (2025), 2. https://doi.org/10.1007/s12215-024-01116-1 doi: 10.1007/s12215-024-01116-1
    [22] S. Azami, M. Jafari, N. Jamal, A. Haseeb, Hyperbolic Ricci solitons on perfect fluid spacetimes, AIMS Mathematics, 9 (2024), 18929–18943. https://doi.org/10.3934/math.2024921 doi: 10.3934/math.2024921
    [23] V. Patrangenaru, Lorentz manifolds with the three largest degrees of symmetry, Geometriae Dedicata, 102 (2003), 25–33. https://doi.org/10.1023/B:GEOM.0000006588.95481.1c doi: 10.1023/B:GEOM.0000006588.95481.1c
    [24] W. Batat, G. Calvaruso, B. De Leo, Curvature properties of Lorentzian manifolds with large isometry groups, Math. Phys. Anal. Geom., 12 (2009), 201–217. https://doi.org/10.1007/s11040-009-9060-4 doi: 10.1007/s11040-009-9060-4
    [25] G. Calvaruso, E. García-Río, Algebraic properties of curvature operators in Lorentzian manifolds with large isometry groups, SIGMA, 6 (2010), 005. https://doi.org/10.3842/SIGMA.2010.005 doi: 10.3842/SIGMA.2010.005
    [26] I. P. Egorov, Riemannian spaces of the first three lacunary types in the geometric sense, Dokl. Akad. Nauk. SSSR, 150 (1963), 730–732.
    [27] M. Cahen, N. Wallach, Lorentzian symmetric spaces, Bull. Amer. Math. Soc., 76 (1970), 585–591. https://doi.org/10.1090/S0002-9904-1970-12448-X
    [28] M. Cahen, J. Leroy, M. Parker, F. Tricerri, L. Vanhecke, Lorentz manifolds modelled on a Lorentz symmetric space, J. Geom. Phys., 7 (1990), 571–581. https://doi.org/10.1016/0393-0440(90)90007-P doi: 10.1016/0393-0440(90)90007-P
    [29] W. Batat, M. Brozos-Vazquez, E. Garcia-Rio, S. Gavino-Fernandez, Ricci soliton on Lorentzian manifolds with large isometry groups, Bull. Lond. Math. Soc., 43 (2011), 1219–1227. https://doi.org/10.1112/blms/bdr057 doi: 10.1112/blms/bdr057
    [30] Z. Iqbal, Killing magnetic trajectories in 3D Egorov spaces, J. Math. Sci., 271 (2023), 322–340. https://doi.org/10.1007/s10958-023-06468-0 doi: 10.1007/s10958-023-06468-0
    [31] S. M. Carroll, Spacetime and geometry: An introduction to general relativity, Addison Wesley, 2003.
    [32] S. Deshmukh, Geometry of conformal vector fields, Arab. J. Math. Sci., 23 (2017), 44–73. https://doi.org/10.1016/j.ajmsc.2016.09.003 doi: 10.1016/j.ajmsc.2016.09.003
    [33] K. Yano, The theory of Lie derivatives and its applications, Dover publications, 2020.
    [34] U. C. De, A. Sardar, A. Sarkar, Some conformal vector fields and conformal Ricci solitons on N(k)-contact metric manifolds, AUT J. Math. Comput., 2 (2021), 61–71. https://doi.org/10.22060/ajmc.2021.19220.1043 doi: 10.22060/ajmc.2021.19220.1043
    [35] S. Azami, G. Fasihi-Ramandi, Ricci bi-conformal vector fields on Siklos spacetimes, Math. Interdiscipl. Res., 9 (2024), 45–76. https://doi.org/10.22052/MIR.2023.252926.1408 doi: 10.22052/MIR.2023.252926.1408
    [36] S. Azami, M. Jafari, Ricci bi-conformal vector fields on homogeneous Godel-type spacetimes, J. nonlinear Math. Phys., 30 (2023), 1700–1718. https://doi.org/10.1007/s44198-023-00151-3 doi: 10.1007/s44198-023-00151-3
    [37] M. Sohrabpour, S. Azami, Ricci bi-conformal vector fields on Lorentzian Walker manifolds of low dimension, Lobachevskii J. Math., 44 (2023), 5437–5443. https://doi.org/10.1134/S1995080223120338 doi: 10.1134/S1995080223120338
    [38] S. Azami, M. Jafari, Ricci solitons and Ricci bi-conformal vector fields on the Lie group H2×R, Rep. Math. Phys., 93 (2024), 231–239. https://doi.org/10.1016/S0034-4877(24)00028-4 doi: 10.1016/S0034-4877(24)00028-4
    [39] S. Azami, U. C. De, Ricci bi-conformal vector fields on Lorentzian four-dimensional generalized symmetric spaces, Filomat, 38 (2024), 3157–3164.
    [40] S. Azami, U. C. De, Ricci bi-conformal vector fields on Lorentzian five-dimensional two-step nilpotent Lie groups, Hacet. J. Math. Stat., 53 (2024), 1118–1129. https://doi.org/10.15672/hujms.1294973 doi: 10.15672/hujms.1294973
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(397) PDF downloads(19) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog