A recursive filtering problem on minimum variance is investigated for a type of two-dimensional systems incorporating noise and a random parameter matrix in the measurement equation, along with random nonlinearity. It methodically describes random variables using statistical characteristics, placing a strong emphasis on the application of random multivariate analysis and computational techniques. A bidirectional time-sequence recursive filter is designed to achieve unbiasedness and reduce error variance effectively. This involves deriving the gain matrix through a completion of squares method and solving a complex difference equation with two independent variances. To facilitate the online implementation of this filter, various formulations and an algorithm are proposed. A numerical study demonstrates the effectiveness of the design in practical applications.
Citation: Shulan Kong, Chengbin Wang, Yawen Sun. A recursive filter for a class of two-dimensional nonlinear stochastic systems[J]. AIMS Mathematics, 2025, 10(1): 1741-1756. doi: 10.3934/math.2025079
[1] | Hyo Won Lee, Donald L. DeAngelis, Simeon Yurek, Stephen Tennenbaum . Wading bird foraging on a wetland landscape: a comparison of two strategies. Mathematical Biosciences and Engineering, 2022, 19(8): 7687-7718. doi: 10.3934/mbe.2022361 |
[2] | Pierre Auger, Tri Nguyen-Huu, Doanh Nguyen-Ngoc . On the impossibility of increasing the MSY in a multisite Schaefer fishing model. Mathematical Biosciences and Engineering, 2025, 22(2): 415-430. doi: 10.3934/mbe.2025016 |
[3] | Diène Ngom, A. Iggidir, Aboudramane Guiro, Abderrahim Ouahbi . An observer for a nonlinear age-structured model of a harvested fish population. Mathematical Biosciences and Engineering, 2008, 5(2): 337-354. doi: 10.3934/mbe.2008.5.337 |
[4] | Carlos Camilo-Garay, R. Israel Ortega-Gutiérrez, Hugo Cruz-Suárez . Optimal strategies for a fishery model applied to utility functions. Mathematical Biosciences and Engineering, 2021, 18(1): 518-529. doi: 10.3934/mbe.2021028 |
[5] | Ali Moussaoui, Pierre Auger, Christophe Lett . Optimal number of sites in multi-site fisheries with fish stock dependent migrations. Mathematical Biosciences and Engineering, 2011, 8(3): 769-783. doi: 10.3934/mbe.2011.8.769 |
[6] | Huidong Cheng, Hui Xu, Jingli Fu . Dynamic analysis of a phytoplankton-fish model with the impulsive feedback control depending on the fish density and its changing rate. Mathematical Biosciences and Engineering, 2023, 20(5): 8103-8123. doi: 10.3934/mbe.2023352 |
[7] | Shengyu Huang, Hengguo Yu, Chuanjun Dai, Zengling Ma, Qi Wang, Min Zhao . Dynamics of a harvested cyanobacteria-fish model with modified Holling type Ⅳ functional response. Mathematical Biosciences and Engineering, 2023, 20(7): 12599-12624. doi: 10.3934/mbe.2023561 |
[8] | Santanu Bhattacharya, Nandadulal Bairagi . Dynamic optimization of fishing tax and tourism fees for sustainable bioeconomic resource management. Mathematical Biosciences and Engineering, 2025, 22(7): 1751-1789. doi: 10.3934/mbe.2025064 |
[9] | Michele L. Joyner, Chelsea R. Ross, Colton Watts, Thomas C. Jones . A stochastic simulation model for Anelosimus studiosus during prey capture: A case study for determination of optimal spacing. Mathematical Biosciences and Engineering, 2014, 11(6): 1411-1429. doi: 10.3934/mbe.2014.11.1411 |
[10] | A. Aldurayhim, A. Elsonbaty, A. A. Elsadany . Dynamics of diffusive modified Previte-Hoffman food web model. Mathematical Biosciences and Engineering, 2020, 17(4): 4225-4256. doi: 10.3934/mbe.2020234 |
A recursive filtering problem on minimum variance is investigated for a type of two-dimensional systems incorporating noise and a random parameter matrix in the measurement equation, along with random nonlinearity. It methodically describes random variables using statistical characteristics, placing a strong emphasis on the application of random multivariate analysis and computational techniques. A bidirectional time-sequence recursive filter is designed to achieve unbiasedness and reduce error variance effectively. This involves deriving the gain matrix through a completion of squares method and solving a complex difference equation with two independent variances. To facilitate the online implementation of this filter, various formulations and an algorithm are proposed. A numerical study demonstrates the effectiveness of the design in practical applications.
[1] | A. Habibi, Two-dimensional Bayesian estimate of images, Proc. IEEE, 60 (1972) 877–883. https://doi.org/10.1109/PROC.1972.8787 |
[2] |
R. P. Roesser, A discrete state-space model for linear image processing, IEEE Trans. Autom. Contr., 20 (1975), 1–10. https://doi.org/10.1109/TAC.1975.1100844 doi: 10.1109/TAC.1975.1100844
![]() |
[3] |
E. Fornasini, G. Marchesini, State-space realization theory of two-dimensional filters, IEEE Trans. Autom. Control, 21 (1976), 484–492. https://doi.org/10.1109/TAC.1976.1101305 doi: 10.1109/TAC.1976.1101305
![]() |
[4] |
J. W. Woods, C. H. Radewan, Kalman filtering in two dimensions, IEEE Trans. Inf. Theory, 23 (1977), 473–482. https://doi.org/10.1109/TIT.1977.1055750 doi: 10.1109/TIT.1977.1055750
![]() |
[5] |
J. W. Woods, V. K. Ingle, Kalman filtering in two dimensions: Further results, IEEE Trans. Acoust., Speech, Signal Process., 29 (1981), 188–197. https://doi.org/10.1109/TASSP.1981.1163533 doi: 10.1109/TASSP.1981.1163533
![]() |
[6] |
T. Katayama, M. Kosana, Recursive filtering algorithm for a two-dimensional system, IEEE Trans. Autom. Control, 24 (1979), 130–132. https://doi.org/10.1109/TAC.1979.1101956 doi: 10.1109/TAC.1979.1101956
![]() |
[7] |
M. ˘Sebek, Polynomial solution of 2D Kalman Bucy filtering problem, IEEE Trans. Autom. Control, 37 (1992), 1530–1533. https://doi.org/10.1109/9.256417 doi: 10.1109/9.256417
![]() |
[8] |
A. Concetti, L. Jetto, Two-dimensional recursive filtering algorithm with edge preserving properties and reduced numerical complexity, IEEE Trans. Circuits Syst. II-Analog Digital Signal Process., 44 (1997), 587–591. https://doi.org/10.1109/82.598429 doi: 10.1109/82.598429
![]() |
[9] | X. Chen, C. Yang, The state estimation of the stochastic 2D FMII models, Acta Autom. Sin., 27 (2001), 131–135. |
[10] |
Y. Zou, M. Sheng, N. Zhong, S. Xu, A generalized Kalman filter for 2D discrete systems, Circuits Syst. Signal Process., 23 (2004), 351–364. https://doi.org/10.1007/s00034-004-0804-x doi: 10.1007/s00034-004-0804-x
![]() |
[11] |
J. Liang, F. Wang, Z. Wang, Minimum-variance recursive filtering for two-dimensional systems with degraded measurements: Boundedness and Monotonicity, IEEE Trans. Autom. Control, 64 (2019), 4153–4166. https://doi.org/10.1109/TAC.2019.2895245 doi: 10.1109/TAC.2019.2895245
![]() |
[12] |
F. Wang, Z. Wang, J. Liang, X. Liu, Robust finite horizon filtering for 2-D systems with randomly varying sensor delays, IEEE Trans. Syst., Man, Cybern., Syst., 50 (2020), 220–232. https://doi.org/10.1109/TSMC.2017.2788503 doi: 10.1109/TSMC.2017.2788503
![]() |
[13] |
F. Wang, Z. Wang, J. Liang, C. Silvestre, Recursive locally minimum-variance filtering for two-dimensional systems: When dynamic quantization effect meets random sensor failure, Automatica, 148 (2023), 110762. https://doi.org/10.1016/j.automatica.2022.110762 doi: 10.1016/j.automatica.2022.110762
![]() |
[14] |
F. Wang, J. Liang, J. Lam, J. Yang, C. Zhao, Robust filtering for 2-D systems with uncertain-variance noises and weighted try-once-discard protocols, IEEE Trans. Syst., Man, Cybern., Syst., 53 (2023), 2914–2924. https://doi.org/10.1109/TSMC.2022.3219919 doi: 10.1109/TSMC.2022.3219919
![]() |
[15] |
F. Wang, Z. Wang, J. Liang, Q. Ge, S. X. Ding, Recursive filtering for two-dimensional systems with amplify-and-forward relays: Handling degraded measurements and dynamic biases, Inform. Fusion, 108 (2024), 102368. https://doi.org/10.1016/j.inffus.2024.102368 doi: 10.1016/j.inffus.2024.102368
![]() |
[16] |
P. Zhang, C. Zhu, B. Yang, Z. Wang, M. Hao, Event-triggered ultimately bounded filtering for two-dimensional discrete-time systems under hybrid cyber attacks, J. Franklin Inst., 361 (2024), 683–711. https://doi.org/10.1016/j.jfranklin.2023.12.019 doi: 10.1016/j.jfranklin.2023.12.019
![]() |
[17] |
S. Kong, Y. Sun, H. Zhang, Optimal Kalman-like filtering for a class of nonlinear stochastic systems, J. Ocean Eng. Sci., 8 (2023), 500–507. https://doi.org/10.1016/j.joes.2022.03.002 doi: 10.1016/j.joes.2022.03.002
![]() |
[18] |
W. D. Koning, Optimal estimation of linear discrete-time systems with stochastic parameters, Automatica, 20 (1984), 113–115. https://doi.org/10.1016/0005-1098(84)90071-2 doi: 10.1016/0005-1098(84)90071-2
![]() |
[19] |
J. Hu, Z. Wang, H. Gao, Recursive filtering with random parameter matrices, multiple fading measurements and correlated noise, Automatica, 49 (2013), 3440–3448. https://doi.org/10.1016/j.automatica.2013.08.021 doi: 10.1016/j.automatica.2013.08.021
![]() |
[20] |
W. Wang, J. Zhou, Optimal linear filtering design for discrete-time systems with cross-correlated stochastic parameter matrices and noises, IET Control Theory Appl., 11 (2017), 3353–3362. https://doi.org/10.1049/iet-cta.2017.0425 doi: 10.1049/iet-cta.2017.0425
![]() |
1. | A. Obaza, D. L. DeAngelis, J. C. Trexler, Using data from an encounter sampler to model fish dispersal, 2011, 78, 00221112, 495, 10.1111/j.1095-8649.2010.02867.x | |
2. | Maria C. Loinaz, Dayna Gross, Robert Unnasch, Michael Butts, Peter Bauer-Gottwein, Modeling ecohydrological impacts of land management and water use in the Silver Creek basin, Idaho, 2014, 119, 21698953, 487, 10.1002/2012JG002133 |