The detrimental effects of high amounts of sedentary time on various health outcomes have been well documented. Particularly among youth, there are many sedentary pursuits that compete with active leisure time choices, which contribute to a high prevalence of insufficiently active children and adolescents. Therefore, the present study examined the time spent in various sedentary behaviors and the association with body weight in Austrian adolescents. Sedentary time was assessed with the “Heidelberg Questionnaire to Record the Sitting Behavior of Children and Adolescents” for 1225 (49.8% male) middle- and high-school students between 11 and 17 years of age. Their body weights and heights were measured with participants wearing gym clothes. The weight categories were established based on body mass index (BMI) percentiles using the German reference system. The average daily sedentary time across the entire sample was 12.0 ± 1.6 h, and 45% of the sedentary behaviors during the entire week were attributed to schoolwork. Normal weight participants reported a lower amount of sitting time compared to their overweight and obese peers, where they spent more time with physical activity and sleeping. Specifically, a higher body weight was associated with more time spent with recreational sedentary behaviors, while differences across the weight categories were limited for work-related sitting. Given the detrimental health effects of high amounts of sedentary behaviors, additional efforts are needed to promote physical activity in adolescents, particularly for those with an excess body weight. As almost half of the sedentary behaviors were attributed to work, schools could be a particularly viable setting for interventions that target an active lifestyle.
Citation: Klaus Greier, Clemens Drenowatz, Carla Greier, Gerhard Ruedl, Herbert Riechelmann. Sitting time in different contexts in Austrian adolescents and association with weight status[J]. AIMS Medical Science, 2024, 11(2): 157-169. doi: 10.3934/medsci.2024013
[1] | Jamie L. Flexon, Lisa Stolzenberg, Stewart J. D'Alessio . The impact of cannabis legislation on benzodiazepine and opioid use and misuse. AIMS Medical Science, 2024, 11(1): 1-24. doi: 10.3934/medsci.2024001 |
[2] | Hicham Rahmi, Ben Yamine Mallouki, Fatiha Chigr, Mohamed Najimi . The effects of smoking Haschich on blood parameters in young people from the Beni Mellal region Morocco. AIMS Medical Science, 2021, 8(4): 276-290. doi: 10.3934/medsci.2021023 |
[3] | Gili Eshel, Baruch Harash, Maayan Ben Sasson, Amir Minerbi, Simon Vulfsons . Validation of the Hebrew version of the questionnaire “know pain 50”. AIMS Medical Science, 2022, 9(1): 51-64. doi: 10.3934/medsci.2022006 |
[4] | Carlos Forner-Álvarez, Ferran Cuenca-Martínez, Rafael Moreno-Gómez-Toledano, Celia Vidal-Quevedo, Mónica Grande-Alonso . Multimodal physiotherapy treatment based on a biobehavioral approach in a patient with chronic low back pain: A case report. AIMS Medical Science, 2024, 11(2): 77-89. doi: 10.3934/medsci.2024007 |
[5] | Carlos Forner-Álvarez, Ferran Cuenca-Martínez, Alba Sebastián-Martín, Celia Vidal-Quevedo, Mónica Grande-Alonso . Combined face-to-face and telerehabilitation physiotherapy management in a patient with chronic pain related to piriformis syndrome: A case report. AIMS Medical Science, 2024, 11(2): 113-123. doi: 10.3934/medsci.2024010 |
[6] | Diogo Henrique Constantino Coledam, Philippe Fanelli Ferraiol, Gustavo Aires de Arruda, Arli Ramos de Oliveira . Correlates of the use of health services among elementary school teachers: A cross-sectional exploratory study. AIMS Medical Science, 2023, 10(4): 273-290. doi: 10.3934/medsci.2023021 |
[7] | Benjamin P Jones, Srdjan Saso, Timothy Bracewell-Milnes, Jen Barcroft, Jane Borley, Teodor Goroszeniuk, Kostas Lathouras, Joseph Yazbek, J Richard Smith . Laparoscopic uterosacral nerve block: A fertility preserving option in chronic pelvic pain. AIMS Medical Science, 2019, 6(4): 260-267. doi: 10.3934/medsci.2019.4.260 |
[8] | Kaye Ervin, Julie Pallant, Daniel R. Terry, Lisa Bourke, David Pierce, Kristen Glenister . A Descriptive Study of Health, Lifestyle and Sociodemographic Characteristics and their Relationship to Known Dementia Risk Factors in Rural Victorian Communities. AIMS Medical Science, 2015, 2(3): 246-260. doi: 10.3934/medsci.2015.3.246 |
[9] | Joann E. Bolton, Elke Lacayo, Svetlana Kurklinsky, Christopher D. Sletten . Improvement in montreal cognitive assessment score following three-week pain rehabilitation program. AIMS Medical Science, 2019, 6(3): 201-209. doi: 10.3934/medsci.2019.3.201 |
[10] | Mansour Shakiba, Mohammad Hashemi, Zahra Rahbari, Salah Mahdar, Hiva Danesh, Fatemeh Bizhani, Gholamreza Bahari . Lack of Association between Human µ-Opioid Receptor (OPRM1) Gene Polymorphisms and Heroin Addiction in A Sample of Southeast Iranian Population. AIMS Medical Science, 2017, 4(2): 233-240. doi: 10.3934/medsci.2017.2.233 |
The detrimental effects of high amounts of sedentary time on various health outcomes have been well documented. Particularly among youth, there are many sedentary pursuits that compete with active leisure time choices, which contribute to a high prevalence of insufficiently active children and adolescents. Therefore, the present study examined the time spent in various sedentary behaviors and the association with body weight in Austrian adolescents. Sedentary time was assessed with the “Heidelberg Questionnaire to Record the Sitting Behavior of Children and Adolescents” for 1225 (49.8% male) middle- and high-school students between 11 and 17 years of age. Their body weights and heights were measured with participants wearing gym clothes. The weight categories were established based on body mass index (BMI) percentiles using the German reference system. The average daily sedentary time across the entire sample was 12.0 ± 1.6 h, and 45% of the sedentary behaviors during the entire week were attributed to schoolwork. Normal weight participants reported a lower amount of sitting time compared to their overweight and obese peers, where they spent more time with physical activity and sleeping. Specifically, a higher body weight was associated with more time spent with recreational sedentary behaviors, while differences across the weight categories were limited for work-related sitting. Given the detrimental health effects of high amounts of sedentary behaviors, additional efforts are needed to promote physical activity in adolescents, particularly for those with an excess body weight. As almost half of the sedentary behaviors were attributed to work, schools could be a particularly viable setting for interventions that target an active lifestyle.
In 2005, Rodríguez [1] used the Lyapunov-Schmidt method and Brower fixed-point theorem to discuss the following discrete Sturm-Liouville boundary value problem
{Δ[p(t−1)Δy(t−1)]+q(t)y(t)+λy(t)=f(y(t)), t∈[a+1,b+1]Z,a11y(a)+a12Δy(a)=0, a21y(b+1)+a22Δy(b+1)=0, |
where λ is the eigenvalue of the corresponding linear problem and the nonlinearity f is bounded.
Furthermore, in 2007, Ma [2] studied the following discrete boundary value problem
{Δ[p(t−1)Δy(t−1)]+q(t)y(t)+λy(t)=f(t,y(t))+h(t), t∈[a+1,b+1]Z,a11y(a)+a12Δy(a)=0, a21y(b+1)+a22Δy(b+1)=0, |
where f is subject to the sublinear growth condition
|f(t,s)|≤A|s|α+B,s∈R |
for some 0≤α<1 and A,B∈(0,∞). Additional results to the existence of solutions to the related continuous and discrete problems on the nonresonance and the resonance can be found in [3,4,5,6,7,8,9,10,11,12,13] and the references therein. For example, Li and Shu [14] considered the existence of solutions to the continuous Sturm-Liouville problem with random impulses and boundary value problems using the Dhage's fixed-point theorem and considered the existence of upper and lower solutions to a second-order random impulsive differential equation in [15] using the monotonic iterative method.
Inspired by the above literature, we use the solution set connectivity theory of compact vector field [16] to consider the existence of solutions to discrete resonance problems
{−Δ[p(t−1)Δy(t−1)]+q(t)y(t)=λkr(t)y(t)+f(t,y(t))+γψk(t)+¯g(t), t∈[1,T]Z,(a0λk+b0)y(0)=(c0λk+d0)Δy(0),(a1λk+b1)y(T+1)=(c1λk+d1)∇y(T+1), | (1.1) |
where p:[0,T]Z→(0,∞), q:[1,T]Z→R, ¯g:[1,T]Z→R, r(t)>0, t∈[1,T]Z, (λk,ψk) is the eigenpair of the corresponding linear problem
{−Δ[p(t−1)Δy(t−1)]+q(t)y(t)=λr(t)y(t), t∈[1,T]Z,(a0λ+b0)y(0)=(c0λ+d0)Δy(0),(a1λ+b1)y(T+1)=(c1λ+d1)∇y(T+1). | (1.2) |
It is worth noting that the difference between the problem (1.1) and the above questions is the eigenvalue that not only appears in the equation but also in the boundary conditions, which causes us considerable difficulties. Furthermore, it should be noted that these problems also apply to a number of physical problems, including those involving heat conduction, vibrating strings, and so on. For instance, Fulton and Pruess [17] discussed a kind of heat conduction problem, which has the eigenparameter-dependent boundary conditions. However, to discuss this kind of problem, we should know the spectrum of the problem (1.2). Fortunately, in 2016, Gao and Ma [18] obtained the eigenvalue theory of problem (1.2) under the conditions listed as follows:
(A1) δ0:=a0d0−b0c0<0,c0≠0, d1−b1≠0,
(A2) δ1:=a1d1−b1c1>0,c1≠0, b0+d0≠0,
which laid a theoretical foundation for this paper.
Under the conditions (A1) and (A2), we assume the following conditions hold:
(H1) (Sublinear growth condition) f:[1,T]Z×R→R is continuous and there exist α∈[0,1) and A,B∈(0,∞), such that
|f(t,y)|≤A|y|α+B, |
(H2) (Symbol condition) There exists ω>0, such that
yf(t,y)>0,t∈[1,T]Zfor|y|>ω, | (1.3) |
or
yf(t,y)<0,t∈[1,T]Zfor|y|>ω, | (1.4) |
(H3) ¯g:[1,T]Z→R satisfies
T∑s=1¯g(s)ψk(s)=0, | (1.5) |
(H4) f:[1,T]Z×R→R is continuous and
lim|y|→∞f(t,y)=0 |
uniformly for t∈[1,T]Z.
The organization of this paper is as follows. In the second section, we construct a completely new inner product space. In the new inner product space, we discuss the basic self-adjointness of the corresponding linear operator and the properties of the eigenpair of (1.2). Finally, under the above properties, the Lyapunov-Schmidit method is used to decompose the inner product space and transform our problem to an equivalent system, that is to say, finding the solutions of (1.1) is equivalent to finding the solutions of this system. Under the sublinear condition and sign conditions on nonlinear terms, an existence result of solutions to the problem (1.1) is obtained using Schauder's fixed-point theorem and the connectivity theories of the solution set of compact vector fields. Based on the first result, the existence of two solutions to the problem (1.1) is also obtained in this section.
Definition 2.1. ([19]) A linear operator P from the linear space X to itself is called the projection operator, if P2=P.
Lemma 2.2. ([16]) Let C be a bounded closed convex set in Banach space E, T:[α,β]×C→C(α<β) be a continuous compact mapping, then the set
Sα,β={(ρ,x)∈[α,β]×C|T(ρ,x)=x} |
contains a connected branch connecting {α}×C and {β}×C.
Lemma 2.3. ([20])(Schauder) Let D be a bounded convex closed set in E, A:D→D is completely continuous, then A has a fixed point in D.
First, we construct the inner product space needed in this paper.
Let
Y:={u|u:[1,T]Z→R}, |
then Y is a Hilbert space under the following inner product
⟨y,z⟩Y=T∑t=1y(t)z(t) |
and its norm is ‖y‖Y:=√⟨y,y⟩Y.
Furthermore, consider the space H:=Y⊕R2. Define the inner product as follows:
⟨[y,α,β]⊤,[z,ζ,ρ]⊤⟩=⟨y,z⟩Y+p(0)|δ0|αζ+p(T)|δ1|βρ, |
which norm is defined as
‖y∗‖=⟨[y,α,β]⊤,[y,α,β]⊤⟩12, |
where ⊤ is transposition to a matrix.
Let
y0,0=b0y(0)−d0Δy(0), y0,1=a0y(0)−c0Δy(0) |
and
yT+1,0=b1y(T+1)−d1∇y(T+1), yT+1,1=a1y(T+1)−c1∇y(T+1). |
For y∗=[y,α,β]⊤, define an operator L:D→H as follows:
Ly∗=[−Δ[p(t−1)Δy(t−1)]+q(t)y(t)−y0,0−yT+1,0]:=[Ly−y0,0−yT+1,0], |
where D={[y,α,β]⊤:y∈Y, y0,1=α, yT+1,1=β}. Define S:D→H as follows:
Sy∗=S[yαβ]=[ryαβ]. |
Then, the problem (1.2) is equivalent to the eigenvalue problem as follows:
Ly∗=λSy∗, | (2.1) |
that is, if (λk,y) is the eigenpair of the problem (1.2), then (λk,y∗) is the eigenpair of the opertor L. Conversely, if (λk,y∗) is the eigenpair of the operator L, then (λk,y) is the eigenpair of the problem (1.2).
Eventually, we define A:D→H as follows:
Ay∗=F(t,y∗)+[γψk+¯g,0,0]⊤, |
where F(t,y∗)=F(t,[y,α,β]⊤)=[f(t,y),0,0]⊤. Obviously, the solution of the problem (1.1) is equivalent to the fixed point of the following operator
Ly∗=λkSy∗+Ay∗. | (2.2) |
It can be seen that there is a homomorphism mapping (λk,y)↔(λk,y∗) between the problem (1.1) and the operator Eq (2.2).
Next, we are committed to obtaining the orthogonality of the eigenfunction.
Lemma 2.4. Assume that (λ,y∗) and (μ,z∗) are eigenpairs of L, then
⟨y∗,Lz∗⟩−⟨Ly∗,z∗⟩=(μ−λ)⟨y∗,Sz∗⟩. |
Proof Let y∗=[y,α,β]⊤∈D, z∗=[z,ζ,ρ]⊤∈D, then
⟨y∗,Lz∗⟩=⟨[y,α,β]⊤,[Lz,−z0,0,−zT+1,0]⊤⟩=⟨y,Lz⟩Y+p(0)|δ0|α(−z0,0)+p(T)|δ1|β(−zT+1,0)=μ⟨y,rz⟩Y+p(0)|δ0|α(μζ)+p(T)|δ1|β(μρ)=μ⟨y∗,Sz∗⟩. | (2.3) |
Similarly, we have
⟨Ly∗,z∗⟩=⟨[Ly,−y0,0,−yT+1,0]⊤,[z,ζ,ρ]⊤⟩=⟨Ly,z⟩Y+p(0)|δ0|(−y0,0)ζ+p(T)|δ1|(−yT+1,0)ρ=λ⟨ry,z⟩Y+p(0)|δ0|λαζ+p(T)|δ1|λβρ=λ⟨y∗,Sz∗⟩. | (2.4) |
It can be seen from (2.3) and (2.4)
⟨y∗,Lz∗⟩−⟨Ly∗,z∗⟩=(μ−λ)⟨y∗,Sz∗⟩. |
Lemma 2.5. The operator L is the self-adjoint operator in H.
Proof For y∗=[y,α,β]⊤∈D,z∗=[z,ζ,ρ]⊤∈D, we just need to prove that ⟨y∗,Lz∗⟩=⟨Ly∗,z∗⟩. By the definition of inner product in H. we obtain
⟨y∗,Lz∗⟩=⟨y,Lz⟩Y+p(0)|δ0|α(−z0,0)+p(T)|δ1|β(−zT+1,0), |
and
⟨Ly∗,z∗⟩=⟨Ly,z⟩Y+p(0)|δ0|(−y0,0)ζ+p(T)|δ1|(−yT+1,0)ρ. |
Therefore,
⟨y∗,Lz∗⟩−⟨Ly∗,z∗⟩=⟨y,Lz⟩Y−⟨Ly,z⟩Y+p(0)|δ0|[α(−z0,0)−(−y0,0)ζ]+p(T)|δ1|[β(−zT+1,0)−(−yT+1,0)ρ], |
where
⟨y,Lz⟩Y=T∑t=1y(t)(−Δ[p(t−1)Δz(t−1)]+q(t)z(t))=T∑t=1y(t)p(t−1)Δz(t−1)−T∑t=1y(t)p(t)Δz(t)+T∑t=1q(t)y(t)z(t)=T−1∑t=0y(t+1)p(t)Δz(t)−T∑t=1y(t)p(t)Δz(t)+T∑t=1q(t)y(t)z(t)=T−1∑t=0p(t)Δy(t)Δz(t)+p(0)y(0)Δz(0)−p(T)y(T)Δz(T)+T∑t=1q(t)y(t)z(t) |
and
⟨Ly,z⟩Y=T−1∑t=0p(t)Δy(t)Δz(t)+p(0)Δy(0)z(0)−p(T)Δy(T)z(T)+T∑t=1q(t)y(t)z(t). |
Moreover, from
α(−z0,0)−(−y0,0)ζ=[a0y(0)−c0Δy(0)][d0Δz(0)−b0z(0)]−[d0Δy(0)−b0y(0)][a0z(0)−c0Δz(0)]=(a0d0−b0c0)[y(0)Δz(0)−Δy(0)z(0)] |
and
β(−zT+1,0)−(−yT+1,0)ρ=[a1y(T+1)−c1∇y(T+1)][−b1z(T+1)+d1∇z(T+1)]−[−b1y(T+1)+d1∇y(T+1)][a1z(T+1)−c1∇z(T+1)]=(a1d1−b1c1)[y(T+1)∇z(T+1)−∇y(T+1)z(T+1)], |
we have
⟨y∗,Lz∗⟩−⟨Ly∗,z∗⟩=p(0)|y(0)Δy(0)z(0)Δz(0)|−p(T)|y(T)Δy(T)z(T)Δz(T)|−p(0)|y(0)Δy(0)z(0)Δz(0)|+p(T)|y(T+1)∇y(T+1)z(T+1)∇z(T+1)|=0. |
In order to obtain the orthogonality of the eigenfunction, we define a weighted inner product related to the weighted function r(t) in H. First, we define the inner product in Y as ⟨y,z⟩r=T∑t=1r(t)y(t)z(t).
Similarly, the inner product associated with the weight function r(t) in the space H is defined as follows:
⟨[y,α,β]⊤,[z,ζ,ρ]⊤⟩r=⟨y,z⟩r+p(0)|δ0|αζ+p(T)|δ1|βρ. |
Lemma 2.6. (Orthogonality theorem) Assume that (A1) and (A2) hold. If (λ,y∗) and (μ,z∗) are two different eigenpairs corresponding to L, then y∗ and z∗ are orthogonal under the weight inner product related to the weight function r(t).
Proof Assume that (λ,y∗) and (μ,z∗) is the eigenpair of L, then it can be obtained from Lemmas 2.4 and 2.5
0=(μ−λ)⟨y∗,Sz∗⟩=(μ−λ)⟨y∗,z∗⟩r. |
Therefore, if λ≠μ, then ⟨y∗,z∗⟩r=0, which implies that y∗ and z∗ are orthogonal to the inner product defined by the weighted function r(t).
Lemma 2.7. ([18]) Suppose that (A1) and (A2) hold. Then (1.2) has at least T or at most T+2 simple eigenvalues.
In this paper, we consider that λk is a simple eigenvalue, that is, the eigenspace corresponding to each eigenvalue is one-dimensional. Let ψ∗k=[ψk,α,β]⊤∈D be the eigenfunction corresponding to λk, and assume that it satisfies
⟨ψ∗k,ψ∗k⟩=1. | (2.5) |
Denote by L:=L−λkS, then the operator (2.2) is transformed into
Ly∗=Ay∗. | (2.6) |
Define P:D→D by
(Px∗)(t)=ψ∗k(t)⟨ψ∗k(t),x∗(t)⟩. |
Lemma 2.8. P is a projection operator and Im(P)=Ker(L).
Proof Obviously, P is a linear operator, next, we need to prove P2=P.
(P2x∗)(t)=P(Px∗)(t)=ψ∗k(t)⟨ψ∗k(t),Px∗(t)⟩=ψ∗k(t)⟨ψ∗k(t),ψ∗k(t)⟨ψ∗k(t),x∗(t)⟩⟩=ψ∗k(t)⟨ψ∗k(t),x∗(t)⟩⟨ψ∗k(t),ψ∗k(t)⟩=ψ∗k(t)⟨ψ∗k(t),x∗(t)⟩=(Px∗)(t). |
It can be obtained from the Definition 2.1, P is a projection operator. In addition, Im(P)=span{ψ∗k}=Ker(L).
Define H:H→H by
H([yαβ])=[yαβ]−⟨[yαβ],ψ∗k⟩ψ∗k. |
Lemma 2.9. H is a projection operator and Im(H)=Im(L).
Proof Obviously, H is a linear operator, next, we need to prove that H2=H.
H2([yαβ])=H(H[yαβ])=H[yαβ]−⟨H[yαβ],ψ∗k⟩ψ∗k=[yαβ]−⟨[yαβ],ψ∗k⟩ψ∗k−⟨[yαβ]−⟨[yαβ],ψ∗k⟩ψ∗k,ψ∗k⟩ψ∗k=[yαβ]−2⟨[yαβ],ψ∗k⟩ψ∗k+⟨⟨[yαβ],ψ∗k⟩ψ∗k,ψ∗k⟩ψ∗k=[yαβ]−2⟨[yαβ],ψ∗k⟩ψ∗k+⟨[yαβ],ψ∗k⟩⟨ψ∗k,ψ∗k⟩ψ∗k=H([yαβ]). |
It can be obtained from Definition 2.1 that H is a projection operator. On the one hand, for any [y,α,β]⊤∈H, we have
⟨H[yαβ],ψ∗k⟩=⟨[yαβ]−⟨[yαβ],ψ∗k⟩ψ∗k,ψ∗k⟩=⟨[yαβ],ψ∗k⟩−⟨⟨[yαβ],ψ∗k⟩ψ∗k,ψ∗k⟩=0, |
thus, Im(H)⊂Im(L). On the other hand, for any y∗∈Im(L), we have
⟨y∗,ψ∗k⟩=0. |
In summary, Im(H)=Im(L).
Denote that I is a identical operator, then
D=Im(P)⊕Im(I−P),H=Im(H)⊕Im(I−H). |
The restriction of the operator L on L|Im(I−P) is a bijection from Im(I−P) to Im(H). Define M:Im(H)→Im(I−P) by
M:=(L|Im(I−P))−1. |
It can be seen from KerL=span{ψ∗k} that there is a unique decomposition for any y∗=[y,α,β]⊤∈D
y∗=ρψ∗k+x∗, |
where ρ∈R,x∗=[x,α,β]⊤∈Im(I−P).
Lemma 2.10. The operator Eq (2.6) is equivalent to the following system
x∗=MHA(ρψ∗k+x∗), | (2.7) |
T∑t=1ψk(t)f(t,ρψk(t)+x(t))=γ(p(0)|δ0|α2+p(T)|δ1|β2−1):=θ, | (2.8) |
where α=a0ψk(0)−c0Δψk(0),β=a1ψk(T+1)−c1∇ψk(T+1).
Proof (ⅰ) For any y∗=ρψ∗k+x∗, we have
Ly∗=Ay∗ ⟺H(L(ρψ∗k+x∗)−A(ρψ∗k+x∗))=0⟺Lx∗−HA(ρψ∗k+x∗)=0⟺x∗=MHA(ρψ∗k+x∗). |
(ⅱ) Since ⟨Ly∗,ψ∗k⟩=0, we have ⟨Ay∗,ψ∗k⟩=0. Therefore,
⟨f(t,y)+γψk+¯g,ψk⟩Y=T∑t=1f(t,ρψk(t)+x(t))ψk(t)+T∑t=1γψk(t)ψk(t)+T∑t=1¯g(t)ψk(t)=0. |
Combining (H3) with (2.5), we have
T∑t=1ψk(t)f(t,ρψk(t)+x(t))=γ(p(0)|δ0|α2+p(T)|δ1|β2−1)=θ, |
where α=a0ψk(0)−c0Δψk(0),β=a1ψk(T+1)−c1∇ψk(T+1).
Let
A+={t∈{1,2,⋯,T} s.t. ψk(t)>0}, |
A−={t∈{1,2,⋯,T} s.t. ψk(t)<0}. |
Obviously,
A+∪A−≠∅, min{|ψk(t)||t∈A+∪A−}>0. |
Lemma 3.1. Supposed that (H1) holds, then there exist constants M0 and M1, such that
‖x∗‖≤M1(|ρ|‖ψk‖Y)α, |
where (ρ,x∗) is the solution of (2.7) and satisfies |ρ|≥M0.
Proof Since
A(ρψ∗k+x∗)=F(t,ρψ∗k+x∗)+[γψk+¯g,0,0]⊤=[f(t,ρψk+x)+γψk+¯g,0,0]⊤, |
we have
‖x∗‖≤‖M‖Im(H)→Im(I−P)‖H‖H→Im(H)[‖¯g‖Y+γ‖ψk‖Y+A(|ρ|‖ψk‖Y+‖x‖Y)α+B]=‖M‖Im(H)→Im(I−P)‖H‖H→Im(H)[‖¯g‖Y+A(|ρ|‖ψk‖Y)α(1+‖x‖Y|ρ|‖ψk‖Y)α+B−θ]≤‖M‖Im(H)→Im(I−P)‖H‖H→Im(H)[‖¯g‖Y+A(|ρ|‖ψk‖Y)α(1+α‖x‖Y|ρ|‖ψk‖Y)+B−θ]=‖M‖Im(H)→Im(I−P)‖H‖H→Im(H)[‖¯g‖Y+A(|ρ|‖ψk‖Y)α(1+α(|ρ|‖ψk‖Y)1−α‖x‖Y(|ρ|‖ψk‖Y)α)+B−θ]. |
Denote that
D0=‖M‖Im(H)→Im(I−P)‖H‖H→Im(H)(‖¯g‖Y+B−θ),D1=A‖M‖Im(H)→Im(I−P)‖H‖H→Im(H). |
Furthermore, we have
‖x∗‖(|ρ|‖ψk‖Y)α≤D0(|ρ|‖ψk‖Y)α+D1+αD1(|ρ|‖ψk‖Y)1−α‖x‖Y(|ρ|‖ψk‖Y)α≤D0(|ρ|‖ψk‖Y)α+D1+αD1(|ρ|‖ψk‖Y)1−α‖x∗‖(|ρ|‖ψk‖Y)α. |
So, if we let
αD1(|ρ|‖ψk‖Y)1−α≤12, |
we have
|ρ|≥(2αD1)11−α‖ψk‖Y:=M0. |
Thus,
‖x∗‖(|ρ|‖ψk‖Y)α≤2D0(M0‖ψk‖Y)α+2D1:=M1. |
This implies that
‖x∗‖≤M1(|ρ|‖ψk‖Y)α. |
Lemma 3.2. Suppose that (H1) holds, then there exist constants M0 and Γ, such that
‖x∗‖≤Γ(|ρ|min{|ψk(t)||t∈A+∪A−})α, |
where (ρ,x∗) is the solution of (2.7) and satisfies |ρ|≥M0.
According to Lemma 3.2, choose constant ρ0, such that
ρ0>max{M0,Γ(|ρ0|min{|ψk(t)||t∈A+∪A−})α}. | (3.1) |
Let
K:={x∗∈Im(I−P)|x∗=MHA(ρψ∗k+x∗),|ρ|≤ρ0}. |
Then, for sufficiently large ρ≥ρ0, there is
ρψk(t)+x(t)≥ω, ∀t∈A+,x∗∈K, | (3.2) |
ρψk(t)+x(t)≤−ω, ∀t∈A−,x∗∈K, | (3.3) |
and for sufficiently small ρ≤−ρ0, there is
ρψk(t)+x(t)≤−ω, ∀t∈A+,x∗∈K, | (3.4) |
ρψk(t)+x(t)≥ω, ∀t∈A−,x∗∈K. | (3.5) |
Theorem 3.3. Suppose that (A1), (A2) and (H1)–(H3) hold, then there exists a non-empty bounded set Ω¯g⊂R, such that the problem (1.1) has a solution if and only if θ∈Ω¯g. Furthermore, Ω¯g contains θ=0 and has a non-empty interior.
Proof We prove only the case of (1.3) in (H2), and the case of (1.4) can be similarly proved.
From (1.3) and (3.2)–(3.5), it is not difficult to see that
f(t,ρψk(t)+x(t))>0, ∀t∈A+, x∗∈K, |
f(t,ρψk(t)+x(t))<0, ∀t∈A−, x∗∈K, |
for sufficiently large ρ≥ρ0 and for sufficiently small ρ≤−ρ0,
f(t,ρψk(t)+x(t))<0, ∀t∈A+, x∗∈K, |
f(t,ρψk(t)+x(t))>0, ∀t∈A−, x∗∈K. |
Therefore, if ρ≥ρ0 is sufficiently large,
ψk(t)f(t,ρψk(t)+x(t))>0, ∀t∈A+∪A−, x∗∈K, | (3.6) |
if ρ≤−ρ0 is sufficiently small,
ψk(t)f(t,ρψk(t)+x(t))<0, ∀t∈A+∪A−, x∗∈K. | (3.7) |
Let
C:={x∗∈Im(I−P)|‖x∗‖≤ρ0}. |
Define Tρ:Im(I−P)→Im(I−P) by
Tρ:=MHA(ρψ∗k+x∗). |
Obviously, Tρ is completely continuous. By (3.1), for x∗∈C and ρ∈[−ρ0,ρ0],
‖Tρx∗‖≤Γ(|ρ|min{|ψk(t)||t∈A+∪A−})α≤Γ(|ρ0|min{|ψk(t)||t∈A+∪A−})α≤ρ0, |
i.e.,
Tρ(C)⊆C. |
According to Schauder's fixed point theorem, Tρ has a fixed point on C, such that Tρx∗=x∗. It can be seen from Lemma 2.10 that the problem (1.1) is equivalent to the following system
Ψ(s,x∗)=θ, (s,x∗)∈S¯g, |
where
S¯g:={(ρ,x∗)∈R×Im(I−P)|x∗=MHA(ρψ∗k+x∗)}, |
Ψ(ρ,x∗):=T∑s=1ψk(s)f(s,ρψk(s)+x(s)). |
At this time, the Ω¯g in Theorem 3.3 can be given by Ω¯g=Ψ(S¯g). There exists a solution to the problem (1.1) for θ∈Ω¯g.
From (3.6), (3.7) and A+∪A−≠∅, we can deduce that for any x∗∈K
T∑s=1ψk(s)f(s,−ρ0ψk(s)+x(s))<0, T∑s=1ψk(s)f(s,ρ0ψk(s)+x(s))>0. |
Thus,
Ψ(−ρ0,x∗)<0<Ψ(ρ0,x∗), ∀x∗∈K. | (3.8) |
According to Lemma 2.2, S¯g⊂RׯBρ0 contains a connected branch ξ−ρ0,ρ0 connecting {−ρ0}×C and {ρ0}×C. Combined with (3.8), Ω¯g contains θ=0 and has a non-empty interior.
Theorem 3.4. Suppose that (A1), (A2), (H2)–(H4) hold. Ω¯g as shown in Theorem 3.3, then there exists a nonempty set Ω∗¯g⊂Ω¯g∖{0}, such that problem (1.1) has at least two solutions for θ∈Ω∗¯g.
Proof We prove only the case of (1.3), and the case of (1.4) can be similarly proved. Since the condition (H4) implies that (H1), using Theorem 3.3, we know that there exists ρ0>0, such that
Ψ(ρ0,x∗)>0, ∀x∗∈K. |
Let
δ:=min{Ψ(ρ0,x∗)|x∗∈K}, |
then δ>0.
Next, we prove that problem (1.1) has at least two solutions for any θ∈(0,δ).
Let
S¯g:={(ρ,x∗)∈R×Im(I−P)|x∗=MHA(ρψ∗k+x∗)}, |
¯K:={x∗∈Im(I−P)|(ρ,x∗)∈S¯g}. |
By (H4), there exists a constant A0 such that
‖x∗‖≤A0, ∀x∗∈K. |
Similar to the derivation of Theorem 3.3, there exists ρ∗>ρ0 such that the following results hold:
(ⅰ) For ρ≥ρ∗, there is
ψk(t)f(t,ρψk(t)+x(t))>0, ∀t∈A+∪A−, x∗∈¯K, | (3.9) |
(ⅱ) For ρ≤−ρ∗, there is
ψk(t)f(t,ρψk(t)+x(t))<0, ∀t∈A+∪A−, x∗∈¯K. | (3.10) |
Let
C∗:={x∗∈Im(I−P)|‖x∗‖≤A0}. |
According to (H4), (3.9) and (3.10), we have
lim|ρ|→∞T∑s=1ψk(s)f(s,ρψk(s)+x(s))=0 |
uniformly for x∗∈¯K, i.e.
lim|ρ|→∞Ψ(ρ,x∗)=0, x∗∈¯K. |
Therefore, there exists a constant l:l>ρ∗>ρ0>0 such that S¯g contains a connected branch between {−l}×C∗ and {l}×C∗, and
max{|Ψ(ρ,x∗)||ρ=±l, (ρ,x∗)∈ξ−l,l}≤max{|Ψ(ρ,x∗)||(ρ,x∗)∈{−l,l}ׯK}≤θ3. |
It can be seen from the connectivity of ξ−l,l that there exist (ρ1,x∗1) and (ρ2,x∗2) in ξ−l,l(⊂S¯g), such that
Ψ(ρ1,x∗1)=θ, Ψ(ρ2,x∗2)=θ, |
where ρ1∈(−l,ρ0),ρ2∈(ρ0,l). It can be proved that ρ1ψ∗k+x∗1 and ρ2ψ∗k+x∗2 are two different solutions of problem (1.1).
In this section, we give a concrete example of the application of our major results of Theorems 3.3 and 3.4. We choose T=3,a0,d0,b1,c1=0 and a1,d1,b0,c0=1, which implies that the interval becomes [1,3]Z and the conditions (A1),(A2) hold.
First, we consider the eigenpairs of the corresponding linear problem
{−Δ2y(t−1)=λy(t), t∈[1,3]Z,y(0)=λΔy(0), λy(4)=∇y(4). | (4.1) |
Define the equivalent matrix of (4.1) as follows,
Aλ=(λ−2+λ1+λ101λ−2101λ−2+11−λ) |
Consequently, Aλy=0 is equivalent to (4.1). Let |Aλ|=0, we have
λ1=−1.4657,λ2=0.1149,λ3=0.8274,λ4=2.0911,λ5=3.4324, |
which are the eigenvalues of (4.1). Next, we choose λ=λ1=−1.4657, then we obtain the corresponding eigenfunction
ψ1(t)={1,t=1,3.4657,t=2,3.46572−1,t=3. |
Example 4.1. Consider the following problem
{−Δ2y(t−1)=−1.4657y(t)+f(t,y(t))+ψ1(t)+¯g(t), t∈[1,3]Z,y(0)=−1.4657Δy(0), −1.4657y(4)=∇y(4), | (4.2) |
where
f(t,s)={ts3,s∈[−1,1],t5√s,s∈(−∞,−1)∪(1,+∞), |
and
¯g(t)={0,t=1,3.46572−1,t=2,−3.4657,t=3. |
Then, for f(t,y(t)), we have |f(t,y(t))|≤3|y(t)|13. If we choose ω=1, yf(t,y)>0 for |y(t)|>1. For ¯g(t), we have 3∑s=1¯g(s)ψ1(s)=0.
Therefore, the problem (4.2) satisfies the conditions (A1),(A2), (H1)–(H3), which implies that the problem (4.2) has at least one solution by Theorem 3.3.
Example 4.2. Consider the following problem
{−Δ2y(t−1)=−1.4657y(t)+f(t,y(t))+ψ1(t)+¯g(t), t∈[1,3]Z,y(0)=−1.4657Δy(0), −1.4657y(4)=∇y(4), | (4.3) |
where
f(t,s)=tse|s|, t∈[1,3]Z |
and
¯g(t)={0,t=1,1−3.46572,t=2,3.4657,t=3. |
Then, for f(t,y(t)), we always have yf(t,y)>0 for all y(t)>0 or y(t)<0, f is continuous and satisfies
lim|y|→∞f(t,y)=0. |
For ¯g(t), we have 3∑s=1¯g(s)ψ1(s)=0.
Therefore, the problem (4.3) satisfies the conditions (A1),(A2), (H2)–(H4), which implies that the problem (4.3) has at least two solutions by Theorem 3.4.
The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.
Supported by National Natural Science Foundation of China [Grant No. 11961060] and Natural Science Foundation of Qinghai Province(No.2024-ZJ-931).
The authors declare that there are no conflicts of interest.
[1] |
Swift DL, Johannsen NM, Lavie CJ, et al. (2014) The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis 56: 441-447. https://doi.org/10.1016/j.pcad.2013.09.012 ![]() |
[2] |
Sares-Jäske L, Grönqvist A, Mäki P, et al. (2022) Family socioeconomic status and childhood adiposity in Europe—A scoping review. Prev Med 160: 107095. https://doi.org/10.1016/j.ypmed.2022.107095 ![]() |
[3] |
Hua Y, Xie D, Zhang Y, et al. (2023) Identification and analysis of key genes in adipose tissue for human obesity based on bioinformatics. Gene 888: 147755. https://doi.org/10.1016/j.gene.2023.147755 ![]() |
[4] |
Obeid N, Flament MF, Buchholz A, et al. (2022) Examining shared pathways for eating disorders and obesity in a community sample of adolescents: the REAL study. Front Psychol 13: 805596. https://doi.org/10.3389/fpsyg.2022.805596 ![]() |
[5] |
Katzmarzyk P, Barreira T, Broyles S, et al. (2015) Physical activity, sedentary time, and obesity in an international sample of children. Med Sci Sports Exerc 47: 2062-2069. https://doi.org/10.1249/MSS.0000000000000649 ![]() |
[6] |
Chaput JP, Barnes JD, Tremblay MS, et al. (2018) Thresholds of physical activity associated with obesity by level of sedentary behaviour in children. Pediatr Obes 13: 450-457. https://doi.org/10.1111/ijpo.12276 ![]() |
[7] | Blair SN (2009) Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med 43: 1-2. |
[8] |
Aue K, Huber G (2014) Sitzende Lebensweise bei Kindern und Jugendlichen (Sedentary lifestyle in children and youth). Bewegungstherapie und Gesundheitssport 30: 104-108. https://doi.org/10.1055/s-0034-1373870 ![]() |
[9] | Sedentary Behaviour Research Network (2012) Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab 37: 540-542. https://doi.org/10.1139/h2012-024 |
[10] |
Dunstan DW, Dogra S, Carter SE, et al. (2021) Sit less and move more for cardiovascular health: emerging insights and opportunities. Nat Rev Cardiol 18: 637-648. https://doi.org/10.1038/s41569-021-00547-y ![]() |
[11] |
Pinto AJ, Bergouignan A, Dempsey PC, et al. (2023) Physiology of sedentary behavior. Physiol Rev 103: 2561-2622. https://doi.org/10.1152/physrev.00022.2022 ![]() |
[12] |
Greier K, Drenowatz C, Greier C, et al. (2023) Correlates of sedentary behaviors in Austrian children and adolescents. AIMS Med Sci 10: 291-303. https://doi.org/10.3934/medsci.2023022 ![]() |
[13] |
Bull FC, Al-Ansari SS, Biddle S, et al. (2020) World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 54: 1451-1462. https://doi.org/10.1136/bjsports-2020-102955 ![]() |
[14] |
Rosenberg D, Cook A, Gell N, et al. (2015) Relationships between sitting time and health indicators, costs, and utilization in older adults. Prev Med Rep 2: 247-249. https://doi.org/10.1016/j.pmedr.2015.03.011 ![]() |
[15] |
Scheers T, Philippaerts R, Lefevre J (2012) Patterns of physical activity and sedentary behavior in normal-weight, overweight and obese adults, as measured with a portable armband device and an electronic diary. Clin Nutr 31: 756-764. https://doi.org/10.1016/j.clnu.2012.04.011 ![]() |
[16] |
Patterson R, McNamara E, Tainio M, et al. (2018) Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol 33: 811-829. https://doi.org/10.1007/s10654-018-0380-1 ![]() |
[17] |
Zou L, Herold F, Cheval B, et al. (2024) Sedentary behavior and lifespan brain health. Trends Cogn Sci 28: 369-382. https://doi.org/10.1016/j.tics.2024.02.003 ![]() |
[18] |
Curran F, Davis ME, Murphy K, et al. (2023) Correlates of physical activity and sedentary behavior in adults living with overweight and obesity: a systematic review. Obes Rev 24: e13615. https://doi.org/10.1111/obr.13615 ![]() |
[19] |
Ekelund U, Brown WJ, Steene-Johannessen J, et al. (2019) Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta-analysis of data from 850060 participants. Br J Sports Med 53: 886-894. https://doi.org/10.1136/bjsports-2017-098963 ![]() |
[20] |
Blodgett JM, Ahmadi MN, Atkin AJ, et al. (2024) Device-measured physical activity and cardiometabolic health: the Prospective Physical Activity, Sitting, and Sleep (ProPASS) consortium. Eur Heart J 45: 458-471. https://doi.org/10.1093/eurheartj/ehad717 ![]() |
[21] |
Sigmund E, Sigmundová D, Pavelka J, et al. (2023) Changes in the prevalence of obesity in Czech adolescents between 2018 and 2022 and its current non-genetic correlates—HBSC study. BMC Public Health 23: 2092. https://doi.org/10.1186/s12889-023-17010-x ![]() |
[22] | NCD Risk Factor Collaboration (NCD-RisC) (2024) Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 403: 1027-1050. https://doi.org/10.1016/S0140-6736(23)02750-2 |
[23] | World Health Organization, WHO European Regional Obesity Report 2022. Copenhagen World Health Organization, 2022. Available from: https://iris.who.int/bitstream/handle/10665/353747/9789289057738-eng.pdf |
[24] | Felder-Puig R, Teutsch F, Winkler R (2023) Gesundheit und Gesundheitsverhalten von österreichischen Schülerinnen und Schülern. Ergebnisse des WHO-HBSC-Survey 2021/22. (Health and health behavior of Austrian students. Results of the WHO HBSC Survey 2021/22). Vienna: BMSGPK. Available from: https://goeg.at/sites/goeg.at/files/inline-files/%C3%96sterr.%20HBSC-Bericht%202023_bf.pdf. |
[25] |
Cleven L, Krell-Roesch J, Nigg CR, et al. (2020) The association between physical activity with incident obesity, coronary heart disease, diabetes and hypertension in adults: a systematic review of longitudinal studies published after 2012. BMC Public Health 20: 726. https://doi.org/10.1186/s12889-020-08715-4 ![]() |
[26] |
Silveira EA, Mendonça CR, Delpino FM, et al. (2022) Sedentary behavior, physical inactivity, abdominal obesity and obesity in adults and older adults: a systematic review and meta-analysis. Clin Nutr ESPEN 50: 63-73. https://doi.org/10.1016/j.clnesp.2022.06.001 ![]() |
[27] |
Marcus C, Danielsson P, Hagman E (2022) Pediatric obesity-long-term consequences and effect of weight loss. J Intern Med 292: 870-891. https://doi.org/10.1111/joim.13547 ![]() |
[28] |
Lerchen N, Köppel M, Huber G (2016) Reliabilitat und Validitat des Heidelberger Fragebogens zur Erfassung des Sitzverhaltens von Kindern und Jugendlichen im Alter von 5 bis 20 Jahren (Reliability and validity of the Heidelberg questionnaire to record the sitting behavior of children and adolescents aged 5 to 20 years). Bewegungstherapie und Gesundheitsspor 32: 109-112. https://doi.org/10.1055/s-0042-106337 ![]() |
[29] | Kolimechkov S, Petrov L (2020) The body mass index: a systematic review. J Exerc Physiol Health 3: 21-27. |
[30] |
Kromeyer-Hauschild K, Wabitsch M, Kunze D, et al. (2001) Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben (Percentiles for the body mass index for children and adolescents using various German samples). Monatsschr Kinderheilkd 149: 807-818. https://doi.org/10.1007/s001120170107 ![]() |
[31] |
Lauby-Secretan B, Scoccianti C, Loomis D, et al. (2016) Body fatness and cancer—viewpoint of the IARC Working Group. N Engl J Med 375: 794-798. https://doi.org/10.1056/NEJMsr1606602 ![]() |
[32] |
Brock JM, Billeter A, Müller-Stich BP, et al. (2020) Obesity and the lung: what we know today. Respiration 99: 856-866. https://doi.org/10.1159/000509735 ![]() |
[33] |
Steinbeck KS, Lister NB, Gow ML, et al. (2018) Treatment of adolescent obesity. Nat Rev Endocrinol 14: 331-344. https://doi.org/10.1038/s41574-018-0002-8 ![]() |
[34] |
Greier K, Drenowatz C, Riechelmann H, et al. (2020) Longitudinal association of motor development and body weight in elementary school children—A 4-year observational study. Adv Phys Educ 10: 364-377. https://doi.org/10.4236/ape.2020.104030 ![]() |
[35] |
Ruedl G, Greier N, Niedermeier M, et al. (2019) Factors associated with physical fitness among overweight and non-overweight Austrian secondary school students. Int J Environ Res Public Health 16: 4117. https://doi.org/10.3390/ijerph16214117 ![]() |
[36] |
Lemes VB, Sehn AP, Reuter CP, et al. (2024) Associations of sleep time, quality of life, and obesity indicators on physical literacy components: a structural equation model. BMC Pediatr 24: 159. https://doi.org/10.1186/s12887-024-04609-1 ![]() |
[37] |
Chen S, Yang L, Yang Y, et al. (2024) Sedentary behavior, physical activity, sleep duration and obesity risk: Mendelian randomization study. PLoS One 19: e0300074. https://doi.org/10.1371/journal.pone.0300074 ![]() |
[38] |
Miller MA (2023) Time for bed: diet, sleep and obesity in children and adults. Proc Nutr Soc 28: 1-8. https://doi.org/10.1017/S0029665123004846 ![]() |
[39] |
Paruthi S, Brooks LJ, D'Ambrosio C, et al. (2016) Recommended amount of sleep for pediatric populations: a consensus statement of the American academy of sleep medicine. J Clin Sleep Med 12: 785-786. https://doi.org/10.5664/jcsm.5866 ![]() |
[40] |
Kracht CL, Chaput JP, Martin CK, et al. (2019) Associations of sleep with food cravings, diet, and obesity in adolescence. Nutrients 11: 2899. https://doi.org/10.3390/nu11122899 ![]() |
[41] |
López-Gil JF, Smith L, Victoria-Montesinos D, et al. (2023) Mediterranean dietary patterns related to sleep duration and sleep-related problems among adolescents: the EHDLA study. Nutrients 15: 665. https://doi.org/10.3390/nu15030665 ![]() |
[42] |
Yuksel HS, Şahin FN, Maksimovic N, et al. (2020) School-based intervention programs for preventing obesity and promoting physical activity and fitness: a systematic review. Int J Environ Res Public Health 17: 347. https://doi.org/10.3390/ijerph17010347 ![]() |
[43] |
Vanderwall C, Randall Clark R, Eickhoff J, et al. (2017) BMI is a poor predictor of adiposity in young overweight and obese children. BMC Pediatr 17: 135. https://doi.org/10.1186/s12887-017-0891-z ![]() |