In this study, we investigate the stability and asymptotic stability properties of Caputo fractional time-dependent systems with delay by employing vector Lyapunov functions. Utilizing the Caputo fractional Dini derivative on Lyapunov-like functions, along with a new comparison theorem and differential inequalities, we derive and prove sufficient conditions for the stability and asymptotic stability of these complex systems. An example is included to showcase the method's practicality and to specifically illustrate its advantages over scalar Lyapunov functions. Our results improves, extends, and generalizes several existing findings in the literature.
Citation: Jonas Ogar Achuobi, Edet Peter Akpan, Reny George, Austine Efut Ofem. Stability analysis of Caputo fractional time-dependent systems with delay using vector lyapunov functions[J]. AIMS Mathematics, 2024, 9(10): 28079-28099. doi: 10.3934/math.20241362
[1] | Abel Cabrera-Martínez, Andrea Conchado Peiró . On the {2}-domination number of graphs. AIMS Mathematics, 2022, 7(6): 10731-10743. doi: 10.3934/math.2022599 |
[2] | Abel Cabrera Martínez, Iztok Peterin, Ismael G. Yero . Roman domination in direct product graphs and rooted product graphs. AIMS Mathematics, 2021, 6(10): 11084-11096. doi: 10.3934/math.2021643 |
[3] | Yubin Zhong, Sakander Hayat, Suliman Khan, Vito Napolitano, Mohammed J. F. Alenazi . Combinatorial analysis of line graphs: domination, chromaticity, and Hamiltoniancity. AIMS Mathematics, 2025, 10(6): 13343-13364. doi: 10.3934/math.2025599 |
[4] | Shumin Zhang, Tianxia Jia, Minhui Li . Partial domination of network modelling. AIMS Mathematics, 2023, 8(10): 24225-24232. doi: 10.3934/math.20231235 |
[5] | Ana Klobučar Barišić, Antoaneta Klobučar . Double total domination number in certain chemical graphs. AIMS Mathematics, 2022, 7(11): 19629-19640. doi: 10.3934/math.20221076 |
[6] | Fu-Tao Hu, Xing Wei Wang, Ning Li . Characterization of trees with Roman bondage number 1. AIMS Mathematics, 2020, 5(6): 6183-6188. doi: 10.3934/math.2020397 |
[7] | Rangel Hernández-Ortiz, Luis Pedro Montejano, Juan Alberto Rodríguez-Velázquez . Weak Roman domination in rooted product graphs. AIMS Mathematics, 2021, 6(4): 3641-3653. doi: 10.3934/math.2021217 |
[8] | Mingyu Zhang, Junxia Zhang . On Roman balanced domination of graphs. AIMS Mathematics, 2024, 9(12): 36001-36011. doi: 10.3934/math.20241707 |
[9] | Huiqin Jiang, Pu Wu, Jingzhong Zhang, Yongsheng Rao . Upper paired domination in graphs. AIMS Mathematics, 2022, 7(1): 1185-1197. doi: 10.3934/math.2022069 |
[10] | Ahlam Almulhim . Signed double Italian domination. AIMS Mathematics, 2023, 8(12): 30895-30909. doi: 10.3934/math.20231580 |
In this study, we investigate the stability and asymptotic stability properties of Caputo fractional time-dependent systems with delay by employing vector Lyapunov functions. Utilizing the Caputo fractional Dini derivative on Lyapunov-like functions, along with a new comparison theorem and differential inequalities, we derive and prove sufficient conditions for the stability and asymptotic stability of these complex systems. An example is included to showcase the method's practicality and to specifically illustrate its advantages over scalar Lyapunov functions. Our results improves, extends, and generalizes several existing findings in the literature.
Multilevel programming deals with decision-making situations in which decision makers are arranged within a hierarchical structure. Trilevel programming, the case of multilevel programming containing three planner, occurs in a variety of applications such as planning [6,7], security and accident management [1,18], supply chain management [14,17], economics, [10] and decentralized inventory [9]. In a trilevel decision-making process, the first-level planner (leader), in attempting to optimize his objective function, chooses values for the variables that he controls. Next, the second-level planner in attempting to optimize his objective function while considering the reactions of the third-level planner chooses values for the variables that he controls. Lastly, the third-level planner, with regard to the decisions made by the previous levels, optimizes his own objective function. A number of researchers have studied the linear trilevel programming (LTLP) problem, and have proposed some procedures to solve it. Some algorithms are proposed based on penalty method [16], Kuhn-Tucker transformation [2], multi-parametric approach [5], and enumerating extreme points of constraint region [19] to find the exact optimal solution to special classes of trilevel programming problem. In addition, because of the complexity of solving trilevel problems especially for large-scale problems, some other researches attempted to use fuzzy [13] and meta-heuristic approaches [8,15] to find good approximate solutions for these problems. For a good bibliography of the solution approaches to solve trilevel programming problems, the interested reader can refer to [11].
The present study investigates the trilevel Kth-best algorithm offered by Zhang et. al. [19] at a higher level of accuracy. First, some of the geometric properties of the feasible region of the LTLP problem have been stated and proven. It ought to be mentioned that despite the similarity of some presented theoretical results in this paper with Ref. [19], the techniques of the proof are different. Then, a modified version of the trilevel Kth-Best algorithm has been proposed regarding unboundedness of objective functions in both the second level and third level which is not considered in the proposed Kth-Best algorithm in reference [19]. Moreover, it is shown that the amount of computations in the solving process by the modified trilevel Kth-Best algorithm is less than of that of the solving process by the traditional trilevel Kth-Best algorithm. In addition, in case of finding the optimal solution of linear trilevel programming problems with conflicting objective functions, the modified Kth-Best algorithm is capable of giving more accurate solutions.
The organization of the paper is as follows. Basic definitions concerning LTLP problem that we shall investigate, are presented in Section 2. Some theoretical and geometric properties of the LTLP problem are studied in Section 3. Based on the facts stated in Section 3, a modified trilevel Kth-Best algorithm is proposed to solve the LTLP problem in Section 4. To show the superiority of the proposed algorithm over the traditional Kth-Best algorithm, some numerical examples are presented in Section 5. Ultimately, the paper is concluded with Section 6.
As it is mentioned before, we consider the linear trilevel programming problem which can be formulated as follows:
minx1∈X1f1(x1,x2,x3)=3∑j=1αT1jxjs.t3∑j=1A1jxj≤b1where x2,x3 solve:minx2∈X2f2(x1,x2,x3)=3∑j=1αT2jxjs.t3∑j=1A2jxj≤b2where x3 solves:minx3∈X3f3(x1,x2,x3)=3∑j=1αT3jxjs.t3∑j=1A3jxj≤b3 | (2.1) |
where
In this section, we state some definitions and notations about the LTLP problem.
● Constraint region:
● Constraint region for middle and bottom level, for fixed
● Feasible set for the level 3, for fixed
● Rational reaction set for level 3, for fixed
● Feasible set for level 2, for fixed
● Rational reaction set for level 2, for fixed
● Inducible region :
In the above definitions, the term
Definition 2.1. A point
Definition 2.2. A feasible point
In view of the above Definitions, determining the solution for the LTLP problem (2.1) is equal to solve the following problem:
min{f1(x1,x2,x3):(x1,x2,x3)∈IR}. | (2.2) |
In this section, we will demonstrate some geometric properties of the problem (2.1). Let
Assumption 3.1.
Assumption 3.2.
Assumption 3.3.
Note that by Assumption 3.1, we can conclude that
Example 3.1.
maxx1x1+10x2−2x3+x4s.t0≤x1≤1maxx2,x3x2+2x3s.tx2+x3≤x10≤x2,x3≤1x4=0maxx4x4s.tx4≤x3x4≤1−x3 |
In this example, we have
Ψ3(x1,x2,x3)={x3 if 0≤x3≤12,1−x3 if 12≤x3≤1. |
Then,
and
Ψ2(x1)=argmax{x2+2x3:(x2,x3,x4)∈Ω2(x1)} | (3.1) |
It is clear that if
Ψ2(x1)={(x1,0,0) if0≤x1<1(0,1,0) ifx1=1 |
It is evident that
Lemma 3.1. Let
Proof. It follows from
minx2≥03∑j=2αT2jxjs.t3∑j=2A2jxj≤b2−A21ˉx1where x3 solves:minx3≥03∑j=2αT3jxjs.t3∑j=2A3jxj≤b3−A31ˉx1 | (3.2) |
By Theorem 5.2.2 of [3] we conclude that
Since
Thus, it can be concluded that
Corollary 3.1. Let
Proof. The statement is immediately derived from the fact that
Theorem 3.1. Let
Proof. Let
Moreover, we can choose
Besides, for all
Consequently, from Corollary 3.1, it can be concluded that:
In addition,
Eventually,
If we repeat the process, we can construct from
Therefore, we approach point
Corollary 3.2. The inducible region of the LTLP problem can be written as the union of some faces of S that are not necessarily connected.
Corollary 3.3. If
Proof. Notice that the problem (2.2) can be written equivalently as
min{f1(x1,x2,x3):(x1,x2,x3)∈conv IR} | (3.3) |
where conv
Through the above results, it has been demonstrated that there exists at least a vertex of
In this section, the modified trilevel Kth-Best algorithm is presented. In actual, the modified algorithm takes into account LTLP problems with unbounded middle and bottom level problems. These cases are not considered in the Kth-Best algorithm [19]. Also, it resolves some of drawbacks while finding an optimal solution for LTLP problems with opposing objectives. Moreover, in the next section, it is shown that in some LTLP problems, the proposed algorithm leads to reduction the amount of computations needed for finding an optimal solution.
The process of the modified trilevel Kth-Best algorithm is as follows:
The Algorithm
Step 1. Initialization: Set
Step 2. Find the optimal solution of the optimization problem (4.1). Let it be
min{f1(x1,x2,x3):(x1,x2,x3)∈S} | (4.1) |
Step 3. Solve the following problem.
min{αT3 3x3:x3∈Ω3(x[k]1,x[k]2)}. | (4.2) |
If the problem (4.2) is unbounded go to step 7, else let
Step 4. If
Step 5. Solve the following problem.
min{αT2 2x2+αT2 3x3:(x2,x3)∈S2(x[k]1),x3=x[k]3}. | (4.3) |
If problem (4.3) is unbounded go to step 7, else let
Step 6. If
Step 7. Set
Step 8. If
Figure 1 illustrates the process of modified trilevel Kth-Best algorithm.
Remark 4.1. It is clear that if
Proposition 4.1. Let the LTLP problem (2.1) has an optimal solution. Then the modified trilevel Kth-Best algorithm will terminate with an optimal solution of LTLP problem in a finite number of iterations.
Proof. Let
It is worth mentioning that, by omitting the examined extreme points from
To illustrate the advantages of the modified trilevel Kth-Best algorithm, the following examples are solved according to the outline indicated in the previous section.
Example 5.1. Consider the following LTLP problem:
minx12x1+2x2+5x3x1≤8x2≤5 where x2,x3 solve:maxx26x1+x2−3x3x1+x2≤8x1+4x2≥87x1−2x2≥0 where x3 solves:minx32x1+x2−2x35x1+5x2+14x3≤40x1,x2,x3≥0 |
In this example, we have
Ψ2(x1)={(72x1,114(40−452x1)):815≤x1≤169}∪{(8−x1,0):169≤x1≤8}. |
It is clear that for
Actually,
which is disconnected. This fact shows that despite the continuity of
By Corollary 3.3, an optimal solution of the above example occurs at the point
To solve the example by the modified trilevel Kth-Best algorithm, the process is as follows:
Iteration 1
1.
2.
3.
4.
Iteration 2
1.
2.
3.
4.
Iteration 3
1.
2.
3.
4. The point
As demonstrated in the solving process of this problem, although the number of iterations and the optimal solution found by the two algorithms are the same, the number of optimization problems needed to be solved in each iteration of the Kth-Best algorithm [19] are more than the number of optimization problems needed to be solved in the modified Kth-Best algorithm. Then the amount of computations in each iteration of the modified Kth-Best algorithm is less than that of the corresponding iteration in the Kth-Best algorithm..
The two following examples show some discrepancies in the Kth-Best algorithm [19] that cause an erroneous result.
Example 5.2.
minxf1(x,y,z)=−x−4z+2ywhere y, z soleve:s.tminyf2(x,y,z)=3y−2zwhere z solves:s.tminzf3(x,y,z)=2z−ys.tx+y+z≤20≤x,y,z≤1 |
In this example, we have
The Kth-Best algorithm process [19] for solving this problem is as follows:
Iteration 1 :
Therefore,
Iteration 2 :
Iteration 7 :
By solving the example via the modified trilevel Kth-Best algorithm, the process is as follows:
Iteration 1
1.
2.
3.
Iteration 2
1.
2.
3.
Continuing this method, at iteration 4 we get:
Note that, in the trilevel Kth-Best algorithm [19], the bottom-level optimal solution which is found for some fixed values of upper and middle-level variables, is not considered as a constraint for the second level problem. This causes the Kth-best algorithm is not capable of finding an optimal solution for some LTLP problems. This fact is considered in step 5 of the modified trilevel Kth-Best algorithm by fixing the lower level variable which is found as the optimal solution of problem (4.2) and substituting it in the problem (4.3).
Example 5.3.
minx1x1−4x2+2x3−x1−x2≤−3−3x1+2x2−x3≥−10where x2,x3 solve:minx2x1+x2−x3−2x1+x2−2x3≤−12x1+x2+4x3≤14where x3 solves:minx3x1−2x2−2x32x1−x2−x3≤2x1,x2,x3≥0 | (5.1) |
The process of the modified trilevel Kth-Best algorithm to solve this problem is as follows:
Iteration 1
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 2
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 3
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 4
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 5
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 6
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 7
1.
2. The bottom level problem corresponding to
.
4.
5.
Iteration 8
1.
2. The bottom level problem corresponding to
4.
5. There is no optimal solution.
In the above example, the constraint region is a bounded polyhedron. Let
minx3x1−2x2−2x32x1−x2−x3≤2x1=x∗1 , x2=x∗2 , x3≥0 | (5.2) |
It is easy to see that the problem (5.2) is unbounded. Therefore,
In this study, the linear trilevel programming problem whereby each planner has his (her) own constraints, was considered. Some geometric properties of the inducible region were discussed. Under certain assumptions, it is proved that if the inducible region is non-empty, then it is composed of the union of some non-empty faces of the constraint region
The authors declare no conflict of interest in this paper.
[1] |
J. B. Hu, G. P. Lu, S. B. Zhang, L. D. Zhao, Lyapunov stability theorem about fractional system without and with delay, Commun. Nonlinear Sci. Numer. Simul., 20 (2015), 905–913. https://doi.org/10.1016/j.cnsns.2014.05.013 doi: 10.1016/j.cnsns.2014.05.013
![]() |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[3] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[4] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999. |
[5] |
R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. https://doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010
![]() |
[6] |
M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338 (2008), 1340–1350. https://doi.org/10.1016/j.jmaa.2007.06.021 doi: 10.1016/j.jmaa.2007.06.021
![]() |
[7] |
A. Chauhan, J. Dabas, Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 821–829. https://doi.org/10.1016/j.cnsns.2013.07.025 doi: 10.1016/j.cnsns.2013.07.025
![]() |
[8] |
T. Jankowski, Existence results to delay fractional differential equations with nonlinear boundary conditions, Appl. Math. Comput., 219 (2013), 9155–9164. https://doi.org/10.1016/j.amc.2013.03.045 doi: 10.1016/j.amc.2013.03.045
![]() |
[9] |
W. Deng, C. Li, J. Lü, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48 (2007), 409–416. https://doi.org/10.1007/s11071-006-9094-0 doi: 10.1007/s11071-006-9094-0
![]() |
[10] |
J. Čermák, Z. Došlá, T. Kisela, Fractional differential equations with a constant delay: Stability and asymptotics of solutions, Appl. Math. Comput., 298 (2017), 336–350. https://doi.org/10.1016/j.amc.2016.11.016 doi: 10.1016/j.amc.2016.11.016
![]() |
[11] |
H. T. Tuan, H. Trinh, A linearized stability theorem for nonlinear delay fractional differential equations, IEEE Trans. Automat. Control, 63 (2018), 3180–3186. https://doi.org/10.1109/TAC.2018.2791485 doi: 10.1109/TAC.2018.2791485
![]() |
[12] |
M. Li, J. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 324 (2018), 254–265. https://doi.org/10.1016/j.amc.2017.11.063 doi: 10.1016/j.amc.2017.11.063
![]() |
[13] |
N. T. Thanh, V. N. Phat, P. Niamsup, New finite-time stability analysis of singular fractional differential equations with time-varying delay, Fract. Calc. Appl. Anal., 23 (2020), 504–519. https://doi.org/10.1515/fca-2020-0024 doi: 10.1515/fca-2020-0024
![]() |
[14] |
Y. Chen, K. L. Moore, Analytical stability bound for a class of delayed fractional-order dynamic systems, Nonlinear Dyn., 29 (2002), 191–200. https://doi.org/10.1023/A:1016591006562 doi: 10.1023/A:1016591006562
![]() |
[15] |
E. Kaslik, S. Sivasundaram, Analytical and numerical methods for the stability analysis of linear fractional delay differential equation, J. Comput. Appl. Math., 236 (2012), 4027–4041. https://doi.org/10.1016/j.cam.2012.03.010 doi: 10.1016/j.cam.2012.03.010
![]() |
[16] |
M. P. Lazarevic, Finite time stability analysis of PDα fractional control of robotic time-delay systems, Mech. Res. Commun., 33 (2006), 269–279. https://doi.org/10.1016/j.mechrescom.2005.08.010 doi: 10.1016/j.mechrescom.2005.08.010
![]() |
[17] |
A. Mesbahi, M. Haeri, Stability of linear time invariant fractional delay systems of retardee type in the space of delay parameters, Automatica, 49 (2013), 1287–1294. https://doi.org/10.1016/j.automatica.2013.01.041 doi: 10.1016/j.automatica.2013.01.041
![]() |
[18] |
S. B. Bhalekar, Stability analysis of a class of fractional delay differential equations, Pramana J. Phys., 81 (2013), 215–224. https://doi.org/10.1007/s12043-013-0569-5 doi: 10.1007/s12043-013-0569-5
![]() |
[19] |
V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal. Theory Methods Appl., 69 (2008), 3337–3343. https://doi.org/10.1016/j.na.2007.09.025 doi: 10.1016/j.na.2007.09.025
![]() |
[20] |
I. Stamova, Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays, Nonlinear Dyn., 77 (2014), 1251–1260. https://doi.org/10.1007/s11071-014-1375-4 doi: 10.1007/s11071-014-1375-4
![]() |
[21] | S. J. Sadati, R. Ghaderi, N. Ranjbar, Some fractional comparison results and stability theorem for fractional time delay systems, Rom. Rep. Phys., 65 (2013), 94–102. |
[22] | R. Agarwal, R. Almeida, S. Hristova, D. O'Regan, Caputo fractional differential equation with state dependent delay and practical stability, Dyn. Syst. Appl., 28 (2019), 715–742. |
[23] |
Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810–1821. https://doi.org/10.1016/j.camwa.2009.08.019 doi: 10.1016/j.camwa.2009.08.019
![]() |
[24] |
R. Agarwal, S. Hristova, D. O'Regan, Lyapunov functions and strict stability of Caputo fractional differential equations, Adv. Differ. Equ., 2015 (2015), 346. https://doi.org/10.1186/s13662-015-0674-5 doi: 10.1186/s13662-015-0674-5
![]() |
[25] |
R. Agarwal, S. Hristova, D. O'regan, Lyapunov functions and stability of Caputo fractional differential equations with delays, Differ. Equ. Dyn. Syst., 30 (2022), 513–534. https://doi.org/10.1007/s12591-018-0434-6 doi: 10.1007/s12591-018-0434-6
![]() |
[26] |
R. Agarwal, D. O'Regan, S. Hristova, Stability of Caputo fractional differential equations by Lyapunov functions, Appl. Math., 60 (2015), 653–676. https://doi.org/10.1007/s10492-015-0116-4 doi: 10.1007/s10492-015-0116-4
![]() |
[27] |
R. Agarwal, S. Hristova, D. O'Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 290–318. https://doi.org/10.1515/fca-2016-0017 doi: 10.1515/fca-2016-0017
![]() |
[28] |
R. Agarwal, D. O'Regan, S. Hristova, M. Cicek, Practical stability with respect to initial time difference for Caputo fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 106–120. https://doi.org/10.1016/j.cnsns.2016.05.005 doi: 10.1016/j.cnsns.2016.05.005
![]() |
[29] | W. M. Haddad, V. Chellaboina, Nonlinear dynamical systems and control: A Lyapunov-based approach, Princeton University Press, 2008. |
[30] | H. K. Khalil, Control of nonlinear systems, New York: Prentice Hall, 2002. |
[31] |
K. S. Narendra, J. Balakrishnan, A common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Trans. Automat. Control, 39 (1994), 2469–2471. https://doi.org/10.1109/9.362846 doi: 10.1109/9.362846
![]() |
[32] |
S. Raghavan, J. K. Hedrick, Observer design for a class of nonlinear systems, Int. J. Control, 59 (1994), 515–528. https://doi.org/10.1080/00207179408923090 doi: 10.1080/00207179408923090
![]() |
[33] |
E. P. Akpan, On the ϕ0-stability of functional differential equations, Aequationes Math., 52 (1996), 81–104. https://doi.org/10.1007/BF01818328 doi: 10.1007/BF01818328
![]() |
1. | Sakander Hayat, Raman Sundareswaran, Marayanagaraj Shanmugapriya, Asad Khan, Venkatasubramanian Swaminathan, Mohamed Hussian Jabarullah, Mohammed J. F. Alenazi, Characterizations of Minimal Dominating Sets in γ-Endowed and Symmetric γ-Endowed Graphs with Applications to Structure-Property Modeling, 2024, 16, 2073-8994, 663, 10.3390/sym16060663 |