Research article Special Issues

Exploring variable-sensitive q-difference equations for q-SINE Euler polynomials and q-COSINE-Euler polynomials

  • In this study, we introduced several types of higher-order difference equations involving q-SINE Euler (QSE) and q-COSINE Euler (QCE) polynomials. Depending on the parameters selected, these higher-order difference equations exhibited properties of trigonometric functions or related Euler numbers. Approximate root construction focused on the QSE polynomial, which was the solution of the q-difference equations obtained earlier. We also showed the structure of the approximate roots of higher-order polynomials among the QSE polynomials, understood them, and considered the associated conjectures.

    Citation: Jung Yoog Kang, Cheon Seoung Ryoo. Exploring variable-sensitive q-difference equations for q-SINE Euler polynomials and q-COSINE-Euler polynomials[J]. AIMS Mathematics, 2024, 9(6): 16753-16772. doi: 10.3934/math.2024812

    Related Papers:

    [1] Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177
    [2] Mohra Zayed, Taghreed Alqurashi, Shahid Ahmad Wani, Cheon Seoung Ryoo, William Ramírez . Several characterizations of bivariate quantum-Hermite-Appell Polynomials and the structure of their zeros. AIMS Mathematics, 2025, 10(5): 11184-11207. doi: 10.3934/math.2025507
    [3] Li Chen, Dmitry V. Dolgy, Taekyun Kim, Dae San Kim . Probabilistic type 2 Bernoulli and Euler polynomials. AIMS Mathematics, 2024, 9(6): 14312-14324. doi: 10.3934/math.2024696
    [4] Jung Yoog Kang, Cheon Seoung Ryoo . The forms of $ (q, h) $-difference equation and the roots structure of their solutions with degenerate quantum Genocchi polynomials. AIMS Mathematics, 2024, 9(11): 29645-29661. doi: 10.3934/math.20241436
    [5] Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in $ q $-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303
    [6] Nihan Turan, Metin Başarır, Aynur Şahin . On the solutions of the second-order $ (p, q) $-difference equation with an application to the fixed-point theory. AIMS Mathematics, 2024, 9(5): 10679-10697. doi: 10.3934/math.2024521
    [7] Xiaoer Qin, Li Yan . Some specific classes of permutation polynomials over $ {\textbf{F}}_{q^3} $. AIMS Mathematics, 2022, 7(10): 17815-17828. doi: 10.3934/math.2022981
    [8] Jiankang Wang, Zhefeng Xu, Minmin Jia . Distribution of values of Hardy sums over Chebyshev polynomials. AIMS Mathematics, 2024, 9(2): 3788-3797. doi: 10.3934/math.2024186
    [9] Nusrat Raza, Mohammed Fadel, Kottakkaran Sooppy Nisar, M. Zakarya . On 2-variable $ q $-Hermite polynomials. AIMS Mathematics, 2021, 6(8): 8705-8727. doi: 10.3934/math.2021506
    [10] Tabinda Nahid, Mohd Saif, Serkan Araci . A new class of Appell-type Changhee-Euler polynomials and related properties. AIMS Mathematics, 2021, 6(12): 13566-13579. doi: 10.3934/math.2021788
  • In this study, we introduced several types of higher-order difference equations involving q-SINE Euler (QSE) and q-COSINE Euler (QCE) polynomials. Depending on the parameters selected, these higher-order difference equations exhibited properties of trigonometric functions or related Euler numbers. Approximate root construction focused on the QSE polynomial, which was the solution of the q-difference equations obtained earlier. We also showed the structure of the approximate roots of higher-order polynomials among the QSE polynomials, understood them, and considered the associated conjectures.



    This section briefly outlines the essential definitions and theorems required for understanding this study. For qR{1}, the q-number is defined as:

     [ω]q=1qω1q.

    In the definition of the q-number, it noted that limq1[n]q=n; see [8,9,23]. Moreover, for kZ, [k]q is referred to as a q-integer.

    The q-numbers introduced by Jackson ([8,9]) have led to expanded theories that intersect with established fields; see, [1,6,12,13,18,21,22]. The q-Gaussian binomial coefficients ([10,23]) are defined as

    [mr]q=[m]q![mr]q![r]q!,

    Here, m and r denote nonnegative integers. Note that [ω]q!=[ω]q[ω1]q[2]q[1]q and [0]q!=1.

    The q-binomial theorem ([10,14]) can be expressed as:

    (αβ)ωq=(α+β)(α+qβ)(α+qω1β).

    Definition 1.1. Let α be any complex numbers with |α|<1. Then, two forms of q-exponential functions ([7,20,23]) can be expressed as

    eq(α)=ω=0αω[ω]q!,Eq(α)=ω=0q(ω2)αω[ω]q!,respectively.

    It is noted that limq1eq(α)=eα and eq(α)Eq(α)=1.

    Definition 1.2. The q-derivative of a function f with respect to α is defined by

    Dqf(α)=f(α)f(qα)(1q)α,forα0,

    and Dqf(0)=f(0); see [2,5,8,23].

    We can prove that f is differentiable at zero, and it is clear that Dqαω=[ω]qαω1. Because the polynomials covered in this study deal with multiple variables, we use the derivative with respect to α,β, and t, which are expressed as Dq,α, Dq,β, and Dq,t, respectively.

    Theorem 1.3. Definition 1.2 gives us the following properties:

    (i)Dq(f(α)g(α))=q(α)Dqf(α)+f(qα)Dqg(α)=f(α)Dqg(α)+g(qα)Dqf(α),(ii)Dq(f(α)g(α))=g(qα)Dqf(α)f(qα)Dqg(α)g(α)g(qα)=g(α)Dqf(α)f(α)Dqg(α)g(α)g(qα).

    Based on the above, research on q-differential equations and q-difference equations has been conducted by many mathematicians. Bernoulli's differential equation, specific forms of differential equations, has been explored in conjunction with q-numbers, and studies on this topic have also been undertaken by researchers. In [20], differential equations manifest in the form of Bernoulli's differential equation as follows:

    DqEω1,q(α)+q(E0,q)(1)+2qα)E1,q(α)Eω1,q(α)+2qω1E1,q(1)Eω,q(qα)=0

    This equation has q-Euler polynomials as solutions.

    Definition 1.4. The generating function for the q-Euler numbers and polynomials ([3,4,17]) are

    ω=0Eω,qθω[ω]q!=2eq(θ)+1,ω=0Eω,q(α)θω[ω]q!=2eq(θ)+1eq(θα),  respectively.

    In this definition, when q goes to 1, give standard notation for the Euler numbers and polynomials; see [11,12]. Let q1 in Definition 1.4. Then, we can find the Euler numbers and polynomials as

    ω=0Eωθωω!=2eθ+1,ω=0Eω(α)θωω!=2eθ+1eθα,|θ|<π.

    In [15], the authors introduced new Euler polynomials (sine Euler polynomials and cosine Euler polynomials) by replacing α with complex numbers and studied several properties thereof. Furthermore, [19] combines the polynomials discussed in [15] with q-numbers to construct a Euler polynomial that incorporates q-trigonometric functions. The study also reveals associated properties and symmetrical structures. Specifically, the authors pinpoint approximate roots that fluctuate based on the value of q and present a visual representation of these roots.

    Definition 1.5. The generating function for the q-SINE Euler (QSE) and q-COSINE Euler (QCE) polynomials [19] are

    ω=0SEω,q(α,β)θω[ω]q!=2eq(θ)+1eq(θα)SINq(θβ),ω=0CEω,q(α,β)θω[ω]q!=2eq(θ)+1eq(θα)COSq(θβ),

    respectively.

    In Definition 1.5, when q goes to 1, parametrically Euler or Bernoulli polynomials are obtained. In [16], Cω,q(α,β) and Sω,q(α,β) are defined as follows:

    ω=0Cω,q(α,β)θω[ω]q!=eq(θα)COSq(θβ),ω=0Sω,q(α,β)θω[ω]q!=eq(θα)SINq(θβ).

    An important motivation for this study is to identify q-Bernoulli differential equations whose solutions are QSE and QCE polynomials. Given that QSE and QCE polynomials include q-trigonometric functions and two variables, q-Bernoulli's differential equations are expected to manifest in various forms.

    The organization of this study is as follows: Section 2 outlines the essential elements required to achieve the key findings of this paper. In this section, we examine the relationships between polynomials and difference equations, which vary based on the variables involved. Section 3 elaborates on the q-difference equations associated with the QSE polynomial, drawing upon the lemmas established in the preceding section. We identify multiple q-difference equations that vary both by the type of polynomial and the variables. Section 4 employs computational methods to analyze the structure of the approximate roots of higher-order polynomials, aiming to uncover the QSE polynomial characteristics that emerge as a solution in Section 3. Understanding the form of these approximate roots enables further verification of the polynomial's properties.

    The requisite lemmas are obtained to derive the difference equations related to QCE and QSE polynomials. In this context, here, you can see that the relationships between the q-derivatives and QCE and QSE polynomials vary based on the variables α and β.

    Lemma 2.1. Let k be a nonnegative integer. Then, the following relations can be formulated:

    (i)Sωk,q(α,β)=[ωk]q![ω]q!D(k)q,αSω,q(α,β).(ii)Cωk,q(α,β)=[ωk]q![ω]q!D(k)q,αCω,q(α,β).

    Proof. After calculating the q-derivative of eq(tα) directly, we obtain

    D(1)q,αeq(θα)=θeq(θα). (2.1)

    (ⅰ) Using the q-derivative and Eq (2.1) in Sω,q(α,β) with respect to α, we can express the relation:

    D(1)q,αω=0Sω,q(α,β)θω[ω]q!=θω=0Sω,q(α,β)θω[ω]q!=ω=0[ω]qSω1,q(α,β)θω[ω]q!. (2.2)

    Applying the coefficient comparison method to Eq (2.2) yields:

    D(1)q,αSω,q(α,β)=[ω]qSω1,q(α,β)=[ω]q![ω1]q!Sω1,q(α,β).

    By repeating the same process as in Eq (2.2), we obtain the following:

    D(2)q,αSω,q(α,β)=[ω]q[ω1]qSω2,q(α,β)=[ω]q![ω2]q!Sω2,q(α,β),D(3)q,αSω,q(α,β)=[ω]q[ω1]q[ω2]qSω3,q(α,β)=[ω]q![ω3]q!Sω3,q(α,β),D(m)q,αSω,q(α,β)=[ω]q[ω1]q[ω2]q[ω(m1)]qSω3,q(α,β)=[ω]q![ωm]q!Sω3,q(α,β),.

    The relationship between D(k)q,αSω,q(α,β) and Sωk,q(α,β) that manifests at the k-th instance is captured in Lemma 2.1 (ⅰ) that has been obtained.

    (ⅱ) Using a method similar to (ⅰ) in Cω,q(α,β), we can find Lemma 2.1 (ⅱ); hence, the proof of (ⅱ) is omitted.

    Lemma 2.2. Let k be a nonnegative integer. Then, the following is valid:

    (i)D(k)q,βSω,q(α,β)={(1)k2[ω]q![ωk]q!Sωk,q(α,qkβ),ifkiseven,(1)k12[ω]q![ωk]q!Cωk,q(α,qkβ),ifkisodd.
    (ii)D(k)q,βCω,q(α,β)={(1)k2[ω]q![ωk]q!Cωk,q(α,qkβ),ifkiseven,(1)k+12[ω]q![ωk]q!Sωk,q(α,qkβ),ifkisodd.

    Proof. The q-derivative for the q-cosine function and q-sine function can be verified as follows:

    DqCOSq(α)=SINq(qα),DqSINq(α)=COSq(qα), (2.3)

    see, [5,19,23].

    (ⅰ) Upon applying Eq (2.3) in Sω,q(α,β) with respect to β, the following is obtained:

    D(1)q,βω=0Sω,q(α,β)θω[ω]q!=eq(θα)D(1)q,βSINq(θβ)=ω=0Cω,q(α,qβ)θω[ω]q!. (2.4)

    Continuation of the process based on Eq (2.4) yields:

    D(1)q,βSω,q(α,β)=Cω,q(α,qβ),D(2)q,βSω,q(α,β)=Sω,q(α,q2β),D(3)q,βSω,q(α,β)=Cω,q(α,q3β),D(4)q,βSω,q(α,β)=Sω,q(α,q4β),.

    At the k-th instance, the desired result is obtained.

    (ⅱ) Using the processes outlined in Eqs (2.3) and (2.4) similarly for Sω,q(α,β), we can find Lemma 2.2; (ⅱ) hence, the related proof process can be omitted.

    Corollary 2.3. If q1 in Lemma 2.2, the following result holds:

    (i)dkdβkSω(α,β)={(1)k2Sω(α,β),ifkiseven,(1)k12Cω(α,β),ifkisodd.
    (ii)dkdβkCω(α,β)={(1)k2Cω(α,β),ifkiseven,(1)k+12Sω(α,β),ifkisodd.

    Lemma 2.4. For k nonnegative integer, we have the following relations with SEω,q(α,β) and CEω,q(α,β):

    (i)D(k)q,αSEω,q(α,β)=[ω]q![ωk]q!SEωk,q(α,β),(ii)D(k)q,αCEω,q(α,β)=[ω]q![ωk]q!CEωk,q(α,β).

    Proof. (ⅰ) Using the q-derivative in SEω,q(α,β) about α, we get:

    D(1)q,αω=0SEω,q(α,β)θω[ω]q!=θω=0SEω,q(α,β)θω[ω]q!=ω=0[ω]qSEω1,q(α,β)θω[ω]q!. (2.5)

    After comparing the coefficients of θω in Eq (2.5) and continuing to use the same method as in Eq (2.5), we can formulate:

    D(1)q,αSEω,q(α,β)=[ω]qSEω1,q(α,β)=[ω]q![ω1]q!SEω1,q(α,β).

    Via induction, we obtain lemma 2.4 (ⅰ).

    (ⅱ) If we apply the proof of (ⅰ) of the lemma 2.4 similarly to CEω,q(α,β), we can derive (ⅱ) of the lemma; hence, the proof process is omitted.

    Lemma 2.5. Let k be a nonnegative integer. Then, the following hold:

    (i)D(k)q,βSEω,q(α,β)={(1)k2[ω]q![ωk]q!SEωk,q(α,qkβ),ifkiseven,(1)k12[ω]q![ωk]q!CEωk,q(α,qkβ),ifkisodd.
    (ii)D(k)q,βCEω,q(α,β)={(1)k2[ω]q![ωk]q!CEωk,q(α,qkβ),ifkiseven,(1)k+12[ω]q![ωk]q!SEωk,q(α,qkβ),ifkisodd.

    Proof. (ⅰ) Applying the q-derivative in SEω,q(α,β) with respect to β, we obtain

    D(1)q,βω=0SEω,q(α,β)θω[ω]q!=ω=0CEω,q(α,qβ)θω+1[ω]q!=ω=0[ω]qCEω,q(α,qβ)θω[ω]q!. (2.6)

    Using the coefficient comparison method and induction, we can write:

    D(1)q,αSEω,q(α,β)=[ω]qCEω1,q(α,qβ)=[ω]q![ω1]q!CEω1,q(α,qβ),D(2)q,αSEω,q(α,β)=[ω]q[ω1]qSEω2,q(α,q2β)=[ω]q![ω2]q!SEω2,q(α,q2β),

    to derive the desired result.

    (ⅱ) If we apply the proof process of (ⅰ) of Lemma 2.5 similarly to CEω,q(α,β), we can derive (ⅱ) of the lemma; hence, the proof process is omitted.

    In this section, we use the lemmas of the previous section to verify the q-difference equations associated with QSE and QCE polynomials. The q-difference equations that vary based on the variables are shown to have QSE and QCE polynomials as solutions.

    Theorem 3.1. The q-difference equation of the form

    Eω,q[ω]q!D(ω)q,αSω,q(α,β)+Eω1,q[ω1]q!D(ω1)q,αSω,q(α,β)+Eω2,q[ω2]q!D(ω2)q,αSω,q(α,β)++E2,q[2]q!D(2)q,αSω,q(α,β)+E1,qD(1)q,αSω,q(α,β)+E0,qSω,q(α,β)SEω,q(α,β)=0.

    has SEω,q(α,β) as a solution.

    Proof. Using the generating function of QSE polynomials, we find a relation for SEω,q(α,β), Eω,q and Sω,q(α,β) as

    ω=0SEω,q(α,β)θω[ω]q!=ω=0(ωk=0[ωk]qEk,qSωk,q(α,β))θω[ω]q!. (3.1)

    Comparing both sides of Eq (3.1) for θω yields

    SEω,q(α,β)=ωk=0[ωk]qEk,qSωk,q(α,β). (3.2)

    If we replace Eq (3.2) with Lemma 2.1. (ⅰ), we can write

    SEω,q(α,β)=ωk=0Ek,q[k]q!D(k)q,αSω,q(α,β). (3.3)

    We obtain the desired result by expanding the series in Eq (3.3).

    Corollary 3.2. For q1 in Theorem 3.1, the following holds:

    Eωω!dωdαωSω(α,β)+Eω1(ω1)!dω1dαω1Sω(α,β)+Eω2(ω2)!dω2dαω2Sω(α,β)++E22!d2dα2Sω(α,β)+E1ddαSω(α,β)+E0Sω(α,β)SEω(α,β)=0.

    Theorem 3.3. The polynomial CEω,q(α,β) is a solution of

    Eω,q[ω]q!D(ω)q,αCω,q(α,β)+Eω1,q[ω1]q!D(ω1)q,αCω,q(α,β)+Eω2,q[ω2]q!D(ω2)q,αCω,q(α,β)++E2,q[2]q!D(2)q,αCω,q(α,β)+E1,qD(1)q,αCω,q(α,β)+E0,qCω,q(α,β)CEω,q(α,β)=0.

    Proof. Using a procedure similar to Eq (3.1) for the QCE polynomial, we can write:

    CEω,q(α,β)=ωk=0[ωk]qEk,qCωk,q(α,β). (3.4)

    Using Lemma 2.1.(ⅱ), Eq (3.4) becomes Eq (3.5):

    CEω,q(α,β)=ωk=0Ek,q[k]q!D(k)q,αCω,q(α,β). (3.5)

    From Eq (3.5), we can derive Theorem 3.3.

    Theorem 3.4. Let ω be a nonnegative integer. Then, the q-difference equation below, for variable β, has SEω,q(α,β) as the solution.

    (ⅰ) If ω is an even number, then

    (1)ω2Eω,q[ω]q!D(ω)q,βSω,q(α,qωβ)+(1)ω2Eω1,q[ω1]q!D(ω1)q,βCω,q(α,q1ωβ)+(1)ω22Eω2,q[ω2]q!D(ω2)q,βSω,q(α,q2ωβ)+E2,q[2]q!D(2)q,βSω,q(α,q2β)E1,qD(1)q,βCω,q(α,q1β)+E0,qSω,q(α,β)SEω,q(α,β)=0.

    (ⅱ) If ω is an odd number, then

    (1)ω+12Eω,q[ω]q!D(ω)q,βCω,q(α,qωβ)+(1)ω12Eω1,q[ω1]q!D(ω1)q,βSω,q(α,q1ωβ)+(1)ω12Eω2,q[ω2]q!D(ω2)q,βCω,q(α,q2ωβ)+E2,q[2]q!D(2)q,βSω,q(α,q2β)E1,qD(1)q,βCω,q(α,q1β)+E0,qSω,q(α,β)SEω,q(α,β)=0.

    Proof. In Lemma 2.2, we can formulate

    Sωk,q(α,β)={(1)k2[ωk]q![ω]q!D(k)q,βSω,q(α,qkβ),ifkiseven,(1)k+12[ωk]q![ω]q!D(k)q,βCω,q(α,qkβ),ifkisodd.  (3.6)

    Applying Eq (3.6) in Eq (3.2), we can complete the proof of Theorem 3.4.

    Corollary 3.5. Setting q1 in Theorem 3.4, the following holds:

    (ⅰ) If ω is an even number, then

    (1)ω2Eωω!dωdβωSω(α,β)+(1)ω2Eω1(ω1)!dω1dβω1Cω(α,β)+(1)ω22Eω2(ω2)!dω2dβω2Sω(α,β)+E22!d2dβ2Sω(α,β)E1ddβCω(α,β)+E0Sω(α,β)SEω(α,β)=0.

    (ⅱ) If ω is an odd number, then

    (1)ω+12Eωω!dωdβωCω(α,β)+(1)ω12Eω1(ω1)!dω1dβω1Sω(α,β)+(1)ω12Eω2(ω2)!dω2dβω2Cω(α,β)+E22!d2dβ2Sω(α,β)E1ddβCω(α,β)+E0Sω(α,β)SEω(α,β)=0.

    Theorem 3.6. For variable β, CEω,q(α,β) is one of the following solutions of the q-difference equations:

    (ⅰ) If ω is an even number, then

    (1)ω2Eω,q[ω]q!D(ω)q,βCω,q(α,qωβ)+(1)ω22Eω1,q[ω1]q!D(ω1)q,βSω,q(α,q1ωβ)+(1)ω22Eω2,q[ω2]q!D(ω2)q,βCω,q(α,q2ωβ)+E2,q[2]q!D(2)q,βCω,q(α,q2β)+E1,qD(1)q,βSω,q(α,q1β)+E0,qCω,q(α,β)CEω,q(α,β)=0.

    (ⅱ) If ω is an odd number, then

    (1)ω12Eω,q[ω]q!D(ω)q,βSω,q(α,qωβ)+(1)ω2Eω1,q[ω1]q!D(ω1)q,βCω,q(α,q1ωβ)+(1)ω32Eω2,q[ω2]q!D(ω2)q,βSω,q(α,q2ωβ)+E2,q[2]q!D(2)q,βCω,q(α,q2β)+E1,qD(1)q,βSω,q(α,q1β)+E0,qCω,q(α,β)CEω,q(α,β)=0.

    Proof. In Lemma 2.2, it can be observed that

    Cωk,q(α,β)={(1)k2[ωk]q![ω]q!D(k)q,βCω,q(α,qkβ),ifkiseven,(1)k12[ωk]q![ω]q!D(k)q,βSω,q(α,qkβ),ifkisodd.  (3.7)

    Considering Eq (3.7) in Eq (3.4), we obtain the result of Theorem 3.6.

    Theorem 3.7. For eq(t)1, the QSE polynomial is one of the solutions of the following ω-th order difference equation:

    1[ω]q!D(ω)q,αSEω,q(α,β)+1[ω1]q!D(ω1)q,αSEω,q(α,β)+1[ω2]q!D(ω2)q,αSEω,q(α,β)++1[2]q!D(2)q,αSEω,q(α,β)+D(1)q,αSEω,q(α,β)+2(SEω,q(α,β)Sω,q(α,β))=0.

    Proof. If eq(θ)1 in the generating function of QSE polynomials, the following derivation is obtained:

    2ω=0Sω,q(α,β)θω[ω]q!=ω=0(ωk=0[ωk]qSEωk,q(α,β)+SEω,q(α,β))θω[ω]q!. (3.8)

    After comparing the series on both sides in Eq (3.8), we can write:

    2Sω,q(α,β)=ωk=0[ωk]qSEωk,q(α,β)+SEω,q(α,β). (3.9)

    If we substitute (ⅰ) of Lemma 2.4 into the righthand side of Eq (3.9), we can formulate

    ωk=01[k]q!D(k)q,αSEω,q(α,β)+SEω,q(α,β)2Sω,q(α,β)=0. (3.10)

    By expanding the finite series on the left-hand side of Eq (3.10), we obtain the desired result.

    Theorem 3.8. The q-difference equation

    1[ω]q!D(ω)q,αCEω,q(α,β)+1[ω1]q!D(ω1)q,αCEω,q(α,β)+1[ω2]q!D(ω2)q,αCEω,q(α,β)++1[2]q!D(2)q,αCEω,q(α,β)+D(1)q,αCEω,q(α,β)+2(CEω,q(α,β)Cω,q(α,β))=0

    has CEω,q(α,β) as the solution.

    Proof. Similar to the procedure used for finding Eq (3.9) in Theorem 3.7, the relationship between CEω,q(α,β) and Cω,q(α,β) is:

    2Cω,q(α,β)=ωk=0[ωk]qCEωk,q(α,β)+CEω,q(α,β). (3.11)

    Substituting (ⅱ) of Lemma 2.4 into the righthand side of Eq (3.9), we obtain:

    ωk=01[k]q!D(k)q,αCEω,q(α,β)+CEω,q(α,β)2Cω,q(α,β)=0. (3.12)

    Using Eq (3.12), we can finish the proof of Theorem 3.8.

    Corollary 3.9. For q1 in Theorems 3.7 and 3.8, the following holds:

    (i)1ω!dωdαωSEω(α,β)+1(ω1)!dω1dαω1SEω(α,β)+1(ω2)!dω2dαω2SEω(α,β)++12!d2dα2SEω(α,β)+ddαSEω(α,β)+2(SEω(α,β)Sω(α,β))=0.(ii)1ω!dωdαωCEω(α,β)+1(ω1)!dω1dαω1CEω(α,β)+1(ω2)!dω2dαω2CEω(α,β)++12!d2dα2CEω(α,β)+ddαCEω(α,β)+2(CEω(α,β)Cω(α,β))=0.

    Theorem 3.10. Under the following conditions, the q-difference equation for β has SEω,q(α,β) as the solution.

    (ⅰ) If ω is an even number, then

    (1)ω2[ω]q!D(ω)q,βSEω,q(α,qωβ)+(1)ω2[ω1]q!D(ω1)q,βCEω,q(α,q1ωβ)+(1)ω22[ω2]q!D(ω2)q,βSEω,q(α,q2ωβ)+1[2]q!D(2)q,βSEω,q(α,q2β)D(1)q,βCEω,q(α,q1β)+2(SEω,q(α,β)Sω,q(α,β))=0.

    (ⅱ) If ω is an odd number, then

    (1)ω+12[ω]q!D(ω)q,βCEω,q(α,qωβ)+(1)ω12[ω1]q!D(ω1)q,βSEω,q(α,q1ωβ)+(1)ω12[ω2]q!D(ω2)q,βCEω,q(α,q2ωβ)+1[2]q!D(2)q,βSEω,q(α,q2β)D(1)q,βCEω,q(α,q1β)+2(SEω,q(α,β)Sω,q(α,β))=0.

    Proof. By transforming Lemma 2.5, we can express:

    SEωk,q(α,β)={(1)k2[ωk]q![ω]q!D(k)q,βSEω,q(α,qkβ),ifkiseven,(1)k+12[ωk]q![ω]q!D(k)q,βCEω,q(α,qkβ),ifkisodd.  (3.13)

    The calculated result after applying Eq (3.13) to Eq (3.8) yields Theorem 3.10.

    Corollary 3.11. Consider q1 in Theorem 3.10. Then, we can formulate:

    (ⅰ) If ω is an even number, then

    (1)ω2ω!dωdβωSEω(α,β)+(1)ω2(ω1)!dω1dβω1CEω(α,β)+(1)ω22(ω2)!dω2dβω2SEω(α,β)+12!d2dβ2SEω(α,β)ddβCEω(α,β)+2(SEω(α,β)Sω(α,β))=0.

    (ⅱ) If ω is an odd number, then

    (1)ω+12ω!dωdβωCEω(α,β)+(1)ω12(ω1)!dω1dβω1SEω(α,β)+(1)ω12(ω2)!dω2dβω2CEω(α,β)+12!d2dβ2SEω(α,β)ddβCEω(α,β)+2(SEω(α,β)Sω(α,β))=0.

    Theorem 3.12. The q-difference equation for β has CEω,q(α,β) as the solution assuming the following conditions:

    (ⅰ) If ω is an even number, then

    (1)ω2[ω]q!D(ω)q,βCEω,q(α,qωβ)+(1)ω22[ω1]q!D(ω1)q,βSEω,q(α,q1ωβ)+(1)ω22[ω2]q!D(ω2)q,βCEω,q(α,q2ωβ)+1[2]q!D(2)q,βCEω,q(α,q2β)+D(1)q,βSEω,q(α,q1β)+2(CEω,q(α,β)Cω,q(α,β))=0.

    (ⅱ) If ω is an odd number, then

    (1)ω12[ω]q!D(ω)q,βSEω,q(α,qωβ)+(1)ω12[ω1]q!D(ω1)q,βCEω,q(α,q1ωβ)+(1)ω32[ω2]q!D(ω2)q,βSEω,q(α,q2ωβ)+1[2]q!D(2)q,βCEω,q(α,q2β)+D(1)q,βSEω,q(α,q1β)+2(CEω,q(α,β)Cω,q(α,β))=0.

    Proof. Using Lemma 2.5, CEωk,q(α,β) is expressed as:

    CEωk,q(α,β)={(1)k2[ωk]q![ω]q!D(k)q,βCEω,q(α,qkβ),ifk:even,(1)k12[ωk]q![ω]q!D(k)q,βSEω,q(α,qkβ),ifk:odd.  (3.14)

    Applying Eq (3.14) to Eq (3.11) yields Theorem 3.12.

    Theorem 3.13. The q-difference equation below with the Euler polynomials Eω,q(α) has SEω,q(α,β) as a solution.

    Eω,q(1)[ω]q!D(ω)q,αSEω,q(α,β)+qEω1,q(1)[ω1]q!D(ω1)q,αSEω,q(α,β)++qω2E2,q(1)[2]q!D(2)q,αSEω,q(α,β)+qω1E1,q(1)D(1)q,αSEω,q(α,β)+qωE0,q(1)SEω,q(α,β)2(αSEω,q(α,qβ)+βCEω,q(α,qβ)SEω+1,q(α,β))=0.

    Proof. The q-difference formula for the product of functions can be verified as follows:

    Dqf(α)g(α)h(α)=g(qα)h(qα)Dqf(α)+f(α)h(qα)Dqg(α)+f(α)g(α)Dqh(α). (3.15)

    To find the q-difference equation, we can obtain Eq (3.16) by differentiating SEω,q(α,β) with respect to t:

    Dq,θω=0SEω,q(α,β)θω[ω]q!=ω=1SEω,q(α,β)θω1[ω]q!=ω=0SEω+1,q(α,β)θω[ω]q!. (3.16)

    In addition, if we use Eq (3.15) to differentiate the generating function of SEω,q(α,β) with respect to θ, the following holds:

    Dq,θ(2eq(θ)+1eq(θα)SINq(θβ))=2eq(qθ)+1eq(qθα)SINq(qθβ)eq(θ)eq(θ)+1+2αeq(θ)+1eq(θα)SINq(qθβ)+2βeq(θ)+1eq(θα)COSq(qθβ). (3.17)

    After replacing Euler polynomials Eω,q(α) and QSE polynomials SEω,q(α,β) in Eq (3.17), we obtain:

    Dq,θ(2eq(θ)+1eq(θα)SINq(θβ))=12ω=0(ωk=0[ωk]qqωkEk,q(1)SEωk,q(α,β)+αSEω,q(α,qβ)+βCEω,q(α,qβ))θω[ω]q!. (3.18)

    Plugging Eq (3.16) into the left-hand side of Eq (3.18), we have

    ωk=0[ωk]qqωkEk,q(1)SEωk,q(α,β)=2αSEω,q(α,qβ)+2βCEω,q(α,qβ)2SEω+1,q(α,β). (3.19)

    By using Lemma 2.4 (ⅰ), Eq (3.19) can lead to Eq (3.20):

    ωk=0qωkEk,q(1)[k]q!D(k)q,αSEωk,q(α,β)2αSEω,q(α,qβ)2βCEω,q(α,qβ)+2SEω+1,q(α,β)=0. (3.20)

    Equation (3.20) represents the desired result.

    Corollary 3.14. By setting q1 in Theorem 3.13, the following condition is satisfied :

    Eω(1)ω!dωdαωSEω(α,β)+Eω1(1)(ω1)!dω1dαω1SEω(α,β)+Eω2(1)(ω2)!dω2dαω2SEω(α,β)++E2(1)2!d2dα2SEω(α,β)+E1(1)ddαCEω(α,β)+E0(1)SEω(α,β)2(αSEω(α,β)+βCEω(α,β)SEω+1(α,β))=0.

    Theorem 3.15. The q-difference equation below, which involves the Euler polynomials Eω,q(α), features CEω,q(α,β) as a solution:

    Eω,q(1)[ω]q!D(ω)q,αCEω,q(α,β)+qEω1,q(1)[ω1]q!D(ω1)q,αCEω,q(α,β)++qω2E2,q(1)[2]q!D(2)q,αCEω,q(α,β)+qω1E1,q(1)D(1)q,αCEω,q(α,β)+qωE0,q(1)CEω,q(α,β)2(αcEω,q(α,qβ)βSEω,q(α,qβ)CEω+1,q(α,β))=0.

    Proof. Following a similar calculation process as used for Eq (3.19) with CEω,q(α,β), the result is as follows.

    ωk=0[ωk]qqωkEk,q(1)CEωk,q(α,β)2αCEω,q(α,qβ)+2βSEω,q(α,qβ)+2CEω+1,q(α,β)=0. (3.21)

    By applying Lemma 2.7 (ⅱ) to Eq (3.21), we find the result of Theorem 3.15.

    Theorem 3.16. The following q-difference equations, which vary based on the conditions of ω, are:

    (ⅰ) If ω is an even number, then

    (1)ω2Eω,q(1)[ω]q!D(ω)q,βSEω,q(α,qωβ)+(1)ω2qEω1,q(1)[ω1]q!D(ω1)q,βCEω,q(α,q1ωβ)+qω2E2,q(1)[2]q!D(2)q,βSEω,q(α,q2β)qω1E1,q(1)D(1)q,βCEω,q(α,q1β)+qωE0,q(1)SEω,q(α,β)2(αSEω,q(α,qβ)+βCEω,q(α,qβ)SEω+1,q(α,β))=0.

    (ⅱ) If ω is an odd number, then

    (1)ω+12Eω,q(1)[ω]q!D(ω)q,βCEω,q(α,qωβ)+(1)ω12qEω1,q(1)[ω1]q!D(ω1)q,βSEω,q(α,q1ωβ)+qω2E2,q(1)[2]q!D(2)q,βSEω,q(α,q2β)qω1E1,q(1)D(1)q,βCEω,q(α,q1β)+qωE0,q(1)SEω,q(α,β)2(αSEω,q(α,qβ)+βCEω,q(α,qβ)SEω+1,q(α,β))=0.

    The above equations have SEω,q(α,β) as their solution.

    Proof. Application of Eq (3.13) to Eq (3.18) yields the desired result.

    Corollary 3.17. Based on Theorem 3.16, the following holds:

    (ⅰ) If ω is an even number, then

    (1)ω2Eω(1)ω!dωdβωSEω(α,β)+(1)ω2Eω1(1)(ω1)!dω1dβω1CEω(α,β)+E2(1)2!d2dβ2SEω(α,β)+E1(1)ddβCEω(α,β)+E0(1)SEω(α,β)2(αSEω(α,β)+βCEω(α,β)SEω+1(α,β))=0.

    (ⅱ) If ω is an odd number, then

    (1)ω+12Eω(1)ω!dωdβωCEω(α,β)+(1)ω12Eω1(1)(ω1)!dω1dβω1SEω(α,β)+E2(1)2!d2dβ2SEω(α,β)+E1(1)ddβCEω(α,β)+E0(1)SEω(α,β)2(αSEω(α,β)+βCEω(α,β)SEω+1(α,β))=0.

    Theorem 3.18. CEω,q(α,β) is a solution of the q-difference equations below that vary depending on the conditions of ω.

    (ⅰ) If ω is an even number, then

    (1)ω2Eω,q(1)[ω]q!D(ω)q,βCEω,q(α,qωβ)+(1)ω22qEω1,q(1)[ω1]q!D(ω1)q,βSEω,q(α,q1ωβ)+qω2E2,q(1)[2]q!D(2)q,βCEω,q(α,q2β)+qω1E1,q(1)D(1)q,βSEω,q(α,q1β)+qωE0,q(1)CEω,q(α,β)2(αCEω,q(α,qβ)+βSEω,q(α,qβ)CEω+1,q(α,β))=0.

    (ⅱ) If ω is an odd number, then

    (1)ω12Eω,q(1)[ω]q!D(ω)q,βSEω,q(α,qωβ)+(1)ω12qEω1,q(1)[ω1]q!D(ω1)q,βCEω,q(α,q1ωβ)+qω2E2,q(1)[2]q!D(2)q,βCEω,q(α,q2β)+qω1E1,q(1)D(1)q,βSEω,q(α,q1β)+qωE0,q(1)CEω,q(α,β)2(αCEω,q(α,qβ)+βSEω,q(α,qβ)CEω+1,q(α,β))=0.

    Proof. We obtain the required result after applying Eq (3.14) to Eq (3.21).

    Theorem 3.19. The q-difference equation

    (Eω,q((1q)qα)+ωk=0[ωk]qqkEk,q((1q)qα))αEω,q(1)[ω]q!qωD(ω)q,αSEω,q(α,β)++(E2,q((1q)qα)+2k=0[2k]qqkEk,q((1q)qα))αE2,q(1)[2]q!qωD(2)q,αSEω,q(α,β)+(α((1q1)E1,q((1q)qα)+E0,q((1q)qα))E1,q(1))qωD(1)q,αSEω,q(α,β)+(2αE0,q((1q)qα)E0,q(1))qωSEω,q(α,β)2(CEω+1,q(α,β)βSEω,q(α,qβ))=0

    features SEω,q(α,β) as a solution.

    Proof. Using eq(qθα)Eq(qθα)=1 and considering the definition of (1α)ωq for Eq (3.17), we can derive the following:

    Dq,t(2eq(θ)+1eq(θα)SINq(θβ))=12ω=0ωm=0[ωm]q(α(Em,q((1q)qα)+mk=0[mk]qqmkEk,q((1q)qα))Em,q(1))×qωmSEωm,q(α,β)θω[ω]q!+βω=0CEω,q(α,qβ)θω[ω]q!. (3.22)

    After plugging Eq (3.16) into the left-hand of Eq (3.22) and comparing the coefficients of both sides, we can formulate the following:

    2SEω+1,q(α,β)=ωm=0[ωm]q(α(Em,q((1q)qα)+mk=0[mk]qqkEk,q((1q)qα))Em,q(1))×qωSEωm,q(α,β)+2βCEω,q(α,qβ). (3.23)

    If we use the relation between D(m)q,αSEω,q(α,β) and SEωm,q(α,β) in Eq (3.23), then we obtain:

    2SEω+1,q(α,β)=ωm=0(α(Em,q((1q)qα)+mk=0[mk]qqkEk,q((1q)qα))Em,q(1))qω[m]q!×D(m)q,αSEω,q(α,β)+2βCEω,q(α,qβ). (3.24)

    Equation (3.24) produces exactly the result we are looking for.

    Theorem 3.20. The q-difference equation

    (Eω,q((1q)qα)+ωk=0[ωk]qqkEk,q((1q)qα))αEω,q(1)[ω]q!qωD(ω)q,αCEω,q(α,β)++(E2,q((1q)qα)+2k=0[2k]qqkEk,q((1q)qα))αE2,q(1)[2]q!qωD(2)q,αCEω,q(α,β)+(α((1q1)E1,q((1q)qα)+E0,q((1q)qα))E1,q(1))qωD(1)q,αCEω,q(α,β)+(2αE0,q((1q)qα)E0,q(1))qωCEω,q(α,β)2(CEω+1,q(α,β)+βSEω,q(α,qβ))=0

    has CEω,q(α,β) as a solution.

    Proof. As the proof can be established similarly to that of Theorem 3.19, it is omitted.

    Theorem 3.21. The q-difference equation, which varies based on the condition of the highest-order term, has SEω,q(α,β) as its solution.

    (ⅰ) If ω is an even number, then

    (Eω,q((1q)qα)+ωk=0[ωk]qqkEk,q((1q)qα))αEω,q(1)[ω]q!(1)ω2qωD(ω)q,αSEω,q(α,β)+(Eω1,q((1q)qα)+ω1k=0[ω1k]qqkEk,q((1q)qα))αEω1,q(1)[ω1]q!(1)ω2qωD(ω1)q,αCEω,q(α,β)+(E2,q((1q)qα)+2k=0[2k]qqkEk,q((1q)qα))αE2,q(1)[2]q!qωD(2)q,αSEω,q(α,β)(((1q1)E1,q((1q)qα)+E0,q((1q)qα))αE1,q(1))qωD(1)q,αCEω,q(α,β)+(2αE0,q((1q)qα)E0,q(1))qωSEω,q(α,β)2(SEω+1,q(α,β)βCEω,q(α,qβ))=0

    (ⅱ) If ω is an odd number, then

    (Eω,q((1q)qα)+ωk=0[ωk]qqkEk,q((1q)qα))αEω,q(1)[ω]q!(1)ω+12qωD(ω)q,αCEω,q(α,β)+(Eω1,q((1q)qα)+ω1k=0[ω1k]qqkEk,q((1q)qα))αEω1,q(1)[ω1]q!(1)ω12qωD(ω1)q,αSEω,q(α,β)+(E2,q((1q)qα)+2k=0[2k]qqkEk,q((1q)qα))αE2,q(1)[2]q!qωD(2)q,αSEω,q(α,β)(((1q1)E1,q((1q)qα)+E0,q((1q)qα))αE1,q(1))qωD(1)q,αCEω,q(α,β)+(2αE0,q((1q)qα)E0,q(1))qωSEω,q(α,β)2(SEω+1,q(α,β)βCEω,q(α,qβ))=0

    Proof. After substituting Eq (3.13) in Eq (3.23), we obtain the result of Theorem 3.21.

    In this section, we focus on the QSE polynomial, which is the solution to the q-difference equation obtained earlier. Using Wolfram Mathematica version 11.2, we fix the value of β within a QSE polynomial and show the forms of specific polynomials and the structures of their approximate roots. Additionally, we understand the structure of the roots of the QSE polynomial in 3-D and consider conjectures related to it. These characteristics depend on the value of q.

    The polynomials that emerge, as defined by the QSE polynomial, are as follows:

    SE0,q(α,β)=0,SE1,q(α,β)=β1+q,SE2,q(α,β)=αβ1+q+q2,SE3,q(α,β)=β(α2q3(1+q2)β2(1+q)(1+q2),SE4,q(α,β)=α3β1+q+q2+q3+q4q3(1+q2)αβ31+q+q2,SE5,q(α,β)=β(α4q3(1+q2+q3+q4+q6)α2β2+q10(1+q2+q4)β4)1+q+q2+q3+q4+q5,.

    To understand the structure and characteristics of the approximate roots of the QSE polynomial, we conducted several experiments by using specific values for the q and β variables.

    In Figure 1, β=10 is fixed, and q=0.999 is given. Figure 1(a) shows the stacking pattern of the approximate roots of the QSE polynomial for 0ω50. In (a), the approximate roots increase almost linearly along the line Im(α)=0, with a noticeable deviation near Re(α)=0. Figure 1(b) presents a perspective of Figure 1(a) with a focus on the axes of Re(α) and ω. Figure 1(b) indicates that as the value of ω increases, the locations of the approximate roots expand to the left and right. Figure 1(c), viewed from the left side of (a), displays the approximate roots congregated near the line Im(α)=0. Figure 1(c) indicates that the positions of the approximated roots change near Im(α)=0.

    Figure 1.  Approximate roots of SE50,0.999(α,10) for 30Re(α)30;30Im(α)30.

    Figure 2 is obtained by changing the range and value of q based on this idea. After setting q=0.555 and considering the range, 2Re(α)2 and 2Im(α)2 for the QSE polynomials, we obtain the numerical results shown in Figure 2. Figure 2(a) shows that the approximated roots form a pattern resembling a circle at ω=50, and it also verifies that these approximated roots are consistently aligned at Im(α)=0. Figure 2(b) shows a top-down view of the arrangement in Figure 2(a). The red dots denote ω=50 and the blue dots indicate when the value of n is small.

    Figure 2.  Approximate roots of SE50,0.555(α,10) under the following conditions: 2Re(α)2;2Im(α)2.

    Figure 3 shows approximated roots resembling a circle based on Figure 2. In Figure 2, the approximate roots that deviate significantly from the circular pattern have been omitted. Hence, we can only present the approximated roots resembling a circle - see, Figure 3. In Figure 3(a), (b), and (c), the value of ω changed, and the blue line represents the circle closest to the approximated roots. The blue dot in the middle represents the center.

    Figure 3.  Approximate circles of approximate roots of SEω,0.555(α,10) under the following conditions: (a) ω=55; (b) ω=60; (c) ω=65.

    Figure 3 examines the discrepancy between the center of the approximated circle and the approximate roots. The observed error margins are detailed in Table 1 below.

    Table 1.  Approximate circles associated with the approximate roots of SEω,0.555(α,10).
    ω The center (α,β) The radius The error range
    55 (0.0207717,3.50216×1014) 0.686902 0.0054277
    60 (0.0240098,1.57198×1011) 0.684888 0.00529865
    65 (0.0271422,3.93748×1013) 0.681139 0.00288519

     | Show Table
    DownLoad: CSV

    From Figures 1, 2, and 3 and Table 1, we can infer the following:

    Conjecture 4.1. As the value of ω increases, the approximated roots of SEω,0.555(α,10) appear as an approximated circle, excluding the real roots.

    This study has identified several higher-order difference equations in the form of q-Bernoulli differential equations related to QSE polynomials. Differential equations expressed with α as a variable appear in the form of various numbers as coefficients, and differential equations expressed with β as a variable show characteristics including the periodicity of q-trigonometric functions. Furthermore, the configuration and characteristics of the approximate roots of the QSE polynomial, which solve the previously mentioned difference equation, have been validated. If we select a high-order polynomial among the QSE polynomials and check the dynamic system of the roots, except for a few roots, the remaining roots maintain their circular form. We think this characteristic is an interesting feature that appears in polynomials containing q-numbers. Additionally, the table included in the paper strongly supports this idea and is a useful data for research related to the dynamic systems of roots.

    Jung Yoog Kang: Software, Writing-original draft and Writing-review & editing, Conceptualization, Methodology, Cheon Seoung Ryoo: Supervision and Validation, Data curation, Software and Writing-review & editing. All authors equally contributed to this manuscript and approved the final version.

    The authors declare that they have not used Artificial Intelligence tools in the creation of this article.

    The authors declare no conflict of interest.



    [1] W. H. Abdi, On q-Laplace transforms, Proc. Natl. Acad. Sci. India, 29 (1961), 389–408.
    [2] G. Bangerezako, An Introduction to q-Difference Equations, Preprint, Bujumbura: University of Burundi, 2007.
    [3] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J., 15 (1948), 987–1000.
    [4] L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., 76 (1954), 332–350.
    [5] T. Ernst, A Comprehensive Treatment of q-Calculus, New York: Springer Science, Business Media, 2012.
    [6] J. A. Ganie, A. A. Bhat, S. A. Wani, Natural transform of two variables in q-calculus with applications, Bollettino dell'Unione Matematica Italian, 17 (2024), 101–117.
    [7] R. N. Goldman, P. Simenov, Y. Simsek, Generating Functions For The Q-Bernstein Bases, Siam J. Discrete Math., 28 (2014), 1009–1025.
    [8] H. F. Jackson, q-Difference equations, Am. J. Math., 32 (1910), 305–314.
    [9] H. F. Jackson, On q-functions and a certain difference operator, Earth Environ. Sci. Trans. R. Soc. Edinb., 46 (2013), 253–281.
    [10] A. Kemp, Certain q-analogues of the binomial distribution, Sankhya Indian J. Stat. Ser. A, 64 (2002), 293–305.
    [11] N. Kilar, Y. Simsek, Computational formulas and identities for new classes of Hermite-based Milne–Thomson type polynomials: Analysis of generating functions with Euler's formula, Math. Appl. Sci., 44 (2021), 6731–6762.
    [12] N. Kilar, Y. Simsek, H. M. Srivastava, Recurrence relations, associated formulas, and combinatorial sums for some parametrically generalized polynomials arising from an analysis of the Laplace transform and generating functions, Ramanujan J., 61 (2023), 731–756.
    [13] N. Kilar, Y. Simsek, Identities and relations for Hermite-based Milne–Thomson polynomials associated with Fibonacci and Chebyshev polynomials, RACSAM, 115 (2021), 28. https://doi.org/10.1007/s13398-020-00968-3 doi: 10.1007/s13398-020-00968-3
    [14] J. Konvalina, A unified interpretation of the binomial coefficients, the Stirling numbers, and the Gaussian coefficients, Am. Math. Mon., 107 (2000), 901–910. https://doi.org/10.1080/00029890.2000.12005290 doi: 10.1080/00029890.2000.12005290
    [15] T. Kim, C. S. Ryoo, Some identities for Euler and Bernoulli polynomials and their zeros, Axioms, 7 (2018), 56. https://doi.org/10.3390/axioms7030056 doi: 10.3390/axioms7030056
    [16] J. Y. Kang, C. S. Ryoo, Various structures of the roots and explicit properties of q-cosine Bernoulli polynomials and q-sine Bernoulli polynomials, Mathematics, 8 (2020), 463. https://doi.org/10.3390/math8040463 doi: 10.3390/math8040463
    [17] Q. Luo, H. M. Srivastava, q-extensions of some relationships between the Bernoulli and Euler polynomials, Taiwan. J. Math., 15 (2011), 241–257.
    [18] S. Picoli Jr., R. S. Mendes, L. C. Malacarne, R. P. B. Santos, q-distributions in complex systems: A brief review, Braz. J. Phys., 39 (2009), 468–474. https://doi.org/10.1590/S0103-97332009000400023 doi: 10.1590/S0103-97332009000400023
    [19] C. S. Ryoo, J. Y. Kang, Explicit Properties of q-Cosine and q-Sine Euler Polynomials Containing Symmetric Structures, Symmetry, 12 (2020), 1274. https://doi.org/10.3390/sym12081247 doi: 10.3390/sym12081247
    [20] C. S. Ryoo, J. Y. Kang, Various Types of q-Differential Equations of Higher Order for q-Euler and q-Genocchi Polynomials, Mathematics, 10 (2022), 1181. https://doi.org/10.3390/math10071181 doi: 10.3390/math10071181
    [21] P. S. Rodrigues, G. Wachs-Lopes, R. M. Santos, E. Coltri, G. A. Giraldi, A q-extension of sigmoid functions and the application for enhancement of ultrasound images, Entropy, 21 (2019), 430. https://doi.org/10.3390/e21040430 doi: 10.3390/e21040430
    [22] E. Schrödinger, A method for determining quantum mechanical eigenvalues and eigenfunctions, Proc. Roy. Irish. Acad. A, 46 (1940), 9–16.
    [23] K. Victor, C. Pokman, Quantum Calculus Universitext, New York: Springer, 2002.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(863) PDF downloads(33) Cited by(0)

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog