Processing math: 100%
Research article

Mittag-Leffler projective synchronization of uncertain fractional-order fuzzy complex valued neural networks with distributed and time-varying delays

  • Received: 02 May 2024 Revised: 18 June 2024 Accepted: 23 July 2024 Published: 02 September 2024
  • MSC : 93D05, 93D15

  • To study the Mittag-Leffler projective synchronization (MLPS) problem of fractional-order fuzzy neural networks (FOFNNs), in this work we introduced the FOFNNs model. On this basis, we discussed the MLPS of uncertain fractional-order fuzzy complex valued neural networks (FOFCVNNs) with distributed and time-varying delays. Utilizing Banach contraction mapping principle, we proved the existence and uniqueness of the model solution. Moreover, employing the construction of a new hybrid controller, an adaptive hybrid controller, and the fractional-order Razumikhin theorem, algebraic criteria was obtained for implementing MLPS. The algebraic inequality criterion obtained in this article improves and extends the previously published results on MLPS, making it easy to prove and greatly reducing the computational complexity. Finally, different Caputo derivatives of different orders were given, and four numerical examples were provided to fully verify the accuracy of the modified criterion.

    Citation: Yang Xu, Zhouping Yin, Yuanzhi Wang, Qi Liu, Anwarud Din. Mittag-Leffler projective synchronization of uncertain fractional-order fuzzy complex valued neural networks with distributed and time-varying delays[J]. AIMS Mathematics, 2024, 9(9): 25577-25602. doi: 10.3934/math.20241249

    Related Papers:

    [1] Jiaqing Zhu, Guodong Zhang, Leimin Wang . Quasi-projective and finite-time synchronization of fractional-order memristive complex-valued delay neural networks via hybrid control. AIMS Mathematics, 2024, 9(3): 7627-7644. doi: 10.3934/math.2024370
    [2] Dan-Ning Xu, Zhi-Ying Li . Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks with time-varying delays. AIMS Mathematics, 2023, 8(1): 1610-1619. doi: 10.3934/math.2023081
    [3] Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Michal Niezabitowski . A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks. AIMS Mathematics, 2021, 6(5): 4526-4555. doi: 10.3934/math.2021268
    [4] Jingfeng Wang, Chuanzhi Bai . Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay. AIMS Mathematics, 2023, 8(10): 22538-22552. doi: 10.3934/math.20231148
    [5] Ivanka Stamova, Gani Stamov . Impulsive control strategy for the Mittag-Leffler synchronization of fractional-order neural networks with mixed bounded and unbounded delays. AIMS Mathematics, 2021, 6(3): 2287-2303. doi: 10.3934/math.2021138
    [6] Yuehong Zhang, Zhiying Li, Wangdong Jiang, Wei Liu . The stability of anti-periodic solutions for fractional-order inertial BAM neural networks with time-delays. AIMS Mathematics, 2023, 8(3): 6176-6190. doi: 10.3934/math.2023312
    [7] Rakkiet Srisuntorn, Wajaree Weera, Thongchai Botmart . Modified function projective synchronization of master-slave neural networks with mixed interval time-varying delays via intermittent feedback control. AIMS Mathematics, 2022, 7(10): 18632-18661. doi: 10.3934/math.20221025
    [8] Hongmei Zhang, Xiangnian Yin, Hai Zhang, Weiwei Zhang . New criteria on global Mittag-Leffler synchronization for Caputo-type delayed Cohen-Grossberg Inertial Neural Networks. AIMS Mathematics, 2023, 8(12): 29239-29259. doi: 10.3934/math.20231497
    [9] Hongguang Fan, Jihong Zhu, Hui Wen . Comparison principle and synchronization analysis of fractional-order complex networks with parameter uncertainties and multiple time delays. AIMS Mathematics, 2022, 7(7): 12981-12999. doi: 10.3934/math.2022719
    [10] Zhifeng Lu, Fei Wang, Yujuan Tian, Yaping Li . Lag synchronization of complex-valued interval neural networks via distributed delayed impulsive control. AIMS Mathematics, 2023, 8(3): 5502-5521. doi: 10.3934/math.2023277
  • To study the Mittag-Leffler projective synchronization (MLPS) problem of fractional-order fuzzy neural networks (FOFNNs), in this work we introduced the FOFNNs model. On this basis, we discussed the MLPS of uncertain fractional-order fuzzy complex valued neural networks (FOFCVNNs) with distributed and time-varying delays. Utilizing Banach contraction mapping principle, we proved the existence and uniqueness of the model solution. Moreover, employing the construction of a new hybrid controller, an adaptive hybrid controller, and the fractional-order Razumikhin theorem, algebraic criteria was obtained for implementing MLPS. The algebraic inequality criterion obtained in this article improves and extends the previously published results on MLPS, making it easy to prove and greatly reducing the computational complexity. Finally, different Caputo derivatives of different orders were given, and four numerical examples were provided to fully verify the accuracy of the modified criterion.



    In the last few decades, more and more scholars have studied fractional-order neural networks (FONNs) due to their powerful functions [1,2]. FONNs have been accurately applied to image processing, biological systems and so on [3,4,5,6] because of their powerful computing power and information storage capabilities. In the past, scholars have studied many types of neural network (NN) models. For example, bidirectional associative memory neural networks (BAMNNs) [7], recurrent NNs [8], Hopfield NNs [9], Cohen-Grossberg NNs [10], and fuzzy neural networks (FNNs) [11]. With the development of fuzzy mathematics, Yang et al. proposed fuzzy logic (fuzzy OR and fuzzy AND) into cellular NNs and established FNNs. Moreover, when dealing with some practical problems, it is inevitable to encounter approximation, uncertainty, and fuzziness. Fuzzy logic is considered to be a promising tool to deal with these phenomena. Therefore, the dynamical behaviors of FNNs have attracted extensive research and obtained abundant achievements [12,13,14,15].

    The CVNNs are extended from real-valued NNs (RVNNs). In CVNNs, the relevant variables in CVNNs belong to the complex field. In addition, CVNNs can also address issues that can not be addressed by RVNNs, such as machine learning [16] and filtering [17]. In recent years, the dynamic behavior of complex valued neural networks has been a hot topic of research for scholars. In [16], Nitta derived some results of an analysis on the decision boundaries of CVNNs. In [17], the author studied an extension of the RBFN for complex-valued signals. In [18], Li et al. obtained some synchronization results of CVNNs with time delay. Overall, CVNNs outperform real-valued neural networks in terms of performance, as they can directly process two-dimensional data.

    Time delays are inescapable in neural systems due to the limited propagation velocity between different neurons. Time delay has been extensively studied by previous researchers, such as general time delay [19], leakage delays [20], proportional delays [21], discrete delays [22], time-varying delays [23], and distributed delays [24]. In addition, the size and length of axonal connections between neurons in NNs can cause time delays, so scholars have introduced distributed delays in NNs. For example, Si et al. [25] considered a fractional NN with distributed and discrete time delays. It not only embodies the heredity and memory characteristics of neural networks but also reflects the unevenness of delay in the process of information transmission due to the addition of distributed time delays. Therefore, more and more scholars have added distributed delays to the NNs and have made some new discoveries [26,27]. On the other hand, due to the presence of external perturbations in the model, the actual values of the parameters in the NNs cannot be acquired, which may lead to parameter uncertainties. Parameter uncertainty has also affected the performance of NNs. Consequently, scholars are also closely studying the NNs model of parameter uncertainty [28,29].

    The synchronization control of dynamical systems has always been the main aspect of dynamical behavior analysis, and the synchronization of NNs has become a research hotspot. In recent years, scholars have studied some important synchronization behaviors, such as complete synchronization (CS) [30], global asymptotic synchronization [31], quasi synchronization [32], finite time synchronization [33], projective synchronization (PS) [34], and Mittag-Leffler synchronization (MLS) [35]. In various synchronizations, PS is one of the most interesting, being characterized by the fact that the drive-response systems can reach synchronization according to a scaling factor. Meanwhile, the CS can be regarded as a PS with a scale factor of 1. Although PS has its advantages, MLS also has its unique features. Unlike CS, MLS can achieve synchronization at a faster speed. As a result, some scholars have combined the projective synchronization and ML synchronization to study MLPS [36,37]. However, there are few papers on MLPS of FOFNNs. Based on the above discussion, the innovative points of this article are as follows:

    According to the FNNs model, parameter uncertainty and distributed delays are added, and the influence of time-varying delay, distributed delay, and uncertainty on the global MLPS of FOFCVNNs is further considered in this paper.

    The algebraic criterion for MLPS was obtained by applying the complex valued direct method. Direct methods and algebraic inequalities greatly reduce computational complexity.

    The design of nonlinear hybrid controllers and adaptive hybrid controllers greatly reduces control costs.

    Notations: In this article, C refers to the set of complex numbers, where O=OR+iOIC and OR,OIR, i represents imaginary units, Cn can describe a set of n-dimensional complex vectors, ¯Oψ refers to the conjugate of Oψ. |Oψ|=Oψ¯Oψ indicating the module of Oψ. For O=(O1,O2,,On)TCn,||O||=(nψ=1|Oψ|2)12 denotes the norm of O.

    In this section, we provide the definitions, lemmas, assumptions, and model details required for this article.

    Definition 2.1. [38] The Caputo fractional derivative with 0<Υ<1 of function O(t) is defined as

    ct0DαtO(t)=1Γ(1α)tt0O(s)(ts)αds.

    Definition 2.2. [38] The one-parameter ML function is described as

    EΥ(p)=δ=0pδΓ(δΥ+1).

    Lemma 2.1. [39] Make Qψ,OψC(w,ψ=1,2,,n,), then the fuzzy operators in the system satisfy

    |nψ=1μwψfψ(Qψ)nψ=1μwψfψ(Oψ)|nψ=1|μwψ||fψ(Qψ)fψ(Oψ)|,|nψ=1υwψfψ(Qψ)nψ=1υwψfψ(Oψ)|nψ=1|υwψ||fψ(Qψ)fψ(Oψ)|.

    Lemma 2.2. [40] If the function ϑ(t)C is differentiable, then it has

    Ct0Dαt(¯ϑ(t)ϑ(t))ϑ(t)Ct0Dαtϑ(t)+(Ct0Dαt¯ϑ(t))ϑ(t).

    Lemma 2.3. [41] Let ˆξ1,ˆξ2C, then the following condition:

    ¯ˆξ1ˆξ2+¯ˆξ2ˆξ1χ¯ˆξ1ˆξ1+1χ¯ˆξ2ˆξ2

    holds for any positive constant χ>0.

    Lemma 2.4. [42] If the function ς(t) is nondecreasing and differentiable on [t0,], the following inequality holds:

    ct0Dαt(ς(t)ȷ)22(ς(t)ȷ)ct0Dαt(ς(t)), 0<α<1,

    where constant ȷ is arbitrary.

    Lemma 2.5. [43] Suppose that function (t) is continuous and satisfies

    ct0Dαtˆ(t)γˆ(t),

    where 0<α<1, γR, the below inequality can be obtained:

    ˆ(t)ˆ(t0)Eα[γ(tt0)α].

    Next, a FOFCVNNS model with distributed and time-varying delays with uncertain coefficients is considered as the driving system:

    Ct0DαtOw(t)=awOw(t)+nψ=1(mwψ+Δmwψ(t))fψ(Oψ(tτ(t)))+nψ=1μwψ+0bwψ(t)fψ(Oψ(t))dt+nψ=1υwψ+0cwψ(t)fψ(Oψ(t))dt+Iw(t), (2.1)

    where 0<α<1; O(t)=((O1(t),...,On(t)); Ow(t),w=1,2,...,n is the state vector; awR denotes the self-feedback coefficient; mwψC stands for a feedback template element; mwψC refers to uncertain parameters; μwψC and υwψC are the elements of fuzzy feedback MIN and MAX templates; and indicate that the fuzzy OR and fuzzy AND operations; τ(t) indicates delay; Iw(t) denotes external input; and fψ() is the neuron activation function.

    Correspondingly, we define the response system as follows:

    Ct0DαtQw(t)=awQw(t)+nψ=1(mwψ+Δmwψ(t))fψ(Qψ(tτ(t)))+nψ=1μwψ+0bwψ(t)fψ(Qψ(t))dt+nψ=1υwψ+0cwψ(t)fψ(Qψ(t))dt+Iw(t)+Uw(t), (2.2)

    where Uw(t)C stands for controller. In the following formula, Ct0Dαt is abbreviated as Dα.

    Defining the error as kw(t)=Qw(t)SOw(t), where S is the projective coefficient. Therefore, we have

    Dαkw(t)=awkw(t)+nψ=1(mwψ+Δmwψ(t))~fψkψ(tτ(t))+nψ=1(mwψ+Δmwψ(t))fψ(SOψ(tτ(t)))nψ=1S(mwψ+Δmwψ(t))fψ(Oψ(tτ(t)))+nψ=1μwψ+0bwψ(t)fψ~kψ(t)dt+nψ=1μwψ+0bwψ(t)fψ(SOψ(t))dtSnψ=1μwψ+0bwψ(t)fψ(Oψ(t))dt+nψ=1υwψ+0cwψ(t)fψ~kψ(t)dt+nψ=1υwψ+0cwψ(t)fψ(SOψ(t))dtSnψ=1υwψ+0cwp(t)fψ(Oψ(t))dt+(1S)Iw(t)+Uw(t), (2.3)

    where fψ~kψ(t)=fψ(Qψ(t))fψ(SOψ(t)).

    Assumption 2.1. O,QC and Lϖ>0, fϖ() satisfy

    |fϖ(O)fϖ(Q)|Lϖ|OQ|.

    Assumption 2.2. The nonnegative functions bwψ(t) and cwψ(t) are continuous, and satisfy

    (i)+0bwψ(t)dt=1,(ii)+0cwψ(t)dt=1.

    Assumption 2.3. The parameter perturbations mwψ(t) bounded, then it has

    |mwψ(t)|Mwψ,

    where Mwψ is all positive constants.

    Assumption 2.4. Based on the assumption for fuzzy OR and AND operations, the following inequalities hold:

    (i)[nψ=1μwψ+0bwψ(t)(fψ(Oψ)fψ(Qψ))dt][nψ=1¯μwψ+0bwψ(t)(fψ(Oψ)fψ(Qψ))dt]nψ=1δψ|μwψ|2(fψ(Oψ)fψ(Qψ))(¯fψ(Oψ)¯fψ(Qψ)),(ii)[nψ=1υwψ+0cwψ(t)(fψ(Oψ)fψ(Qψ))dt][nψ=1¯υwψ+0cwψ(t)(fψ(Oψfψ(Qψ))dt]nψ=1ηψ|υwψ|2(fψ(Oψ)fψ(Qψ))(¯fψ(Oψ)¯fψ(Qψ)),

    where δψ and ηψ are positive numbers.

    Definition 2.3. The constant vector O=(O1,,On)TCn and satisfy

    0=awOψ+nψ=1(mwψ+mwψ(t))fψ(Oψ)+nψ=1μwψ+0bwψ(t)fψ(Oψ)dt+nψ=1υwψ+0cwψ(t)fψ(Oψ)dt+Iw(t),

    whereupon, O is called the equilibrium point of (2.1).

    Definition 2.4. System (2.1) achieves ML stability if and only if O=(O1,,On)TCn is the equilibrium point, and satisfies the following condition:

    ||O(t)||[Ξ(O(t0))Eα(ρ(tt0)α)]η,

    where 0<α<1,ρ, η>0,Ξ(0)=0.

    Definition 2.5. If FOFCVNNS (2.1) and (2.2) meet the following equation:

    limtQw(t)SOw(t)=0,

    so we can say it has achieved projective synchronization, where SR is projective coefficient.

    In this part, we mainly investigate three theorems. According to the Banach contraction mapping principle, we can deduce the result of Theorem 3.1. Next, we construct a linear hybrid controller and an adaptive hybrid controller, and establish two MLPS criteria.

    Theorem 3.1. B is a Banach space. Let ||O||1=nψ=1|Oψ|. Under Assumptions 2.1–2.4, if the following equality holds:

    ρ=nw=1|mwψ|Lψ+|Mwψ|Lψ+|μwψ|Lψ+|υwψ|Lψaψ<1,w,ψ=1,2,3,...,n, (3.1)

    then FOFCVNNS (2.1) has a unique equilibrium point with O=(O1,,On)TCn.

    Proof. Let O=(~O1,~O2,,~On)=(a1O1,a2O2,,anOn)Rn, and construct a mapping φ:BB, φ(x)=(φ1(O),φ2(O),,φn(O)) and

    φψ(O)=nψ=1(mwψ+Δmwψ(t))fψ(~Oψaψ)+nψ=1μwψ+0bwψ(t)fψ(~Oψaψ)dt+nψ=1υwψ+0cwψ(t)fψ(~Oψaψ)dt+Iw,w,ψ=1,2,,n. (3.2)

    For two different points α=(α1,,αn),β=(β1,,βn), it has

    |φψ(α)φψ(β)||nψ=1(mwψ+Δmwψ(t))fψ(αψaψ)nψ=1(mwψ+Δmwψ(t))fψ(βψaψ)|+|nψ=1μwψ+0bwψ(t)fψ(αψaψ)dtnψ=1μwψ+0bwψ(t)fψ(βψaψ)dt|+|nψ=1υwψ+0cwψ(t)fψ(αψaψ)dtnψ=1υwψ+0cwψ(t)fψ(βψaψ)dt|nψ=1|mwψ+Δmwψ(t)||fj(αψaψ)fψ(βψaψ)|+|nψ=1μwψfψ(αψaψ)nψ=1μwψfψ(βψaψ)|+|nψ=1υwψfp(αψaψ)nψ=1υwψfψ(βψaψ)|. (3.3)

    According to Assumption 2.1, we get

    |φψ(α)φψ(β)|nψ=1|mwψ+Δmwψ(t)|Lψaψ|αψβψ|+nψ=1|μwψ|Lψaψ|αψβψ|+nψ=1|υwψ|Lψaψ|αψβψ|. (3.4)

    Next, we have

    ||φ(α)φ(β)||1=nψ=1|φψ(α)φψ(β)|nψ=1nψ=1|mwψ+Δmwψ(t)|Lψaψ|αψβψ|+nw=1nψ=1|μwψ|Lψaψ|αψβψ|+nw=1nψ=1|υwψ|Lψaψ|αψβψ|nψ=1(nψ=1|mwψ+Δmwψ(t)|Lψaψ+nψ=1|μwψ|Lψaψ+nw=1|υwψ|Lψaψ)|αψβψ|(nw=1|mwψ+Δmwψ(t)|Lψaψ+nw=1|μwψ|Lψaψ+nw=1|υwψ|Lψaψ)nψ=1|αψβψ|. (3.5)

    From Assumption 2.3, then it has

    ||φ(α)φ(β)||1(nw=1|mwψ|Lψ+|Mwψ|Lψ+|μwψ|Lp+|υwψ|Lψaψ)||αβ||1. (3.6)

    Finally, we obtain

    ||φ(α)φ(β)||1ρ||αβ||1, (3.7)

    where φ is obviously a contraction mapping. From Eq (3.2), there must exist a unique fixed point ~OCn, such that φ(~O)=~O.

    ~Oψ=nψ=1(mwψ+Δmwψ(t))fψ(~Oψaψ)+nψ=1μwψ+0bwψ(t)fψ(~Oψaψ)dt+nψ=1υwψ+0cwψ(t)fψ(~Oψaψ)dt+Iw. (3.8)

    Let Oψ=~Oψaψ, we have

    0=awOψ+nψ=1(mwψ+Δmwψ(t))fψ(Oψ)+nψ=1μwψ+0bwψ(t)fψ(Oψ)dt+nψ=1υwψ+0cwψ(t)fψ(Oψ)dt+Iw. (3.9)

    Consequently, Theorem 3.1 holds.

    Under the error system (2.3), we design a suitable hybrid controller

    uw(t)=u1w(t)+u2w(t). (3.10)
    u1w(t)={πkw(t)+λkw(t)¯kw(tτ(t))¯kw(t),kw(t)0,0,kw(t)=0. (3.11)
    u2w(t)=nψ=1(mwψ+Δmwψ(t))fψ(SOψ(tτ(t)))+nψ=1S(mwψ+Δmwψ(t))fψ(Oψ(tτ(t)))nψ=1μwψ+0bwψ(t)fψ(SOψ(t))dt+Snψ=1μwψ+0bwψ(t)fψ(Oψ(t))dtnψ=1υwψ+0cwψ(t)fψ(SOψ(t))dt+Snψ=1υwψ+0cwψ(t)fψ(Oψ(t))dt(1h)Iψ. (3.12)

    By substituting (3.10)–(3.12) into (2.3), it yields

    Dαkw(t)=awkw(t)+nψ=1(mwψ+Δmwψ(t))~fψkψ(tτ(t))+nψ=1μwψ+0bwψ(t)fψ~kψ(t)dt+nψ=1υwψ+0cwψ(t)fψ~kψ(t)dtπkw(t)+λkw(t)¯kw(tτ(t))¯kw(t). (3.13)

    Theorem 3.2. Based on the controller (3.10) and Assumptions 2.1–2.4, systems (2.1) and (2.2) can achieve MLPS if the following formula holds:

    ϖ1=min1wn{2awλ+2π4nnψ=1δw|μψw|2L2wnψ=1ηw|υψw|2L2w}>0,ϖ2=max1wn{λ+nψ=1(|mψw|2+|Mψw|2)L2w},ϖ1ϖ2Ω1>0,Ω1>1. (3.14)

    Proof. Picking the Lyapunov function as

    v1(t)=nw=1kw(t)¯kw(t). (3.15)

    By application about derivative v1(t), we derive

    Dαv1(t)=nw=1Dαkw(t)¯kw(t). (3.16)

    Following Lemma 2.2, it has

    Dαv1(t)nw=1kw(t)Dα¯kw(t)+nw=1¯kw(t)Dαkw(t). (3.17)

    Substituting Eq (3.13) to (3.17), we can get

    Dαv1(t)nw=1kw(t){aw¯kw(t)+nψ=1¯(mwψ+mwψ(t))¯~fψkψ(tτ(t))+nψ=1¯μwψ+0bwψ(t)fψ~kψ(t)dt+nψ=1¯υwψ+0cwψ(t)fψ~kψ(t)dtπ¯kw(t)+λ¯kw(t)¯kw(tτ(t))kw(t)}+nw=1¯kw(t){awkw(t)+nψ=1(mwp+Δmwψ(t))~fψkψ(tτ(t))+nψ=1μwψ+0bwψ(t)fψ~kψ(t)dt+nψ=1υwψ+0cwψ(t)fψ~kψ(t)dtπkw(t)+λkw(t)¯kw(tτ(t))¯kw(t)}. (3.18)

    Combining Lemma 2.3, one gets

    nw=1kw(t)λ¯kw(t)¯kw(tτ(t))kw(t)+nw=1¯kw(t)λkw(t)¯kw(tτ(t))¯kw(t)λnw=1(kw(t)¯kw(t)+kw(tτ(t))¯kw(tτ(t))). (3.19)

    Based on (3.19), we derive

    nw=1kw(t)(aw¯kw(t)π¯kw(t)+λ¯kw(t)¯kw(tτ(t))kw(t))+nw=1¯kw(t)(awkw(t)πkw(t)+λkw(t)¯kw(tτ(t))¯kw(t))nw=1[2awλ+2π]kw(t)¯kw(t)+λnw=1kw(tτ(t))¯kw(tτ(t)). (3.20)

    According to Assumptions 2.1 and 2.3, Lemma 2.3, we can get

    nw=1nψ=1[kw(t)¯mwψ¯~fψkψ(tτ(t))+kw(t)¯mwψ(t)¯~fψkψ(tτ(t))+¯kw(t)mwψ~fψkψ(tτ(t))+¯kw(t)mwψ(t)~fψkψ(tτ(t))]nw=1nψ=1[2kw(t)¯kw(t)+|mwψ|2~fψkψ(tτ(t))¯~fψkψ(tτ(t))+|mwψ(t)|2~fψkψ(tτ(t))¯~fψkψ(tτ(t))]nw=1nψ=12kw(t)¯kw(t)+nw=1nψ=1|mwψ|2L2ψkψ(tτ(t))¯kψ(tτ(t))+nw=1nψ=1|Mwψ|2L2ψkψ(tτ(t))¯kψ(tτ(t))nw=1nψ=12kw(t)¯kw(t)+nw=1nψ=1(|mwψ|2+|Mwψ|2)L2ψkψ(tτ(t))¯kψ(tτ(t)). (3.21)

    Based on Lemma 2.3, one has

    nw=1[kw(t)nψ=1¯μwψ+0bwψ(t)fψ~kψ(t)dt+¯kw(t)nψ=1μwψ+0bwψ(t)fψ~kψ(t)dt]nw=1[kw(t)¯kw(t)+nψ=1μwψ+0bwψ(t)fψ~kψ(t)dtnψ=1¯μwψ+0bwψ(t)fψ~kψ(t)dt]. (3.22)

    Combining Assumption 2.4 and Lemma 2.1, one obtains

    nw=1nψ=1μwψ+0bwψ(t)fψ~kψ(t)dtnψ=1¯μwψ+0bwψ(t)fψ~kψ(t)dtnw=1nψ=1δψ|μwψ|2L2ψkψ(t)¯kψ(t). (3.23)

    Substituting (3.23) into (3.22), it has

    nw=1[kw(t)nψ=1¯μwψ+0bwψ(t)fψ~kψ(t)dt+¯kw(t)nψ=1μwψ+0bwψ(t)fψ~kψ(t)dt]nw=1kw(t)¯kw(t)+nw=1nψ=1δψ|μwψ|2L2ψkψ(t)¯kψ(t). (3.24)

    Thus,

    nw=1[kw(t)nψ=1¯υwψ+0cwψ(t)fψ~kψ(t)dt+¯kw(t)nψ=1υwψ+0cwψ(t)fψ~kψ(t)dt]nw=1kw(t)¯kw(t)+nψ=1nψ=1ηψ|υwψ|2L2ψkψ(t)¯kψ(t). (3.25)

    Substituting (3.20)–(3.25) into (3.18), we get

    Dαv1(t)nw=1[2awλ+2π]kw(t)¯kw(t)+λnw=1kw(tτ(t))¯kw(tτ(t))+nw=1nψ=12kw(t)¯kw(t)+nw=1nψ=1(|mwψ|2+|Mwψ|2)L2ψkψ(tτ(t))¯kψ(tτ(t))+nw=1kw(t)¯kw(t)+nw=1nψ=1δψ|μwψ|2L2ψkψ(t)¯kψ(t)+nw=1nψ=1kw(t)¯kw(t)+nw=1nψ=1ηψ|υwψ|2L2ψkψ(t)¯kψ(t)nw=1[2awλ+2π4nnψ=1δw|μψw|2L2wnψ=1ηw|υψw|2L2w]kw(t)¯kw(t)+nw=1[λ+nψ=1(|mψw|2+|Mψw|2)L2w]kw(tτ(t))¯kw(tτ(t)). (3.26)

    Applying the fractional Razumikhin theorem, the inequality (3.26) is as follows:

    Dαv1(t)(ϖ1ϖ2Ω1)v1(t)=ϖ3v1(t). (3.27)

    Apparently, from Lemma 2.5, it has

    v1(t)v(0)Eα[(ϖ1ϖ2Ω1)tα], (3.28)

    and

    v1(t)=nw=1kw(t)¯kw(t)=||k(t)||2v(0)Eα[(ϖ1ϖ2Ω1)tα],||k(t)||[v(0)Eα((ϖ1ϖ2Ω1)tα)]12. (3.29)

    Moreover,

    limt||k(t)||=0. (3.30)

    From Definition 2.4, system (2.1) is Mittag-Leffler stable. From Definition 2.5 and limt||k(t)||=0, the derive-response systems (2.1) and (2.2) can reach MLPS. Therefore, Theorem 3.2 holds.

    Unlike controller (3.11), we redesign an adaptive hybrid controller as follows:

    uw(t)=u2w(t)+u3w(t), (3.31)
    u3w(t)=ςw(t)kw(t),Dαςw(t)=Iwkw(t)¯kw(t)p(ςw(t)ςw). (3.32)

    Taking (3.12) and (3.32) into (3.31), then

    Dαkw(t)=awkw(t)+nψ=1(mwψ+Δmwψ(t))~fψkψ(tτ(t))+nψ=1μwψ+0bwψ(t)fψ~kψ(t)dt+nψ=1υwψ+0cwψ(t)fψ~kψ(t)dtςw(t)kw(t). (3.33)

    Theorem 3.3. Assume that Assumptions 2.1–2.4 hold and under the controller (3.31), if the positive constants Υ1, Υ2, Ω1, and Ω2 such that

    Υ1=min1wn[2nw=1aw4n2nw=1nψ=1δw|μwψ|2L2wnw=1nψ=1ηw|υwψ|2L2w+nw=1(ςw(t)+ςw)],Υ2=max1wnnw=1nψ=1(|mwψ|2+|Mwψ|2)L2w,Ω1Υ2Ω2>0,Ω2>1, (3.34)

    we can get systems (2.1) and (2.2) to achieve MLPS.

    Proof. Taking into account the Lyapunov function

    v2(t)=nw=1kw(t)¯kw(t)v21(t)+nw=11Iw(ςw(t)ςw)2v22(t). (3.35)

    By utilizing Lemmas 2.2 and 2.4, then it has

    Dαv2(t)nw=1kw(t)Dα¯kw(t)+nw=1¯kw(t)Dαkw(t)R1+nw=12Iw(ςw(t)ςw)Dαςw(t)R2. (3.36)

    Substituting (3.32) into (3.36), one has

    R2=2nw=1(ςw(t)ςw)kw(t)¯kw(t)nw=12pIw(ςw(t)ςw)2. (3.37)

    Substituting (3.33) into R1 yields

    R1=nw=1kw(t){aw¯kw(t)+nψ=1¯(mwψ+mwψ(t))¯~fψkψ(tτ(t))+nψ=1¯μwψ+0bwψ(t)fψ~kψ(t)dt+nψ=1¯νwψ+0cwψ(t)fψ~kψ(t)dtςw(t)¯kw(t)}+nw=1¯kw(t){awkw(t)+nψ=1(mwψ+Δmwψ(t))~fψkψ(tτ(t))+nψ=1μwψ+0bwψ(t)fψ~kψ(t)dt+nψ=1νwψ+0cwψ(t)fψ~kψ(t)dtςw(t)kw(t)}. (3.38)

    According to the inequality (3.20), it has

    nw=1kw(t){aw¯kw(t)ςw(t)¯kw(t)}+nw=1¯kw(t){awkw(t)ςw(t)kw(t)}2nw=1[aw+ςw(t)]kw(t)¯kw(t). (3.39)

    Substituting (3.39) and (3.21)–(3.25) into (3.38), we have

    R1nw=1[2(aw+ςw(t))4nnψ=1δw|μψw|2L2wnψ=1ηw|υψw|2L2w]kw(t)¯kw(t)+nw=1nψ=1(|mψw|2+|Mψw|2)L2wkw(tτ(t))¯kw(tτ(t)). (3.40)

    Substituting (3.37) and (3.40) into (3.36), we finally get

    Dαv2(t)nw=1[2(aw+ςw)4nnψ=1δw|μψw|2L2wnψ=1ηw|υψw|2L2w]kw(t)¯kw(t)+nw=1nψ=1(|mψw|2+|Mψw|2)L2wkw(tτ(t))¯kw(tτ(t))nw=12pIw(ςw(t)ςw)2. (3.41)

    By applying fractional-order Razumikhin theorem, the following formula holds:

    Dαv2(t)(Υ1Υ2Ω2)v21(t)2pv22(t). (3.42)

    Let Ξ=min(Υ1Υ2Ω2,2p), then

    Dαv2(t)Ξv21(t)Ξv22(t)Ξv2(t). (3.43)

    According to Lemma 2.5, one has

    v2(t)v2(0)Eα(Ξtα). (3.44)

    From Eq (3.35), we can deduce

    v21(t)(v21(0)+v22(0))Eα[(Υ1Υ2Ω2)tα], (3.45)

    and

    ||k(t)||2=nw=1kw(t)¯kw(t)=v21(t)v2(t)v2(0)Eα(Ξtα). (3.46)

    Therefore, it has

    ||k(t)||[v2(0)Eα(Ξtα)]12, (3.47)

    and

    limt||k(t)||=0. (3.48)

    Obviously, from Definition 2.4, system (2.1) is Mittag-Leffler stable. From Definition 2.5 and limt||k(t)||=0, systems (2.1) and (2.2) can reach MLPS.

    Remark 3.1. Unlike adaptive controllers [12], linear feedback control [16], and hybrid controller [34], this article constructs two different types of controllers: nonlinear hybrid controller and adaptive hybrid controller. The hybrid controller has high flexibility, strong scalability, strong anti-interference ability, and good real-time performance. At the same time, hybrid adaptive controllers not only have the good performance of hybrid controllers but also the advantages of adaptive controllers. Adaptive controllers reduce control costs, greatly shorten synchronization time, and can achieve stable tracking accuracy. Different from the research on MLPS in literature [33,34,35], this paper adopts a complex valued fuzzy neural network model, while fully considering the impact of delay and uncertainty on actual situations. At the same time, it is worth mentioning that in terms of methods, we use complex-value direct method, appropriate inequality techniques, and hybrid control techniques, which greatly reduce the complexity of calculations.

    In this section, we use the MATLAB toolbox to simulate theorem results.

    Example 4.1. Study the following two-dimensional complex-valued FOFCVNNS:

    Ct0DαtOw(t)=awOw(t)+2ψ=1(mwψ+Δmwψ(t))fψ(Oψ(tτ(t)))+2ψ=1μwψ+0bwψ(t)fψ(Oψ(t))dt+2ψ=1υwψ+0cwψ(t)fψ(Oψ(t))dt+Iw(t), (4.1)

    where  Ow(t)=ORw(t)+iOIw(t)C, ORw(t),OIw(t)R, τ1(t)=τ2(t)=|tan(t)| I1(t)=I2(t)=0, fp(Op(t))=tanh(ORp(t))+itanh(OIp(t)).

    A=a1=a2=1,B=(mwψ+mwψ(t))2×2=(2.5+0.3i2.61.9i2.31.2i2.8+1.7i)+(0.4cost0.6sint0.5sint0.3cost),C=(μwp)2×2=(2.8+1.3i2.51.2i2.21.1i2.5+1.6i),D=(υwψ)2×2=(2.9+0.7i2.81.2i2.11.9i2.9+1.9i).

    The response system is

    Ct0DαtQw(t)=awQw(t)+2ψ=1(mwψ+Δmwψ(t))fψ(Qψ(tτ(t)))+2ψ=1μwψ+0bwψ(t)fψ(Qψ(t))dt+2ψ=1υwψ+0cwψ(t)fψ(Qψ(t))dt+Iw(t)+Uw(t), (4.2)

    where Qw(t)=QRw(t)+iQIw(t)C. The initial values of (4.1) and (4.2) are

    x1(0)=1.10.2i, x2(0)=1.30.4i,y1(0)=1.30.3i, y2(0)=1.50.1i.

    The phase portraits of system (4.1) are shown in Figure 1. The nonlinear hybrid controller is designed as (3.10), and picking α=0.95, S=0.55, δ1=δ2=1.1, η1=η2=1.3, L1=L2=0.11, λ=0.5. By calculation, we get ϖ1=4.47>0, ϖ2=0.71. Taking Ω1=1.5, then ϖ1ϖ2Ω1>0. This also confirms that the images drawn using the MATLAB toolbox conform to the theoretical results of Theorem 3.2. Figures 2 and 3 show the state trajectory of kw(t) and ||kw(t)|| without the controller (3.10). Figures 4 and 5 show state trajectories and error norms with the controller (3.10), respectively.

    Figure 1.  The phase portrait of state O1(t) and O2(t) of system (2.1).
    Figure 2.  Error state trajectories of kw(t) without the controllers and α=0.95.
    Figure 3.  Time response curve of error norm ||kw(t)|| without the controllers (3.10) and α=0.95.
    Figure 4.  State trajectories of kw(t) under the controllers (3.10) and α=0.95.
    Figure 5.  Time response curve of error norm ||kw(t)|| without the controllers (3.10) and α=0.95.

    Example 4.2. Taking α=0.95, S=0.97, k1=k2=5.1, ς1=ς2=0.2, ς1=5, ς2=8, δ1=δ2=1.1, η1=η2=1.5, L1=L2=0.1. The remaining parameters follow the ones mentioned earlier. According to calculation, Υ1=12.49, Υ2=7.36. Let Ω2=1.1, then we have Ω1Υ2Ω2>0. Figure 6 depicts the state trajectory diagram of kw(t) with adaptive controller (3.31). Figure 7 describes the error norm ||kw(t)|| with controller (3.31). According to Figure 8, it is easy to see that the control parameters ςw(t) are constant.

    Figure 6.  Time response curve of error norm ||kw(t)|| under the controllers (3.31) and α=0.95.
    Figure 7.  Time response curve of error norm ||kw(t)|| under the controllers (3.31) and α=0.95.
    Figure 8.  Time response curve of error ςw(t),w=1,2 and α=0.95.

    Example 4.3. Consider the following data:

    A=a1=a2=1,B=(mwψ+mwψ(t))2×2=(1.6+0.5i1.81.6i1.61.2i2.1+1.7i)+(0.4cost0.6sint0.5sint0.3cost),C=(μwp)2×2=(1.8+1.3i1.51.1i1.81.1i1.8+1.6i),D=(υwψ)2×2=(1.9+0.7i1.91.4i1.71.3i2.1+1.8i).

    Let the initial value be

    x1(0)=3.21.2i, x2(0)=3.01.4i,y1(0)=3.11.3i, y2(0)=3.31.1i.

    Picking α=0.88, S=0.9, δ1=δ2=1.2, η1=η2=1.5, L1=L2=0.1, λ=0.5, Ω1=2. After calculation, ϖ1=6.62>0, ϖ2=2.28, and ϖ1ϖ2Ω1>0. Similar to Example 4.1, Figures 9 and 10 show the state trajectory of kw(t) and ||kw(t)|| without the controller (3.10). Figures 11 and 12 show state trajectories and error norms with the controller (3.10), respectively.

    Figure 9.  Error state trajectories of kw(t) without the controllers and α=0.88.
    Figure 10.  Time response curve of error norm ||kw(t)|| without the controllers (3.10) and α=0.88.
    Figure 11.  State trajectories of kw(t) under the controllers (3.10) and α=0.88.
    Figure 12.  Time response curve of error norm ||kw(t)|| without the controllers (3.10) and α=0.88.

    Example 4.4. Taking α=0.88, S=0.9, k1=k2=2.2, ς1=ς2=0.2, ς1=4, ς2=9, δ1=δ2=1.1, η1=η2=1.5, L1=L2=0.1, Ω2=2. The other parameters are the same as Example 4.3, where Υ1=22.29, Υ2=10.67, and Ω1Υ2Ω2>0. Thus, the conditions of Theorem 3.3 are satisfied. Figure 13 depicts the state trajectory diagram of kw(t) with adaptive controller (3.31). Figure 14 describes the error norm ||kw(t)|| with controller (3.31). Control parameters ςw(t) are described in Figure 15.

    Figure 13.  Time response curve of error norm ||kw(t)|| under the controllers (3.31) and α=0.88.
    Figure 14.  Time response curve of error norm ||kw(t)|| under the controllers (3.31) and α=0.88.
    Figure 15.  Time response curve of error ςw(t),w=1,2 and α=0.88.

    In this paper, we studied MLPS issues of delayed FOFCVNNs. First, according to the principle of contraction and projection, a sufficient criterion for the existence and uniqueness of the equilibrium point of FOFCVNNs is obtained. Second, based on the basic theory of fractional calculus, inequality analysis techniques, Lyapunov function method, and fractional Razunikhin theorem, the MLPS criterion of FOFCVNNs is derived. Finally, we run four simulation experiments to verify the theoretical results. At present, we have fully considered the delay and parameter uncertainty of neural networks and used continuous control methods in the synchronization process. However, regarding fractional calculus, there is a remarkable difference between continuous-time systems and discrete-time systems [14]. Therefore, in future work, we can consider converting the continuous time system proposed in this paper into discrete time system and further research discrete-time MLPS. Alternatively, we can consider studying finite-time MLPS based on the MLPS presented in this paper.

    Yang Xu: Writing–original draft; Zhouping Yin: Supervision, Writing–review; Yuanzhi Wang: Software; Qi Liu: Writing–review; Anwarud Din: Methodology. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no conflicts of interest.



    [1] E. Viera-Martin, J. F. Gomez-Aguilar, J. E. Solis-Perez, J. A. Hernandez-Perez, R. F. Escobar-Jimenez, Artificial neural networks: a practical review of applications involving fractional calculus, Eur. Phys. J. Spec. Top., 231 (2022), 2059–2095. https://doi.org/10.1140/epjs/s11734-022-00455-3 doi: 10.1140/epjs/s11734-022-00455-3
    [2] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [3] S. P. Wen, Z. G. Zeng, T. W. Huang, Q. G. Meng, W. Yao, Lag synchronization of switched neural networks via neural activation function and applications in image encryption, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1493–1502. https://doi.org/10.1109/TNNLS.2014.2387355 doi: 10.1109/TNNLS.2014.2387355
    [4] N. Ghosh, A. Garg, B. K. Panigrahi, J. Kim, An evolving quantum fuzzy neural network for online state-of-health estimation of Li-ion cell, Appl. Soft Comput., 143 (2023), 110263. https://doi.org/10.1016/j.asoc.2023.110263 doi: 10.1016/j.asoc.2023.110263
    [5] Y. Zhang, X. P. Wang, E. G. Friedman, Memristor-based circuit design for multilayer neural networks, IEEE Trans. Circuits Syst. I Regul. Pap., 65 (2018), 677–686. https://doi.org/10.1109/TCSI.2017.2729787 doi: 10.1109/TCSI.2017.2729787
    [6] C. J. Wang, Z. L. Xu, An intelligent fault diagnosis model based on deep neural network for few-shot fault diagnosis, Neurocomputing, 456 (2021), 550–562. https://doi.org/10.1016/j.neucom.2020.11.070 doi: 10.1016/j.neucom.2020.11.070
    [7] G. R. Murthy, Toward optimal synthesis of discrete-time Hopfield neural network, IEEE Trans. Neur. Netw. Learn. Syst., 34 (2023), 9549–9554. https://doi.org/10.1109/TNNLS.2022.3156107 doi: 10.1109/TNNLS.2022.3156107
    [8] H. Zhang, Z. G. Zeng, Synchronization of recurrent neural networks with unbounded delays and time-varying coefficients via generalized differential inequalities, Neural Netw., 143 (2021), 161–170. https://doi.org/10.1016/j.neunet.2021.05.022 doi: 10.1016/j.neunet.2021.05.022
    [9] S. L. Chen, H. L. Li, Y. G. Kao, L. Zhang, C. Hu, Finite-time stabilization of fractional-order fuzzy quaternion-valued BAM neural networks via direct quaternion approach, J. Franklin Inst., 358 (2021), 7650–7673. https://doi.org/10.1016/j.jfranklin.2021.08.008 doi: 10.1016/j.jfranklin.2021.08.008
    [10] Z. J. Zhang, T. T. Yu, X. Zhang, Algebra criteria for global exponential stability of multiple time-varying delay Cohen-Grossberg neural networks, Appl. Math. Comput., 435 (2022), 127461. https://doi.org/10.1016/j.amc.2022.127461 doi: 10.1016/j.amc.2022.127461
    [11] H. Zhang, Y. H. Cheng, W. W. Zhang, H. M. Zhang, Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays, Math. Comput. Simul., 203 (2023), 846–857. https://doi.org/10.1016/j.matcom.2022.07.019 doi: 10.1016/j.matcom.2022.07.019
    [12] F. Zhao, J. G. Jian, B. X. Wang, Finite-time synchronization of fractional-order delayed memristive fuzzy neural networks, Fuzzy Sets Syst., 467 (2023), 108578. https://doi.org/10.1016/j.fss.2023.108578 doi: 10.1016/j.fss.2023.108578
    [13] F. F. Du, J. G. Lu, Adaptive finite-time synchronization of fractional-order delayed fuzzy cellular neural networks, Fuzzy Sets Syst., 466 (2023), 108480. https://doi.org/10.1016/j.fss.2023.02.001 doi: 10.1016/j.fss.2023.02.001
    [14] H. L. Li, J. D. Cao, C. Hu, L. Zhang, H. J. Jiang, Adaptive control-based synchronization of discrete-time fractional-order fuzzy neural networks with time-varying delays, Neural Netw., 168 (2023), 59–73. https://doi.org/10.1016/j.neunet.2023.09.019 doi: 10.1016/j.neunet.2023.09.019
    [15] J. T. Fei, Z. Wang, Q. Pan, Self-constructing fuzzy neural fractional-order sliding mode control of active power filter, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 10600–10611. https://doi.org/10.1109/TNNLS.2022.3169518 doi: 10.1109/TNNLS.2022.3169518
    [16] T. Nitta, Orthogonality of decision boundaries in complex-valued neural networks, Neural Comput., 16 (2004), 73–97. https://doi.org/10.1162/08997660460734001 doi: 10.1162/08997660460734001
    [17] I. Cha, S. A. Kassam, Channel equalization using adaptive complex radial basis function networks, IEEE J. Sel. Areas Commun., 13 (1995), 122–131. https://doi.org/10.1109/49.363139 doi: 10.1109/49.363139
    [18] H. L. Li, C. Hu, J. D. Cao, H. J. Jiang, A. Alsaedi, Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays, Neural Netw., 118 (2019), 102–109. https://doi.org/10.1016/j.neunet.2019.06.008 doi: 10.1016/j.neunet.2019.06.008
    [19] X. L. Zhang, H. L. Li, Y. G. Yu, L. Zhang, H. J. Jiang, Quasi-projective and complete synchronization of discrete-time fractional-order delayed neural networks, Neural Netw., 164 (2023), 497–507. https://doi.org/10.1016/j.neunet.2023.05.005 doi: 10.1016/j.neunet.2023.05.005
    [20] S. Yang, H. J. Jiang, C. Hu, J. Yu, Synchronization for fractional-order reaction-diffusion competitive neural networks with leakage and discrete delays, Neurocomputing, 436 (2021), 47–57. https://doi.org/10.1016/j.neucom.2021.01.009 doi: 10.1016/j.neucom.2021.01.009
    [21] Z. Y. Yang, J. Zhang, J. H. Hu, J. Mei, New results on finite-time stability for fractional-order neural networks with proportional delay, Neurocomputing, 442 (2021), 327–336. https://doi.org/10.1016/j.neucom.2021.02.082 doi: 10.1016/j.neucom.2021.02.082
    [22] C. Chen, L. X. Li, H. P. Peng, Y. X. Yang, Fixed-time synchronization of inertial memristor-based neural networks with discrete delay, Neural Netw., 109 (2019), 81–89. https://doi.org/10.1016/j.neunet.2018.10.011 doi: 10.1016/j.neunet.2018.10.011
    [23] M. Hui, N. Yao, H. H. C. Iu, R. Yao, L. Bai, Adaptive synchronization of fractional-order complex-valued neural networks with time-varying delays, IEEE Access, 10 (2022), 45677–45688. https://doi.org/10.1109/ACCESS.2022.3170091 doi: 10.1109/ACCESS.2022.3170091
    [24] G. L. Chen, D. S. Li, L. Shi, O. van Gaans, S. V. Lunel, Stability results for stochastic delayed recurrent neural networks with discrete and distributed delays, J. Differ. Equ., 264 (2018), 3864–3898. https://doi.org/10.1016/j.jde.2017.11.032 doi: 10.1016/j.jde.2017.11.032
    [25] L. Z. Si, M. Xiao, G. P. Jiang, Z. S. Cheng, Q. K. Song, J. D. Cao, Dynamics of fractional-order neural networks with discrete and distributed delays, IEEE Access, 8 (2019), 46071–46080. https://doi.org/10.1109/ACCESS.2019.2946790 doi: 10.1109/ACCESS.2019.2946790
    [26] Z. Y. Yang, J. Zhang, J. H. Hu, J. Mei, Some new Gronwall-type integral inequalities and their applications to finite-time stability of fractional-order neural networks with hybrid delays, Neural Process. Lett., 55 (2023), 11233–11258. https://doi.org/10.1007/s11063-023-11373-3 doi: 10.1007/s11063-023-11373-3
    [27] W. Q. Gong, J. L. Liang, C. J. Zhang, Multistability of complex-valued neural networks with distributed delays, Neural Comput. Appl., 28 (2017), 1–14. https://doi.org/10.1007/s00521-016-2305-9 doi: 10.1007/s00521-016-2305-9
    [28] Y. J. Gu, Y. G. Yu, H. Wang, Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty, J. Franklin Inst., 353 (2016), 3657–3684. https://doi.org/10.1016/j.jfranklin.2016.06.029 doi: 10.1016/j.jfranklin.2016.06.029
    [29] Y. L. Huang, S. H. Qiu, S. Y. Ren, Z. W. Zheng, Fixed-time synchronization of coupled Cohen-Grossberg neural networks with and without parameter uncertainties, Neurocomputing, 315 (2018), 157–168. https://doi.org/10.1016/j.neucom.2018.07.013 doi: 10.1016/j.neucom.2018.07.013
    [30] Z. Chen, Complete synchronization for impulsive Cohen-Grossberg neural networks with delay under noise perturbation, Chaos Solitons Fract., 42 (2009), 1664–1669. https://doi.org/10.1016/j.chaos.2009.03.063 doi: 10.1016/j.chaos.2009.03.063
    [31] S. C. Jia, C. Hu, J. Yu, H. J. Jiang, Asymptotical and adaptive synchronization of Cohen-Grossberg neural networks with heterogeneous proportional delays, Neurocomputing, 275 (2018), 1449–1455. https://doi.org/10.1016/j.neucom.2017.09.076 doi: 10.1016/j.neucom.2017.09.076
    [32] L. Wang, H. L. Li, L. Zhang, C. Hu, H. J. Jiang, Quasi-synchronization of fractional-order complex-value neural networks with discontinuous activations, Neurocomputing, 560 (2023), 126856. https://doi.org/10.1016/j.neucom.2023.126856 doi: 10.1016/j.neucom.2023.126856
    [33] X. Wang, J. D. Cao, B. Yang, F. B. Chen, Fast fixed-time synchronization control analysis for a class of coupled delayed Cohen-Grossberg neural networks, J. Franklin Inst., 359 (2022), 1612–1639. https://doi.org/10.1016/j.jfranklin.2022.01.026 doi: 10.1016/j.jfranklin.2022.01.026
    [34] P. Liu, M. X. Kong, Z. G. Zeng, Projective synchronization analysis of fractional-order neural networks with mixed time delays, IEEE Trans. Cybernet., 52 (2022), 6798–6808. https://doi.org/10.1109/TCYB.2020.3027755 doi: 10.1109/TCYB.2020.3027755
    [35] I. Stamova, Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays, Nonlinear Dyn., 77 (2014), 1251–1260. https://doi.org/10.1007/s11071-014-1375-4 doi: 10.1007/s11071-014-1375-4
    [36] H. Zhang, Y. H. Cheng, H. M. Zhang, W. W. Zhang, J. D. Cao, Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects, Math. Comput. Simul., 197 (2022), 341–357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022
    [37] J. Y. Chen, C. D. Li, X. J. Yang, Global Mittag-Leffler projective synchronization of nonidentical fractional-order neural networks with delay via sliding mode control, Neurocomputing, 313 (2018), 324–332. https://doi.org/10.1016/j.neucom.2018.06.029 doi: 10.1016/j.neucom.2018.06.029
    [38] I. Podlubny, Fractional differential equations, Academic Press, 1998.
    [39] T. Yang, L. B. Yang, C. W. Wu, L. O. Chua, Fuzzy cellular neural networks: theory, In: 1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96), 1996,181–186. https://doi.org/10.1109/CNNA.1996.566545
    [40] S. Yang, J. Yu, C. Hu, H. J. Jiang, Quasi-projection synchronization of fractional-order complex-valued recurrent neural networks, Neural Netw., 104 (2018), 104–113. https://doi.org/10.1016/j.neunet.2018.04.007 doi: 10.1016/j.neunet.2018.04.007
    [41] Z. Y. Wu, G. R. Chen, X. C. Fu, Synchronization of a network coupled with complex-variable chaotic systems, Chaos, 22 (2012), 023127. https://doi.org/10.1063/1.4717525 doi: 10.1063/1.4717525
    [42] J. Yu, C. Hu, H. J. Jiang, Corrogendum to "projective synchronization for fractional neural networks", Neural Netw., 67 (2015), 152–154. https://doi.org/10.1016/j.neunet.2015.02.007 doi: 10.1016/j.neunet.2015.02.007
    [43] S. Liu, R. Yang, X. F. Zhou, W. Jiang, X. Y. Li, X. W. Zhao, Stability analysis of fractional delayed equations and its applications on consensus of multi-agent systems, Commun. Nonlinear Sci. Numer. Simul., 73 (2019), 351–362. https://doi.org/10.1016/j.cnsns.2019.02.019 doi: 10.1016/j.cnsns.2019.02.019
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(844) PDF downloads(51) Cited by(0)

Figures and Tables

Figures(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog