
This study explored and examined soliton solutions for the Quintic Benney-Lin equation (QBLE), which describes the dynamic of liquid films, using the Riccati modified extended simple equation method (RMESEM). The proposed approach, which is designed for nonlinear partial differential equations (NPDEs), effectively generates a large number of soliton solutions for the given QBLE, which basically captures the fundamental dynamics of the system. The rational, hyperbolic, rational-hyperbolic, trigonometric, and exponential forms of the scientifically specified soliton solutions are the main determinants of the hump solitons. We used 2D, 3D, and contour visualizations to offer accurate representations of the researched soliton phenomena associated with these solutions. These representations revealed the existence of dark and bright hump solitons in the framework of the QBLE and offer a thorough way to examine the model's behavioral characteristics in the liquid film by analyzing the QBLE model's soliton dynamics. Moreover, applying the suggested approach advances our knowledge of the unique features of the other similar NPDEs and the underlying dynamics.
Citation: Waleed Hamali, Hamad Zogan, Abdulhadi A. Altherwi. Dark and bright hump solitons in the realm of the quintic Benney-Lin equation governing a liquid film[J]. AIMS Mathematics, 2024, 9(10): 29167-29196. doi: 10.3934/math.20241414
[1] | Noorah Mshary . Exploration of nonlinear traveling wave phenomena in quintic conformable Benney-Lin equation within a liquid film. AIMS Mathematics, 2024, 9(5): 11051-11075. doi: 10.3934/math.2024542 |
[2] | Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Wafaa B. Rabie, Farah M. Al-Askar, Wael W. Mohammed . New soliton wave structure and modulation instability analysis for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities. AIMS Mathematics, 2024, 9(9): 26166-26181. doi: 10.3934/math.20241278 |
[3] | Gulnur Yel, Haci Mehmet Baskonus, Wei Gao . New dark-bright soliton in the shallow water wave model. AIMS Mathematics, 2020, 5(4): 4027-4044. doi: 10.3934/math.2020259 |
[4] | Naher Mohammed A. Alsafri, Hamad Zogan . Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661 |
[5] | Elsayed M. E. Zayed, Mona El-Shater, Khaled A. E. Alurrfi, Ahmed H. Arnous, Nehad Ali Shah, Jae Dong Chung . Dispersive optical soliton solutions with the concatenation model incorporating quintic order dispersion using three distinct schemes. AIMS Mathematics, 2024, 9(4): 8961-8980. doi: 10.3934/math.2024437 |
[6] | Nafissa T. Trouba, Huiying Xu, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Xinzhong Zhu . Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics. AIMS Mathematics, 2025, 10(1): 1859-1881. doi: 10.3934/math.2025086 |
[7] | Naveed Iqbal, Meshari Alesemi . Soliton dynamics in the $ (2+1) $-dimensional Nizhnik-Novikov-Veselov system via the Riccati modified extended simple equation method. AIMS Mathematics, 2025, 10(2): 3306-3333. doi: 10.3934/math.2025154 |
[8] | Mohammad Alqudah, Safyan Mukhtar, Haifa A. Alyousef, Sherif M. E. Ismaeel, S. A. El-Tantawy, Fazal Ghani . Probing the diversity of soliton phenomena within conformable Estevez-Mansfield-Clarkson equation in shallow water. AIMS Mathematics, 2024, 9(8): 21212-21238. doi: 10.3934/math.20241030 |
[9] | Hamood-Ur-Rahman, Muhammad Imran Asjad, Nayab Munawar, Foroud parvaneh, Taseer Muhammad, Ahmed A. Hamoud, Homan Emadifar, Faraidun K. Hamasalh, Hooshmand Azizi, Masoumeh Khademi . Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique. AIMS Mathematics, 2022, 7(6): 11134-11149. doi: 10.3934/math.2022623 |
[10] | Mohammed Aldandani, Abdulhadi A. Altherwi, Mastoor M. Abushaega . Propagation patterns of dromion and other solitons in nonlinear Phi-Four ($ \phi^4 $) equation. AIMS Mathematics, 2024, 9(7): 19786-19811. doi: 10.3934/math.2024966 |
This study explored and examined soliton solutions for the Quintic Benney-Lin equation (QBLE), which describes the dynamic of liquid films, using the Riccati modified extended simple equation method (RMESEM). The proposed approach, which is designed for nonlinear partial differential equations (NPDEs), effectively generates a large number of soliton solutions for the given QBLE, which basically captures the fundamental dynamics of the system. The rational, hyperbolic, rational-hyperbolic, trigonometric, and exponential forms of the scientifically specified soliton solutions are the main determinants of the hump solitons. We used 2D, 3D, and contour visualizations to offer accurate representations of the researched soliton phenomena associated with these solutions. These representations revealed the existence of dark and bright hump solitons in the framework of the QBLE and offer a thorough way to examine the model's behavioral characteristics in the liquid film by analyzing the QBLE model's soliton dynamics. Moreover, applying the suggested approach advances our knowledge of the unique features of the other similar NPDEs and the underlying dynamics.
The study begins by framing the targeted model inside the context of its earlier findings and providing a thorough analysis of pertinent literature. In this part, the main goals of the study are outlined, a knowledge gap is noted, and the paper's organizational structure is explained.
The global ubiquity of nonlinearity highlights the need for developing nonlinear models, particularly those utilizing nonlinear partial differential equations (NPDEs) [1]. Many researchers are interested in NPDEs because of their broad variety of applications in fields including physics, biology, control, vibration, fluid dynamics, acoustics, chemistry, vibration, and image processing [2,3,4]. Scholars have devoted a lot of time and effort to the task of solving these NPDEs analytically and numerically since they have so many possible uses [5,6]. As a result, many dependable and efficient methods have been discovered by researchers because explicit solutions reveal more about the underlying structure of the nonlinear phenomena than do numerical ones, including the Kudryashov procedure [7], extended direct algebraic method (EDAM) [8,9], exp-function approach [10], modified Kather method [11], the (G'/G)-expansion procedure [12], the the residual power series technique [13], the replicated kernel technique [14], modified simple equation approach [15], the unified approach [16], first integral approach [17], modified simple equation method [18], Darboux transformation method [19], Hirota method [20] and RMESEM [21]. Nonlinear partial differential equations are crucial in modeling complex systems across various scientific fields. In this study, we apply the Riccati-Bernoulli Sub-ODE method to solve nonlinear fractional fluid dynamics equations, providing exact solutions [22,23,24,25,26]. The method offers a powerful approach to handle the nonlinearities present in fractional-order systems [27,28,29]. The recent advancements in fractional calculus, contributing to a deeper understanding of nonlinear phenomena [30,31,32].
Explicit solutions, in particular soliton solutions, have garnered significant attention lately in nonlinear scientific inquiries. The special characteristics of soliton solutions have made soliton theory more significant. These solutions are self-sustaining traveling waves known as solitons, which keep their form and speed even after colliding with other waves [33,34]. Solitons for nonlinear models have been constructed and analyzed in a number of recent papers that have been reported. Khater, for instance, used the septic-B-spline method, Adomian decomposition, and modified Kather method to produce soliton solutions for the 2D regularized long-wave problem [11]. Khater also solved the modified Korteweg-De Vries-Kadomtsev-Petviashvili (KdV-KP) equation using advanced computational techniques, producing soliton solutions [35]. Comparable soliton solutions have been constructed and analyzed using a variety of mathematical techniques, including the Gilson-Pickering equation in [36], the perturbed Chen-Lee-Liu equation in [37], rich soliton solutions for the generalized Kawahara equation in [38], the soliton solutions for the (1+1)-dimensional Mikhailov-Novikov-Wang integrable equation in [39], the soliton solutions for specific time fractional equations in shallow water waves [40], and the soliton solutions (2+1)-dimensional Ablowitz-Kaup-Newell-Segur (AKNS) equation in [41].
The goal of this work is to address a nonlinear model, namely, the Quintic Benney-Lin equation (QBLE), which describes the propagation behavior of soliton solutions in liquid films. The Benney-Lin equation (BLE) [7] was first presented by Benney [13] in 1986, and Lin subsequently refined it to analyze the effects of long waves on liquid films. This study focuses on the QBLE [14] and includes the probability density function f=f(x,t), which describes the thickness of the liquid film. The mathematical representation of the model is given as:
ft+ffx+fxxx+φ(fxx+fxxxx)+τfxxxxx=0. | (1.1) |
By giving specific values to the relevant real parameters, τ and φ, Eq (1.1) is converted into a compact, fully dissipative version of the Navier-Stokes model. This equation has been used to explain a number of phenomena, such as uneven blazing fronts, surface tension in liquid films, and spatial tiling in the Belousov-Zhabotinsky (BZ) reaction. If certain conditions are met, the equation produces the Korteweg-de Vries (KdV) equation, also referred to as the Kawahara model. For φ=0, this equation sheds light on the transmission of waves with tension on the surface in its fully dispersive state [17]. Moreover, the QBLE adopts the Kuramoto-Sivashinsky model's structure when τ=0. The waves in steep and vertically slipping films, as well as the indefinite drift patterns in plasma-which include the tension along liquid film surfaces due to nearby gas movement-are explained by this dispersive-dissipative equation. The broad applicability of the QBLE's initial value problem (IVP) in Hp(R) for p≥0 for φ=0 was shown in 1997 by Biagioni and Linares [46]. Finally, Cui et al. [47] demonstrated that for φ=0, the Kawahara model's local well-posedness is in the range of −1<p<1 to 0. Additionally, a variety of approaches have been used to address the targeted QBLE, including the reduced differential transform strategy [48], the variational iteration approach [49], EDAM [50], the residual power series procedure, and the homotopy perturbation method [51].
Several scholars have tackled the QBLE in the direction of past study, however the dark and bright hump soliton phenomena have not been investigated and examined within the context of the intended model using RMESEM. The observation draws attention to a sizable gap in the archive of existing research. Our study offers a thorough analysis of the model and outlines the suggested RMESEM strategy with the objective to fill this gap.
In this study, we use the RMESEM to analyze and evaluate the hump soliton phenomena contained in the QBLE. The following are the strategies and aims of this study: The proposed transformation-based method converts the desired QBLE into a nonlinear ordinary differential equation (NODE) using a wave transformation. The Riccati-NODE, which presupposes a series form solution, is then included into the resultant NODE to convert it into an algebraic system of equations. This set of equations can be solved to obtain the soliton solutions in five families: the rational, trigonometric, hyperbolic, rational-hyperbolic, and exponential functional families. We apply the recently found method to generate new soliton solution abundances for the selected QBLE, therefore capturing the system's fundamental dynamics and proving its effectiveness. The presence of both brilliant and dark solitons is amply demonstrated by the methodical determination of soliton solutions. To accurately depict the studied soliton phenomena connected to these solutions, we offer 3D, contour, and 2D graphics. These visualisations help to clarify the soliton dynamics of the QBLE model and provide a comprehensive way to study the model's behavior in a liquid layer.
The rest of the article is organized as follows: Section 2 provides a detailed explanation of the proposed technique. In Section 3, we present families of hump soliton solutions for the targeted model. Section 4 includes plots of several hump soliton solutions, accompanied by discussion. Finally, Section 5 conclusions, the study and outlines future research directions.
The operational mechanism of the RMESEM is described in this section. We examine the resulting generalized NPDE:
A(f,ft,fρ1,fρ2,ffρ1,…)=0, | (2.1) |
where f=f(t,ρ1,ρ2,ρ3,…,ρr).
All steps listed below will be taken in order to solve (2.1):
(1) First, f(t,ρ1,ρ2,ρ3,…,ρr)=F(σ) is executed as a variable-form transformation. For σ, there are several representations. Equation (2.1) is transformed using this procedure to provide the following NODE:
B(F,F′F,F′,…)=0, | (2.2) |
where F′=dFdσ. The integrating equation may occasionally be used to force the NODE to follow the homogeneous balance criterion (2.2).
(2) Next, utilizing the solution of the extended Riccati-NODE, the resulting finite series-based solution for the NODE in (2.2) is proposed:
F(σ)=M∑n=0kn(P′(σ)P(σ))n+M−1∑n=0sn(P′(σ)P(σ))n⋅(1P(σ)). | (2.3) |
Here, P(σ) indicates the solution of the ensuing extended Riccati-NODE, and the variables kn(n=0,...,M) and sn(n=0,...,M−1) stand for the unidentified constants that need to be found later.
P′(σ)=λ+μP(σ)+ν(P(σ))2, | (2.4) |
where λ,μ, and ν are constants.
(3) We may achieve the positive integer M needed in Eq (2.3) by homogeneously balancing the greatest nonlinear component and the highest-order derivative in Eq (2.2).
(4) Following this, all the components of P(σ) are combined into an equal ordering when (2.3) is plugged into (2.2) or the equation that emerges from the integration of (2.2). Applying this approach results in an equation in terms of P(σ). The variables kn(n=0,...,M) and sn(n=0,...,M−1) can be described by an algebraic system of equations with additional associated parameters if the coefficients in the resulting equation are set to zero.
(5) With Maple software, the system of nonlinear algebraic equations is analytically evaluated.
(6) To derive analytical soliton solutions for (2.1), the next step is to calculate and enter the unknown values alongside P(σ) (the Eq (2.4) solution) in Eq (2.3). By applying (2.4)'s solution, we might potentially derive several clusters of soliton solutions. Here is how these clusters are displayed.
In this section, we use our suggested method to solve the QBLE in (1.1) and produce soliton solutions. We begin with the subsequent transformation:
f(x,t)=F(ζ);σ=x−ηt, | (3.1) |
which converts (1.1) into the subsequent NODE:
−ηF′+FF′+F‴+φ(F″+F⁗)+τF′′′′′=0, | (3.2) |
where the derivatives of F with regard to σ are indicated by prime(s). Integrating (3.2) with respect to σ and setting the integration constant to 0 yields:
−2η+F2+2F″+2φ(F′+F‴)+2τF⁗=0. | (3.3) |
By proving that F2 and F⁗ are homogenously balanced in (3.3), we obtain M+4=2M, which yields M=4. The supposed solution for (3.3) that results from inserting M=4 in (2.3) is as follows:
F(σ)=4∑n=0kn(P′(σ)P(σ))n+3∑n=0sn(P′(σ)P(σ))n⋅(1P(σ)). | (3.4) |
We generate a set of algebraic equations by substituting (3.4) in (3.3). By addressing the resulting system, numerous solutions can be obtained, which are presented as follows:
Case 1.
k0=−7213B,k1=0,k2=−168013λνB,k3=0,k4=0,s0=0,s1=0,s2=−168013μλB,s3=168013λB,φ=0,η=−3613B,τ=−113B. | (3.5) |
Case 2.
k0=0,k1=0,k2=8413λν(31+3i√31)B,φ=0,k3=0,k4=0,s0=0,s1=−4213(17+i√31)λ,s2=8413(31+3i√31)μλB,s3=−8413(31+3i√31)λB,η=3130(1457+161i√31)B31+3i√31,τ=126031+3i√31B. | (3.6) |
Case 3.
k0=−7213B,k1=0,k2=168013,k3=−336013μB,k4=1680131B,s0=0,s1=0,s2=168013μλB,s3=−168013λB,η=−3613B,τ=−113B,φ=0. | (3.7) |
Case 4.
k0=0,k1=0,k2=168013,k3=−336013μB,k4=1680131B,s0=0,s1=0,s2=168013μλB,s3=−168013λB,η=3613B,φ=0,τ=−113B. | (3.8) |
Case 5.
k0=0,k1=0,k2=−168013λνB,k3=0,k4=0,s0=0,s1=0,s2=−168013μλB,s3=168013λB,φ=0,η=3613B,τ=−113B. | (3.9) |
Assuming Case 1, for the QBLE given in (1.1), we build the subsequent sets of hump soliton solutions:
● Trigonometric solutions: When B<0,ν≠0,
f1,1(t,x)=−7213B−42013λνB(1+(tan(12√−Bσ))2)2(−μ+√−Btan(12√−Bσ))2−42013μλB(1+(tan(12√−Bσ))2)2(−12μν+12√−Btan(12√−Bσ)ν)(−μ+√−Btan(12√−Bσ))2−21013λB2(1+(tan(12√−Bσ))2)3(−12μν+12√−Btan(12√−Bσ)ν)(−μ+√−Btan(12√−Bσ))3, | (3.10) |
f1,2(t,x)=−7213B−42013λνB(1+(cot(12√−Bσ))2)2(μ+√−Bcot(12√−Bσ))2−42013μλB(1+(cot(12√−Bσ))2)2(−12μν−12√−Bcot(12√−Bσ)ν)(μ+√−Bcot(12√−Bσ))2+21013λB2(1+(cot(12√−Bσ))2)3(−12μν−12√−Bcot(12√−Bσ)ν)(μ+√−Bcot(12√−Bσ))3, | (3.11) |
f1,3(t,x)=−7213B−168013λνB(1+sin(√−Bσ))2(cos(√−Bσ))2(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)2−168013μλB(1+sin(√−Bσ))2(−12μν+12√−B(tan(√−Bσ)+sec(√−Bσ))ν)(cos(√−Bσ))2(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)2−168013λB2(1+sin(√−Bσ))3(−12μν+12√−B(tan(√−Bσ)+sec(√−Bσ))ν)(cos(√−Bσ))3(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)3, | (3.12) |
and
f1,4(t,x)=−7213B−168013λνB(sin(√−Bσ)−1)2(cos(√−Bσ))2(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)2−168013μλB(sin(√−Bσ)−1)2(−12μν+12√−B(tan(√−Bσ)−sec(√−Bσ))ν)(cos(√−Bσ))2(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)2−168013λB2(sin(√−Bσ)−1)3(−12μν+12√−B(tan(√−Bσ)−sec(√−Bσ))ν)(cos(√−Bσ))3(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)3. | (3.13) |
● Hyperbolic solutions: When B>0,ν≠0,
f1,5(t,x)=−7213B−42013λνB(−1+(tanh(12√Bσ))2)2(μ+√Btanh(12√Bσ))2−42013μλB(−1+(tanh(12√Bσ))2)2(−12μν−12√Btanh(12√Bσ)ν)(μ+√Btanh(12√Bσ))2−21013λB2(−1+(tanh(12√Bσ))2)3(−12μν−12√Btanh(12√Bσ)ν)(μ+√Btanh(12√Bσ))3, | (3.14) |
f1,6(t,x)=−7213B−168013λνB(−1+isinh(√Bσ))2(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)2−168013μλB(−1+isinh(√Bσ))2(−12μν−12√B(tanh(√Bσ)+isech(√Bσ))ν)(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)2−168013λB2(−1+isinh(√Bσ))3(−12μν−12√B(tanh(√Bσ)+isech(√Bσ))ν)(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)3, | (3.15) |
f1,7(t,x)=−7213B−168013λνB(1+isinh(√Bσ))2(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)2−168013μλB(1+isinh(√Bσ))2(−12μν−12√B(tanh(√Bσ)−isech(√Bσ))ν)(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)2+168013λB2(1+isinh(√Bσ))3(−12μν−12√B(tanh(√Bσ)−isech(√Bσ))ν)(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)3, | (3.16) |
and
f1,8(t,x)=−7213B−10513λνB(2(cosh(14√Bσ))2−1)2(cosh(14√Bσ))2(sinh(14√Bσ))2(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)2−10513μλB(2(cosh(14√Bσ))2−1)2(−12μν−14√B(tanh(14√Bσ)−coth(14√Bσ))ν)(cosh(14√Bσ))2(sinh(14√Bσ))2(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)2−10552λB2(2(cosh(14√Bσ))2−1)3(−12μν−14√B(tanh(14√Bσ)−coth(14√Bσ))ν)(cosh(14√Bσ))3(sinh(14√Bσ))3(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)3. | (3.17) |
● Exponential solution: When μ=ϖ, λ=bϖ(b≠0), and ν=0,
f1,9(t,x)=2413−3B2e2ϖσ+6B2eϖσb−3B2b2+70ϖ4b2e2ϖσB(eϖσ−b)2. | (3.18) |
In the above solutions, σ=x+3613Bt. Assuming Case 2, for the QBLE given in (1.1), we build the subsequent sets of hump soliton solutions:
● Trigonometric solutions: When B<0,ν≠0,
f2,1(t,x)=2113λν(31+3i√31)B(1+(tan(12√−Bσ))2)2(−μ+√−Btan(12√−Bσ))2+2113(17+i√31)λB(1+(tan(12√−Bσ))2)(−12μν+12√−Btan(12√−Bσ)ν)(−μ+√−Btan(12√−Bσ))+2113(31+3i√31)μλB(1+(tan(12√−Bσ))2)2(−12μν+12√−Btan(12√−Bσ)ν)(−μ+√−Btan(12√−Bσ))2+2126(31+3i√31)λB2(1+(tan(12√−Bσ))2)3(−12μν+12√−Btan(12√−Bσ)ν)(−μ+√−Btan(12√−Bσ))3, | (3.19) |
f2,2(t,x)=2113λν(31+3i√31)B(1+(cot(12√−Bσ))2)2(μ+√−Bcot(12√−Bσ))2−2113(17+i√31)λB(1+(cot(12√−Bσ))2)(−12μν−12√−Bcot(12√−Bσ)ν)(μ+√−Bcot(12√−Bσ))+2113(31+3i√31)μλB(1+(cot(12√−Bσ))2)2(−12μν−12√−Bcot(12√−Bσ)ν)(μ+√−Bcot(12√−Bσ))2−2126(31+3i√31)λB2(1+(cot(12√−Bσ))2)3(−12μν−12√−Bcot(12√−Bσ)ν)(μ+√−Bcot(12√−Bσ))3, | (3.20) |
f2,3(t,x)=8413λν(31+3i√31)B(1+sin(√−Bσ))2(cos(√−Bσ))2(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)2+4213(17+i√31)λB(1+sin(√−Bσ))(−12μν+12√−B(tan(√−Bσ)+sec(√−Bσ))ν)(cos(√−Bσ))(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)+8413(31+3i√31)μλB(1+sin(√−Bσ))2(−12μν+12√−B(tan(√−Bσ)+sec(√−Bσ))ν)(cos(√−Bσ))2(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)2+8413(31+3i√31)λB2(1+sin(√−Bσ))3(−12μν+12√−B(tan(√−Bσ)+sec(√−Bσ))ν)(cos(√−Bσ))3(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)3, | (3.21) |
and
f2,4(t,x)=8413λν(31+3i√31)B(sin(√−Bσ)−1)2(cos(√−Bσ))2(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)2+4213(17+i√31)λB(sin(√−Bσ)−1)(−12μν+12√−B(tan(√−Bσ)−sec(√−Bσ))ν)(cos(√−Bσ))−1(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)+8413(31+3i√31)μλB(sin(√−Bσ)−1)2(−12μν+12√−B(tan(√−Bσ)−sec(√−Bσ))ν)(cos(√−Bσ))2(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)2+8413(31+3i√31)λB2(sin(√−Bσ)−1)3(−12μν+12√−B(tan(√−Bσ)−sec(√−Bσ))ν)(cos(√−Bσ))3(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)3. | (3.22) |
● Hyperbolic solutions: When B>0,ν≠0,
f2,5(t,x)=2113λν(31+3i√31)B(−1+(tanh(12√Bσ))2)2(μ+√Btanh(12√Bσ))2+2113(17+i√31)λB(−1+(tanh(12√Bσ))2)(−12μν−12√Btanh(12√Bσ)ν)(μ+√Btanh(12√Bσ))+2113(31+3i√31)μλB(−1+(tanh(12√Bσ))2)2(−12μν−12√Btanh(12√Bσ)ν)(μ+√Btanh(12√Bσ))2+2126(31+3i√31)λB2(−1+(tanh(12√Bσ))2)3(−12μν−12√Btanh(12√Bσ)ν)(μ+√Btanh(12√Bσ))3, | (3.23) |
f2,6(t,x)=8413λν(31+3i√31)B(−1+isinh(√Bσ))2(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)2+4213(17+i√31)λB(−1+isinh(√Bσ))(−12μν−12√B(tanh(√Bσ)+isech(√Bσ))ν)(cosh(√Bσ))(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)+8413(31+3i√31)μλB(−1+isinh(√Bσ))2(−12μν−12√B(tanh(√Bσ)+isech(√Bσ))ν)(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)2+8413(31+3i√31)λB2(−1+isinh(√Bσ))3(−12μν−12√B(tanh(√Bσ)+isech(√Bσ))ν)(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)3, | (3.24) |
f2,7(t,x)=8413λν(31+3i√31)B(1+isinh(√Bσ))2(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)2−4213(17+i√31)λB(1+isinh(√Bσ))(−12μν−12√B(tanh(√Bσ)−isech(√Bσ))ν)(cosh(√Bσ))(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)+8413(31+3i√31)μλB(1+isinh(√Bσ))2(−12μν−12√B(tanh(√Bσ)−isech(√Bσ))ν)(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)2−8413(31+3i√31)λB2(1+isinh(√Bσ))3(−12μν−12√B(tanh(√Bσ)−isech(√Bσ))ν)(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)3, | (3.25) |
and
f2,8(t,x)=2152λν(31+3i√31)B(2(cosh(14√Bσ))2−1)2(cosh(14√Bσ))2(sinh(14√Bσ))2(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)2+2126(17+i√31)λB(2(cosh(14√Bσ))2−1)(−12μν−14√B(tanh(14√Bσ)−coth(14√Bσ))ν)(cosh(14√Bσ))(sinh(14√Bσ))(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)+2152(31+3i√31)μλB(2(cosh(14√Bσ))2−1)2(−12μν−14√B(tanh(14√Bσ)−coth(14√Bσ))ν)(cosh(14√Bσ))2(sinh(14√Bσ))2(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)2+21208(31+3i√31)λB2(2(cosh(14√Bσ))2−1)3(−12μν−14√B(tanh(14√Bσ)−coth(14√Bσ))ν)(cosh(14√Bσ))3(sinh(14√Bσ))3(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)3. | (3.26) |
● Exponential solution: When μ=ϖ, λ=bϖ(b≠0), and ν=0,
f2,9(t,x)=−4213(17+i√31)bϖ2eϖσ+8413(31+3i√31)ϖ4b(eϖσ)2B(eϖσ−b)−8413(31+3i√31)bϖ4(eϖσ)3B(eϖσ−b)2. | (3.27) |
In the above solutions,
σ=x−3130(1457+161i√31)B31+3i√31t. |
Assuming Case 3, for the QBLE given in (1.1), we build the subsequent sets of hump soliton solutions:
● Trigonometric solutions: When B<0,ν≠0,
f3,1(t,x)=−7213B+42013B2(1+(tan(12√−Bσ))2)2(−μ+√−Btan(12√−Bσ))2+42013μB2(1+(tan(12√−Bσ))2)3(−μ+√−Btan(12√−Bσ))3+10513B3(1+(tan(12√−Bσ))2)4(−μ+√−Btan(12√−Bσ))4+42013μλB(1+(tan(12√−Bσ))2)2(−12μν+12√−Btan(12√−Bσ)ν)(−μ+√−Btan(12√−Bσ))2+21013λB2(1+(tan(12√−Bσ))2)3(−12μν+12√−Btan(12√−Bσ)ν)(−μ+√−Btan(12√−Bσ))3, | (3.28) |
f3,2(t,x)=−7213B+42013B2(1+(cot(12√−Bσ))2)2(μ+√−Bcot(12√−Bσ))2−42013μB2(1+(cot(12√−Bσ))2)3(μ+√−Bcot(12√−Bσ))3+10513B3(1+(cot(12√−Bσ))2)4(μ+√−Bcot(12√−Bσ))4+42013μλB(1+(cot(12√−Bσ))2)2(−12μν−12√−Bcot(12√−Bσ)ν)(μ+√−Bcot(12√−Bσ))2−21013λB2(1+(cot(12√−Bσ))2)3(−12μν−12√−Bcot(12√−Bσ)ν)(μ+√−Bcot(12√−Bσ))3, | (3.29) |
f3,3(t,x)=−7213B+168013B2(1+sin(√−Bσ))2(cos(√−Bσ))2(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)2+336013μB2(1+sin(√−Bσ))3(cos(√−Bσ))3(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)3+168013B3(1+sin(√−Bσ))4(cos(√−Bσ))4(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)4+168013μλB(1+sin(√−Bσ))2(−12μν+12√−B(tan(√−Bσ)+sec(√−Bσ))ν)(cos(√−Bσ))2(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)2+168013λB2(1+sin(√−Bσ))3(−12μν+12√−B(tan(√−Bσ)+sec(√−Bσ))ν)(cos(√−Bσ))3(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)3, | (3.30) |
and
f3,4(t,x)=−7213B+168013B2(sin(√−Bσ)−1)2(cos(√−Bσ))2(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)2+336013μB2(sin(√−Bσ)−1)3(cos(√−Bσ))3(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)3+168013B3(sin(√−Bσ)−1)4(cos(√−Bσ))4(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)4+168013μλB(sin(√−Bσ)−1)2(−12μν+12√−B(tan(√−Bσ)−sec(√−Bσ))ν)(cos(√−Bσ))2(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)2+168013λB2(sin(√−Bσ)−1)3(−12μν+12√−B(tan(√−Bσ)−sec(√−Bσ))ν)(cos(√−Bσ))3(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)3. | (3.31) |
● Hyperbolic solutions: When B>0,ν≠0,
f3,5(t,x)=−7213B+42013B2(−1+(tanh(12√Bσ))2)2(μ+√Btanh(12√Bσ))2+42013μB2(−1+(tanh(12√Bσ))2)3(μ+√Btanh(12√Bσ))3+10513B3(−1+(tanh(12√Bσ))2)4(μ+√Btanh(12√Bσ))4+42013μλB(−1+(tanh(12√Bσ))2)2(−12μν−12√Btanh(12√Bσ)ν)(μ+√Btanh(12√Bσ))2+21013λB2(−1+(tanh(12√Bσ))2)3(−12μν−12√Btanh(12√Bσ)ν)(μ+√Btanh(12√Bσ))3, | (3.32) |
f3,6(t,x)=−7213B+168013B2(−1+isinh(√Bσ))2(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)2+336013μB2(−1+isinh(√Bσ))3(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)3+168013B3(−1+isinh(√Bσ))4(cosh(√Bσ))4(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)4+168013μλB(−1+isinh(√Bσ))2(−12μν−12√B(tanh(√Bσ)+isech(√Bσ))ν)(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)2+168013λB2(−1+isinh(√Bσ))3(−12μν−12√B(tanh(√Bσ)+isech(√Bσ))ν)(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)3, | (3.33) |
f3,7(t,x)=−7213B+168013B2(1+isinh(√Bσ))2(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)2−336013μB2(1+isinh(√Bσ))3(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)3+168013B3(1+isinh(√Bσ))4(cosh(√Bσ))4(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)4+168013μλB(1+isinh(√Bσ))2(−12μν−12√B(tanh(√Bσ)−isech(√Bσ))ν)(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)2−168013λB2(1+isinh(√Bσ))3(−12μν−12√B(tanh(√Bσ)−isech(√Bσ))ν)(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)3, | (3.34) |
and
f3,8(t,x)=−7213B+10513B2(2(cosh(14√Bσ))2−1)2(cosh(14√Bσ))2(sinh(14√Bσ))2(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)2+10526μB2(2(cosh(14√Bσ))2−1)3(cosh(14√Bσ))3(sinh(14√Bσ))3(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)3+105208B3(2(cosh(14√Bσ))2−1)4(cosh(14√Bσ))4(sinh(14√Bσ))4(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)4+10513μλB(2(cosh(14√Bσ))2−1)2(−12μν−14√B(tanh(14√Bσ)−coth(14√Bσ))ν)(cosh(14√Bσ))2(sinh(14√Bσ))2(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)2+10552λB2(2(cosh(14√Bσ))2−1)3(−12μν−14√B(tanh(14√Bσ)−coth(14√Bσ))ν)(cosh(14√Bσ))3(sinh(14√Bσ))3(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)3. | (3.35) |
● Exponential solution: When μ=ϖ, λ=bϖ(b≠0) and ν=0,
f3,9(t,x)=−7213B+168013ϖ2(eϖσ)2(eϖσ−b)2−336013ϖ4(eϖσ)3B(eϖσ−b)3+168013ϖ4(eϖσ)4B(eϖσ−b)4+168013ϖ4b(eϖσ)2B(eϖσ−b)−168013bϖ4(eϖσ)3B(eϖσ−b)2. | (3.36) |
● Exponential solution: When μ=ϖ, ν=bϖ(b≠0), and λ=0,
f3,10(t,x)=−7213B+168013ϖ2(−1+beϖσ)2+336013ϖ4B(−1+beϖσ)3+168013ϖ4B(−1+beϖσ)4. | (3.37) |
● Rational-hyperbolic solutions: When λ=0, ν≠0, and μ≠0,
f3,11(t,x)=−7213B+168013μ2(sinh(μσ)−cosh(μσ))2(sinh(μσ)−cosh(μσ)−a2)2−336013μ4(sinh(μσ)−cosh(μσ))3B(sinh(μσ)−cosh(μσ)−a2)3+168013μ4(sinh(μσ)−cosh(μσ))4B(sinh(μσ)−cosh(μσ)−a2)4, | (3.38) |
and
f3,12(t,x)=−7213B+168013μ2a22(cosh(μσ)+sinh(μσ)+a2)2−336013μ4a23B(cosh(μσ)+sinh(μσ)+a2)3+168013μ4a24B(cosh(μσ)+sinh(μσ)+a2)4. | (3.39) |
In the above solutions, σ=x+3613Bt. Assuming Case 4, for the QBLE given in (1.1), we build the subsequent sets of hump soliton solutions:
● Trigonometric solutions: When B<0,ν≠0,
f4,1(t,x)=42013B2(1+(tan(12√−Bσ))2)2(−μ+√−Btan(12√−Bσ))2+42013μB2(1+(tan(12√−Bσ))2)3(−μ+√−Btan(12√−Bσ))3+10513B3(1+(tan(12√−Bσ))2)4(−μ+√−Btan(12√−Bσ))4+42013μλB(1+(tan(12√−Bσ))2)2(−12μν+12√−Btan(12√−Bσ)ν)(−μ+√−Btan(12√−Bσ))2+21013λB2(1+(tan(12√−Bσ))2)3(−12μν+12√−Btan(12√−Bσ)ν)(−μ+√−Btan(12√−Bσ))3, | (3.40) |
f4,2(t,x)=42013B2(1+(cot(12√−Bσ))2)2(μ+√−Bcot(12√−Bσ))2−42013μB2(1+(cot(12√−Bσ))2)3(μ+√−Bcot(12√−Bσ))3+10513B3(1+(cot(12√−Bσ))2)4(μ+√−Bcot(12√−Bσ))4+42013μλB(1+(cot(12√−Bσ))2)2(−12μν−12√−Bcot(12√−Bσ)ν)(μ+√−Bcot(12√−Bσ))2−21013λB2(1+(cot(12√−Bσ))2)3(−12μν−12√−Bcot(12√−Bσ)ν)(μ+√−Bcot(12√−Bσ))3, | (3.41) |
f4,3(t,x)=168013B2(1+sin(√−Bσ))2(cos(√−Bσ))2(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)2+336013μB2(1+sin(√−Bσ))3(cos(√−Bσ))3(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)3+168013B3(1+sin(√−Bσ))4(cos(√−Bσ))4(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)4+168013μλB(1+sin(√−Bσ))2(−12μν+12√−B(tan(√−Bσ)+sec(√−Bσ))ν)(cos(√−Bσ))2(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)2+168013λB2(1+sin(√−Bσ))3(−12μν+12√−B(tan(√−Bσ)+sec(√−Bσ))ν)(cos(√−Bσ))3(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)3, | (3.42) |
and
f4,4(t,x)=168013B2(sin(√−Bσ)−1)2(cos(√−Bσ))2(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)2+336013μB2(sin(√−Bσ)−1)3(cos(√−Bσ))3(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)3+168013B3(sin(√−Bσ)−1)4(cos(√−Bσ))4(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)4+168013μλB(sin(√−Bσ)−1)2(−12μν+12√−B(tan(√−Bσ)−sec(√−Bσ))ν)(cos(√−Bσ))2(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)2+168013λB2(sin(√−Bσ)−1)3(−12μν+12√−B(tan(√−Bσ)−sec(√−Bσ))ν)(cos(√−Bσ))3(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)3. | (3.43) |
● Hyperbolic solutions: When B>0,ν≠0,
f4,5(t,x)=42013B2(−1+(tanh(12√Bσ))2)2(μ+√Btanh(12√Bσ))2+42013μB2(−1+(tanh(12√Bσ))2)3(μ+√Btanh(12√Bσ))3+10513B3(−1+(tanh(12√Bσ))2)4(μ+√Btanh(12√Bσ))4+42013μλB(−1+(tanh(12√Bσ))2)2(−12μν−12√Btanh(12√Bσ)ν)(μ+√Btanh(12√Bσ))2+21013λB2(−1+(tanh(12√Bσ))2)3(−12μν−12√Btanh(12√Bσ)ν)(μ+√Btanh(12√Bσ))3, | (3.44) |
f4,6(t,x)=168013B2(−1+isinh(√Bσ))2(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)2+336013μB2(−1+isinh(√Bσ))3(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)3+168013B3(−1+isinh(√Bσ))4(cosh(√Bσ))4(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)4+168013μλB(−1+isinh(√Bσ))2(−12μν−12√B(tanh(√Bσ)+isech(√Bσ))ν)(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)2+168013λB2(−1+isinh(√Bσ))3(−12μν−12√B(tanh(√Bσ)+isech(√Bσ))ν)(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)3, | (3.45) |
f4,7(t,x)=168013B2(1+isinh(√Bσ))2(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)2−336013μB2(1+isinh(√Bσ))3(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)3+168013B3(1+isinh(√Bσ))4(cosh(√Bσ))4(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)4+168013μλB(1+isinh(√Bσ))2(−12μν−12√B(tanh(√Bσ)−isech(√Bσ))ν)(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)2−168013λB2(1+isinh(√Bσ))3(−12μν−12√B(tanh(√Bσ)−isech(√Bσ))ν)(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)3, | (3.46) |
and
f4,8(t,x)=10513B2(2(cosh(14√Bσ))2−1)2(cosh(14√Bσ))2(sinh(14√Bσ))2(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)2+10526μB2(2(cosh(14√Bσ))2−1)3(cosh(14√Bσ))3(sinh(14√Bσ))3(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)3+105208B3(2(cosh(14√Bσ))2−1)4(cosh(14√Bσ))4(sinh(14√Bσ))4(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)4+10513μλB(2(cosh(14√Bσ))2−1)2(−12μν−14√B(tanh(14√Bσ)−coth(14√Bσ))ν)(cosh(14√Bσ))2(sinh(14√Bσ))2(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)2+10552λB2(2(cosh(14√Bσ))2−1)3(−12μν−14√B(tanh(14√Bσ)−coth(14√Bσ))ν)(cosh(14√Bσ))3(sinh(14√Bσ))3(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)3. | (3.47) |
● Exponential solution: When μ=ϖ, λ=bϖ(b≠0), and ν=0,
f4,9(t,x)=168013(ϖ2(eϖσ)2(eϖσ−b)2−2ϖ4(eϖσ)3B(eϖσ−b)3+ϖ4(eϖσ)4B(eϖσ−b)4+ϖ4b(eϖσ)2B(eϖσ−b)−bϖ4(eϖσ)3B(eϖσ−b)2). | (3.48) |
● Exponential solution: When μ=ϖ, ν=bϖ(b≠0), and λ=0,
f4,10(t,x)=168013ϖ2(−1+beϖσ)2+336013ϖ4B(−1+beϖσ)3+168013ϖ4B(−1+beϖσ)4. | (3.49) |
● Rational-hyperbolic solutions: When λ=0, ν≠0, and μ≠0,
f4,11(t,x)=168013μ2(sinh(μσ)−cosh(μσ))2(sinh(μσ)−cosh(μσ)−a2)2−336013μ4(sinh(μσ)−cosh(μσ))3B(sinh(μσ)−cosh(μσ)−a2)3+168013μ4(sinh(μσ)−cosh(μσ))4B(sinh(μσ)−cosh(μσ)−a2)4, | (3.50) |
and
f4,12(t,x)=168013μ2a22(cosh(μσ)+sinh(μσ)+a2)2−336013μ4a23B(cosh(μσ)+sinh(μσ)+a2)3+168013μ4a24B(cosh(μσ)+sinh(μσ)+a2)4. | (3.51) |
In the above solutions, σ=x−3613t. Assuming Case 5, for the QBLE given in (1.1), we build the subsequent sets of hump soliton solutions:
● Trigonometric solutions: When B<0,ν≠0,
f5,1(t,x)=−42013λνB(1+(tan(12√−Bσ))2)2(−μ+√−Btan(12√−Bσ))2−42013μλB(1+(tan(12√−Bσ))2)2(−12μν+12√−Btan(1/2√−Bσ)ν)(−μ+√−Btan(12√−Bσ))2−21013λB2(1+(tan(12√−Bσ))2)3(−12μν+12√−Btan(12√−Bσ)ν)(−μ+√−Btan(12√−Bσ))3, | (3.52) |
f5,2(t,x)=−42013λνB(1+(cot(12√−Bσ))2)2(μ+√−Bcot(12√−Bσ))2−42013μλB(1+(cot(12√−Bσ))2)2(−12μν−12√−Bcot(1/2√−Bσ)ν)(μ+√−Bcot(12√−Bσ))2+21013λB2(1+(cot(12√−Bσ))2)3(−12μν−1/2√−Bcot(12√−Bσ)ν)(μ+√−Bcot(12√−Bσ))3, | (3.53) |
f5,3(t,x)=−168013λνB(1+sin(√−Bσ))2(cos(√−Bσ))2(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)2−168013μλB(1+sin(√−Bσ))2(−12μν+12√−B(tan(√−Bσ)+sec(√−Bσ))ν)(cos(√−Bσ))2(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)2−168013λB2(1+sin(√−Bσ))3(−12μν+12√−B(tan(√−Bσ)+sec(√−Bσ))ν)(cos(√−Bσ))3(−μcos(√−Bσ)+√−Bsin(√−Bσ)+√−B)3, | (3.54) |
and
f5,4(t,x)=−168013λνB(sin(√−Bσ)−1)2(cos(√−Bσ))2(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)2−168013μλB(sin(√−Bσ)−1)2(−12μν+12√−B(tan(√−Bσ)−sec(√−Bσ))ν)(cos(√−Bσ))2(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)2−168013λB2(sin(√−Bσ)−1)3(−12μν+12√−B(tan(√−Bσ)−sec(√−Bσ))ν)(cos(√−Bσ))3(μcos(√−Bσ)−√−Bsin(√−Bσ)+√−B)3. | (3.55) |
When B>0,ν≠0,
f5,5(t,x)=−42013λνB(−1+(tanh(12√Bσ))2)2(μ+√Btanh(12√Bσ))2−42013μλB(−1+(tanh(12√Bσ))2)2(−12μν−12√Btanh(12√Bσ)ν)(μ+√Btanh(12√Bσ))2−21013λB2(−1+(tanh(12√Bσ))2)3(−12μν−12√Btanh(12√Bσ)ν)(μ+√Btanh(12√Bσ))3, | (3.56) |
f5,6(t,x)=−168013λνB(−1+isinh(√Bσ))2(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)2−168013μλB(−1+isinh(√Bσ))2(−12μν−12√B(tanh(√Bσ)+isech(√Bσ))ν)(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)2−168013λB2(−1+isinh(√Bσ))3(−12μν−12√B(tanh(√Bσ)+isech(√Bσ))ν)(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)+i√B)3, | (3.57) |
f5,7(t,x)=−168013λνB(1+isinh(√Bσ))2(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)2−168013μλB(1+isinh(√Bσ))2(−12μν−12√B(tanh(√Bσ)−isech(√Bσ))ν)(cosh(√Bσ))2(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)2+168013λB2(1+isinh(√Bσ))3(−12μν−12√B(tanh(√Bσ)−isech(√Bσ))ν)(cosh(√Bσ))3(μcosh(√Bσ)+√Bsinh(√Bσ)−i√B)3, | (3.58) |
and
f5,8(t,x)=−10513λνB(2(cosh(14√Bσ))2−1)2(cosh(14√Bσ))2(sinh(14√Bσ))2(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)2−10513μλB(2(cosh(14√Bσ))2−1)2(−12μν−14√B(tanh(14√Bσ)−coth(14√Bσ))ν)(cosh(14√Bσ))2(sinh(14√Bσ))2(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)2−10552λB2(2(cosh(14√Bσ))2−1)3(−12μν−14√B(tanh(14√Bσ)−coth(14√Bσ))ν)(cosh(14√Bσ))3(sinh(14√Bσ))3(−2μcosh(14√Bσ)sinh(14√Bσ)+√B)3. | (3.59) |
● Exponential solution: When μ=ϖ, λ=bϖ(b≠0) and ν=0,
f5,9(t,x)=168013ϖ4b2e2ϖσB(eϖσ−b)2. | (3.60) |
In the above solutions, σ=x−3613Bt.
This section displays the many soliton patterns found in the model QBLE under analysis, see Figures 1–10. In contour, 3D, and 2D graphs, we were able to successfully extract and analyze these wave patterns by utilizing the RMESEM and the Maple tool. Notable characteristics of these depictions are the dark and bright hump solitons. Additionally, to the best of our knowledge, no published research has applied the proposed method to the QBLE, hence the findings of this investigation are unique.
In the framework of the QBLE, a soliton is localized and stable that maintains its speed and shape while propagating and arises in nonlinear models due to the balance of dispersion and nonlinearity's effect allowing them to propagate without any change over time. In liquid films, these solitons exhibit localized disturbance in the thickness of film which may be caused by evaporation, external forces or other dynamical processes. We prominently explored dark and bright hump solitons in the context of the QBLE in liquid film. When juxtaposed to the ambient fluid stage, dark humps can be identified by a regional submerge or decline in layer thickness that forms a void or dip. Solitons arise when the dispersive impacts outweigh the effects of nonlinearity, resulting in a regional diminution of the layer thickness of the film. These solitons reflect an expanse or decline in the vertical dimension or content of the fluid. Essentially, it suggests that the nonlinearity balances the pulling forces that propagate the wave, forming an equilibrium depression in the process. Conversely, bright humps are confined waves that develop atop the fluid's surrounding level as a crest or apex due to an unexpected rise in the amount of thickness of the film of liquid. These solitons arise because the equilibrium between dispersal and the nonlinearity permits the production of a confined spike. They are defined by an accumulation of either energy or density in a limited location, resulting in a single peak that retains its initial form when traveling across the medium's surface. This usually occurs in situations where a confined, persistent rise in layer thickness results from the nonlinearity's tendency to concentrate on the wave overpowering the dispersive effects' tendency for spreading it apart. Such behavior suggests that the mechanism is in a state of dynamic equilibrium, in which fluctuations occur on a regular basis as a result of external stimuli operating on the liquid film. We can learn about the rich behavior of the QBLE in liquid film from each of these hump solitons.
In this work, a collection of propagating soliton solutions associated with the QBLE have been established using the strategic RMESEM. The proposed approach was effective because it yielded a greater variety of soliton solutions in the shape of rational, hyperbolic, rational-hyperbolic, and exponential trigonometric functions, which offer a deeper comprehension of the underlying dynamics of the QBLE. We have gained significant new understanding of QBLE dynamics from the dark and bright hump soliton solutions. Visual representations in two and three dimensions as well as contours aid in our comprehension of these hump soliton solutions and the related wave phenomena. As a whole, this work highlights the need for additional research and real-world applications in a number of areas, such as fluid media and plasma physics. The shortcoming of the method is that it fails when the largest nonlinear term does not balance homogeneously with the greatest derivative terms as, in this case, the homogenous balancing principle is unable to produce an algebraic system of equations. Despite this drawback, the current analysis shows that the approach used in this work is quite dependable and effective for nonlinear problems across a number of scientific fields.
The future scope of this study is to investigate the aimed model in fractional and stochastic forms and to study the effect of different fractional derivatives and noise on the soliton phenomena using the proposed RMESEM.
Conceptualization, W.H.; Data curation, H.Z.; Formal analysis, A.A.A; Resources, W.H.; Investigation, H.Z.; Project administration, W.H.; Validation, A.A.A.; Software, W.H.; Validation, H.Z.; Visualization, A.A.A.; Validation, W.H.; Visualization, H.Z.; Resources, A.A.A and W.H.; Project administration, A.A.A; Writing, review & editing, W.H.; Funding, W.H. All authors have read and agreed to the published version of the manuscript.
The authors gratefully acknowledge the funding of the Deanship of Graduate Studies and Scientific Research, Jazan University, Saudi Arabia, through Project Number: GSSRD-24.
The authors declare that they have no conflicts of interest.
[1] |
R. Ali, Z. Zhang, H. Ahmad, Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: an analytical study, Opt. Quant. Electron., 56 (2024), 838. https://doi.org/10.1007/s11082-024-06370-2 doi: 10.1007/s11082-024-06370-2
![]() |
[2] |
Y. Kai, Z. Yin, On the Gaussian traveling wave solution to a special kind of Schröinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 36 (2021), 2150543. https://doi.org/10.1142/S0217984921505436 doi: 10.1142/S0217984921505436
![]() |
[3] | Y. Kai, S. Chen, K. Zhang, Z. Yin, Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation, Waves Random Complex Media, 2022. https://doi.org/10.1080/17455030.2022.2044541 |
[4] |
Y., Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
![]() |
[5] | Q. Wu, N. Chen, M. Yao, Y. Niu, C. Wang, Nonlinear dynamic analysis of FG fluid conveying micropipes with initial imperfections, Int. J. Struct. Stab. Dyn., 2024. https://doi.org/10.1142/S0219455425500178 |
[6] |
L. Liu, S. Zhang, L. Zhang, G. Pan, J. Yu, Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network, IEEE Trans. Cybern., 53 (2023), 4015–4028. https://doi.org/10.1109/TCYB.2022.3225106 doi: 10.1109/TCYB.2022.3225106
![]() |
[7] |
A. Gaber, H. Ahmad, Solitary wave solutions for space-time fractional coupled integrable dispersionless system via generalized Kudryashov method, Facta Univ. Ser.: Math. Inf., 2021 (2021), 1439–1449. https://doi.org/10.22190/FUMI2005439G doi: 10.22190/FUMI2005439G
![]() |
[8] |
H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
![]() |
[9] |
M. Younis, M. Iftikhar, Computational examples of a class of fractional order nonlinear evolution equations using modified extended direct algebraic method, J. Comput. Methods Sci. Eng., 15 (2015), 359–365. https://doi.org/10.3233/JCM-150548 doi: 10.3233/JCM-150548
![]() |
[10] |
Y. Tian, J. Liu, A modified exp-function method for fractional partial differential equations, Therm. Sci., 25 (2021), 1237–1241. https://doi.org/10.2298/TSCI200428017T doi: 10.2298/TSCI200428017T
![]() |
[11] |
M. M. A. Khater, Computational simulations of propagation of a tsunami wave across the ocean, Chaos Soliton. Fract., 174 (2023), 113806. https://doi.org/10.1016/j.chaos.2023.113806 doi: 10.1016/j.chaos.2023.113806
![]() |
[12] |
W. Alhejaili, E. Az-Zo'bi, R. Shah, S. A. El-Tantawy, On the analytical soliton approximations to fractional forced Korteweg-de Vries equation arising in fluids and Plasmas using two novel techniques, Commun. Theor. Phys., 76 (2024), 085001. https://doi.org/10.1088/1572-9494/ad53bc doi: 10.1088/1572-9494/ad53bc
![]() |
[13] |
M. A. Bayrak, A. Demir, A new approach for space-time fractional partial differential equations by residual power series method, Appl. Math. Comput., 336 (2018), 215–230. https://doi.org/10.1016/j.amc.2018.04.032 doi: 10.1016/j.amc.2018.04.032
![]() |
[14] |
O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Methods Heat Fluid Flow, 30 (2020), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394 doi: 10.1108/HFF-10-2017-0394
![]() |
[15] | M. Kaplan, A. Bekir, A. Akbulut, E. Aksoy, The modified simple equation method for nonlinear fractional differential equations, Rom. J. Phys., 60 (2015), 1374–1383. |
[16] |
S. Akcagil, T. Aydemir, A new application of the unified method, New Trends Math. Sci., 6 (2018), 185–199. https://doi.org/10.20852/ntmsci.2018.261 doi: 10.20852/ntmsci.2018.261
![]() |
[17] |
M. Eslami, B. Fathi Vajargah, M. Mirzazadeh, A. Biswas, Application of first integral method to fractional partial differential equations, Indian J. Phys., 88 (2014), 177–184. https://doi.org/10.1007/s12648-013-0401-6 doi: 10.1007/s12648-013-0401-6
![]() |
[18] |
N. M. Rasheed, M. O. Al-Amr, E. A. Az-Zobi, M. A. Tashtoush, L. Akinyemi, Stable optical solitons for the Higher-order Non-Kerr NLSE via the modified simple equation method, Mathematics, 9 (2021), 1986. https://doi.org/10.3390/math9161986 doi: 10.3390/math9161986
![]() |
[19] |
P. G. Estévez, E. Conde, P. R. Gordoa, Unified approach to Miura, Bäcklund and Darboux transformations for nonlinear partial differential equations, J. Nonlinear Math. Phys., 5 (1998), 82–114. https://doi.org/10.2991/jnmp.1998.5.1.8 doi: 10.2991/jnmp.1998.5.1.8
![]() |
[20] |
N. K. Vitanov, Z. I. Dimitrova, Simple equations method (SEsM) and its particular cases: Hirota method, AIP Conf. Proc., 2321 (2021), 030036. https://doi.org/10.1063/5.0040410 doi: 10.1063/5.0040410
![]() |
[21] |
Y. Xiao, S. Barak, M. Hleili, K. Shah, Exploring the dynamical behaviour of optical solitons in integrable kairat-II and kairat-X equations, Phys. Scr., 99 (2024), 095261. https://doi.org/10.1088/1402-4896/ad6e34 doi: 10.1088/1402-4896/ad6e34
![]() |
[22] |
S. Alshammari, M. M. Al-Sawalha, R. Shah, Approximate analytical methods for a fractional-order nonlinear system of Jaulent-Miodek equation with energy-dependent Schrödinger potential, Fractal Fract., 7 (2023), 140. https://doi.org/10.3390/fractalfract7020140 doi: 10.3390/fractalfract7020140
![]() |
[23] |
A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
![]() |
[24] |
A. H. Arnous, A. Biswas, A. H. Kara, Y. Yıldırım, L. Moraru, C. Iticescu, et al., Optical solitons and conservation laws for the concatenation model with spatio-temporal dispersion (internet traffic regulation), J. Eur. Opt. Society-Rapid Publ., 19 (2023), 35. https://doi.org/10.1051/jeos/2023031 doi: 10.1051/jeos/2023031
![]() |
[25] |
M. M. Al-Sawalha, R. Shah, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Math., 7 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
![]() |
[26] |
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
![]() |
[27] |
E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of the fractional-order Navier-Stokes equations by a novel approach, J. Funct. Spaces, 2022 (2022), 8979447. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
![]() |
[28] | R. Ali, D. Kumar, A. Akgul, A. Altalbe, On the periodic soliton solutions for fractional Schrödinger equations, Fractals, 2024. https://doi.org/10.1142/S0218348X24400334 |
[29] |
M. Alqhtani, K. M. Saad, W. M. Hamanah, Discovering novel soliton solutions for (3+1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quant. Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2 doi: 10.1007/s11082-023-05407-2
![]() |
[30] |
M. Alqhtani, K. M. Saad, R. Shah, W. Weera, W. M. Hamanah, Analysis of the fractional-order local Poisson equation in fractal porous media, Symmetry, 14 (2022), 1323. https://doi.org/10.3390/sym14071323 doi: 10.3390/sym14071323
![]() |
[31] |
M. Bilal, J. Iqbal, R. Ali, F. A. Awwad, E. A. A. Ismail, Establishing breather and N-soliton solutions for conformable Klein-Gordon equation, Open Phys., 22 (2024), 20240044 https://doi.org/10.1515/phys-2024-0044 doi: 10.1515/phys-2024-0044
![]() |
[32] |
R. Ali, Z. Zhang, H. Ahmad, M. M. Alam, The analytical study of soliton dynamics in fractional coupled Higgs system using the generalized Khater method, Opt. Quant. Electron., 56 (2024), 1067. https://doi.org/10.1007/s11082-024-06924-4 doi: 10.1007/s11082-024-06924-4
![]() |
[33] |
C. Zhu, M. Al-Dossari, S. Rezapour, B. Gunay, On the exact soliton solutions and different wave structures to the (2+1) dimensional Chaffee-Infante equation, Results Phys., 57 (2024), 107431. https://doi.org/10.1016/j.rinp.2024.107431 doi: 10.1016/j.rinp.2024.107431
![]() |
[34] |
T. A. A. Ali, Z. Xiao, H. Jiang, B. Li, A class of digital integrators based on trigonometric quadrature rules, IEEE Trans. Ind. Electron., 71 (2024), 6128–6138. https://doi.org/10.1109/TIE.2023.3290247 doi: 10.1109/TIE.2023.3290247
![]() |
[35] |
M. M. A. Khater, Advanced computational techniques for solving the modified KdV-KP equation and modeling nonlinear waves, Opt. Quant. Electron., 56 (2024), 6. https://doi.org/10.1007/s11082-023-05581-3 doi: 10.1007/s11082-023-05581-3
![]() |
[36] |
M. M. A. Khater, Waves in motion: unraveling nonlinear behavior through the Gilson-Pickering equation, Eur. Phys. J. Plus, 138 (2023), 1138. https://doi.org/10.1140/epjp/s13360-023-04774-9 doi: 10.1140/epjp/s13360-023-04774-9
![]() |
[37] |
M. M. A. Khater, Analyzing pulse behavior in optical fiber: novel solitary wave solutions of the perturbed Chen-Lee-Liu equation, Mod. Phys. Lett. B, 37 (2023), 2350177. https://doi.org/10.1142/S0217984923501774 doi: 10.1142/S0217984923501774
![]() |
[38] |
M. M. A. Khater, Exploring the rich solution landscape of the generalized Kawahara equation: insights from analytical techniques, Eur. Phys. J. Plus, 139 (2024), 184. https://doi.org/10.1140/epjp/s13360-024-04971-0 doi: 10.1140/epjp/s13360-024-04971-0
![]() |
[39] |
M. M. A. Khater, Wave propagation and evolution in a (1+1)-dimensional spatial-temporal domain: a comprehensive study, Mod. Phys. Lett. B, 38 (2024), 2350235. https://doi.org/10.1142/S0217984923502354 doi: 10.1142/S0217984923502354
![]() |
[40] |
M. M. A. Khater, Dynamics of nonlinear time fractional equations in shallow water waves, Int. J. Theor. Phys., 63 (2024), 92. https://doi.org/10.1007/s10773-024-05634-7 doi: 10.1007/s10773-024-05634-7
![]() |
[41] |
M. M. A. Khater, Computational method for obtaining solitary wave solutions of the (2+1)-dimensional AKNS equation and their physical significance, Mod. Phys. Lett. B, 38 (2024), 2350252. https://doi.org/10.1142/S0217984923502524 doi: 10.1142/S0217984923502524
![]() |
[42] |
S. P. Lin, Finite amplitude side-band stability of a viscous film, J. Fluid Mech., 63 (1974), 417–429. https://doi.org/10.1017/S0022112074001704 doi: 10.1017/S0022112074001704
![]() |
[43] | D. Benney, Long waves on liquid films, J. Math. Phys., 45 (1966), 150–155. https://doi.org/10.1002/sapm1966451150 |
[44] |
W. Gao, P. Veeresha, D. G. Prakasha, H. M. Baskonus, New numerical simulation for fractional Benney-Lin equation arising in falling film problems using two novel techniques, Numer. Methods Partial Differ. Equ., 37 (2021), 210–243. https://doi.org/10.1002/num.22526 doi: 10.1002/num.22526
![]() |
[45] |
N. G. Berloff, L. N. Howard, Solitary and periodic solutions of nonlinear nonintegrable equations, Stud. Appl. Math., 99 (1997), 1–24. https://doi.org/10.1111/1467-9590.00054 doi: 10.1111/1467-9590.00054
![]() |
[46] |
H. A. Biagioni, F. Linares, On the Benney-Lin and Kawahara equations, J. Math. Anal. Appl., 211 (1997), 131–152. https://doi.org/10.1006/jmaa.1997.5438 doi: 10.1006/jmaa.1997.5438
![]() |
[47] |
S. B. Cui, D. G. Deng, S. P. Tao, Global existence of solutions for the Cauchy problem of the Kawahara equation with L2 initial data, Acta Math. Sinica, 22 (2006), 1457–1466. https://doi.org/10.1007/s10114-005-0710-6 doi: 10.1007/s10114-005-0710-6
![]() |
[48] |
H. Tariq, G. Akram, Residual power series method for solving time-space-fractional Benney-Lin equation arising in falling film problems, J. Appl. Math. Comput., 55 (2017), 683–708. https://doi.org/10.1007/s12190-016-1056-1 doi: 10.1007/s12190-016-1056-1
![]() |
[49] |
Y. X. Xie, New explicit and exact solutions of the Benney-Kawahara-Lin equation, Chin. Phys. B, 18 (2009), 4094. https://doi.org/10.1088/1674-1056/18/10/005 doi: 10.1088/1674-1056/18/10/005
![]() |
[50] |
N. Mshary, Exploration of nonlinear traveling wave phenomena in quintic conformable Benney-Lin equation within a liquid film, AIMS Math., 9 (2024), 11051–11075. https://doi.org/10.3934/math.2024542 doi: 10.3934/math.2024542
![]() |
[51] |
P. K. Gupta, Approximate analytical solutions of fractional Benney-Lin equation by reduced differential transform method and the homotopy perturbation method, Comput. Math. Appl., 61 (2011), 2829–2842. https://doi.org/10.1016/j.camwa.2011.03.057 doi: 10.1016/j.camwa.2011.03.057
![]() |
[52] |
Z. Navickas, R. Marcinkevicius, I. Telksniene, T. Telksnys, M. Ragulskis, Structural stability of the hepatitis C model with the proliferation of infected and uninfected hepatocytes, Math. Comput. Model. Dyn. Syst., 30 (2024), 51–72. https://doi.org/10.1080/13873954.2024.2304808 doi: 10.1080/13873954.2024.2304808
![]() |
[53] |
I. Ullah, K. Shah, S. Barak, T. Abdeljawad, Pioneering the plethora of soliton for the (3+1)-dimensional fractional heisenberg ferromagnetic spin chain equation, Phys. Scr., 99 (2024), 095229. https://doi.org/10.1088/1402-4896/ad6ae6 doi: 10.1088/1402-4896/ad6ae6
![]() |
[54] |
E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277 (2000), 212–218. https://doi.org/10.1016/S0375-9601(00)00725-8 doi: 10.1016/S0375-9601(00)00725-8
![]() |
[55] |
D. Wang, H. Q. Zhang, Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation, Chaos Soliton. Fract., 25 (2005), 601–610. https://doi.org/10.1016/j.chaos.2004.11.026 doi: 10.1016/j.chaos.2004.11.026
![]() |
1. | Naher Mohammed A. Alsafri, Hamad Zogan, Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model, 2024, 9, 2473-6988, 34886, 10.3934/math.20241661 |