Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Effectiveness of matrix measure in finding periodic solutions for nonlinear systems of differential and integro-differential equations with delays

  • In this manuscript, under the matrix measure and some sufficient conditions, we will overcame all difficulties and challenges related to the fundamental matrix for a generalized nonlinear neutral functional differential equations in matrix form with multiple delays. The periodicity of solutions, as well as the uniqueness under the considered conditions has been proved employing the fixed point theory. Our approach expanded and generalized certain previously published findings for example, we studied the uniqueness of a solution that was absent in some literature. Moreover, an example was given to confirm the main results.

    Citation: Mouataz Billah Mesmouli, Amir Abdel Menaem, Taher S. Hassan. Effectiveness of matrix measure in finding periodic solutions for nonlinear systems of differential and integro-differential equations with delays[J]. AIMS Mathematics, 2024, 9(6): 14274-14287. doi: 10.3934/math.2024693

    Related Papers:

    [1] Irshad Ahmad, Saeed Ahmad, Ghaus ur Rahman, Manuel De la Sen . Controllability of a generalized multi-pantograph system of non-integer order with state delay. AIMS Mathematics, 2023, 8(6): 13764-13784. doi: 10.3934/math.2023699
    [2] Sivaranjani Ramasamy, Thangavelu Senthilprabu, Kulandhaivel Karthikeyan, Palanisamy Geetha, Saowaluck Chasreechai, Thanin Sitthiwirattham . Existence, uniqueness and controllability results of nonlinear neutral implicit ABC fractional integro-differential equations with delay and impulses. AIMS Mathematics, 2025, 10(2): 4326-4354. doi: 10.3934/math.2025200
    [3] Hawsar HamaRashid, Hari Mohan Srivastava, Mudhafar Hama, Pshtiwan Othman Mohammed, Musawa Yahya Almusawa, Dumitru Baleanu . Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type. AIMS Mathematics, 2023, 8(6): 14572-14591. doi: 10.3934/math.2023745
    [4] Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299
    [5] Jie Yang, Guoping Chen . Existence of solutions for impulsive hybrid boundary value problems to fractional differential systems. AIMS Mathematics, 2021, 6(8): 8895-8911. doi: 10.3934/math.2021516
    [6] Yun Xin, Hao Wang . Positive periodic solution for third-order singular neutral differential equation with time-dependent delay. AIMS Mathematics, 2020, 5(6): 7234-7251. doi: 10.3934/math.2020462
    [7] M. Mallika Arjunan, Nabil Mlaiki, V. Kavitha, Thabet Abdeljawad . On fractional state-dependent delay integro-differential systems under the Mittag-Leffler kernel in Banach space. AIMS Mathematics, 2023, 8(1): 1384-1409. doi: 10.3934/math.2023070
    [8] Madeaha Alghanmi, Shahad Alqurayqiri . Existence results for a coupled system of nonlinear fractional functional differential equations with infinite delay and nonlocal integral boundary conditions. AIMS Mathematics, 2024, 9(6): 15040-15059. doi: 10.3934/math.2024729
    [9] Prabakaran Raghavendran, Tharmalingam Gunasekar, Irshad Ayoob, Nabil Mlaiki . AI-driven controllability analysis of fractional impulsive neutral Volterra-Fredholm integro-differential equations with state-dependent delay. AIMS Mathematics, 2025, 10(4): 9342-9368. doi: 10.3934/math.2025432
    [10] Muhammad Nazam, Aftab Hussain, Asim Asiri . On a common fixed point theorem in vector-valued b-metric spaces: Its consequences and application. AIMS Mathematics, 2023, 8(11): 26021-26044. doi: 10.3934/math.20231326
  • In this manuscript, under the matrix measure and some sufficient conditions, we will overcame all difficulties and challenges related to the fundamental matrix for a generalized nonlinear neutral functional differential equations in matrix form with multiple delays. The periodicity of solutions, as well as the uniqueness under the considered conditions has been proved employing the fixed point theory. Our approach expanded and generalized certain previously published findings for example, we studied the uniqueness of a solution that was absent in some literature. Moreover, an example was given to confirm the main results.



    Many researchers have studied the matrix form of differential systems due to their good applications in biological sciences, engineering, and economics, as well as other branches of mathematics, where the study of stability and the existence of periodic solutions was addressed (see [1,2,3,4,5,6,7,8,9,10,11]).

    By employing Krasnoselskii's fixed point theorem, the authors in [12] studied the following two functional neutral differential equations:

    (x(ι)cx(ιγ(ι)))=a(ι)x(ι)+p(ι,x(ιγ(ι))) (1.1)

    and

    ddι[x(ι)c0G(s)x(ι+s)ds]=a(ι)x(ι)+0G(s)p(ι,x(ι+s))ds, (1.2)

    where the positivity and periodicity of solutions were established, such that x: RR; a(ι)C(R,(0,)); pC(R×R,R); γ(ι)C(R,R) and a(ι), b(ι), γ(ι), p(ι,x) are Υ-periodic functions, |c|<1 and Υ>0 are constants, G(s)C((,0],[0,)), and

    0G(s)ds=1.

    However, functional differential Eqs (1.1) and (1.2) appear frequently in applications as models of equations in many mathematical population and ecological models, the models of hematopoiesis (see [13,14]), Nicholson's blowflies models (see [15,16]), and blood cell production (see [17]).

    In [2], the authors considered the following system:

    (x(ι)cx(ιγ))=A(ι,x(ι))x(ι)+p(ι,x(ισ1(ι)),...,x(ισm(ι))), (1.3)

    under the condition on the matrix measure, with periodic coefficients. However, in [9], the author used integrable dichotomy to show that the system (1.3) has periodic solutions where the matrix A depends on ι only.

    Motivated by these excellent works, the purpose of this article is to generalize and improve the previous works to become totally nonlinear or in system form by considering the two nonlinear differential systems with multiple delays:

    (x(ι)g(ι,x(ιγ(ι))))=A(ι)x(ι)+p(ι,x(ισ1(ι)),...,x(ισm(ι))) (1.4)

    and

    (x(ι)0G(s)g(ι,x(ι+γ(s)))ds)=A(ι)x(ι)+0G(s)p(ι,x(ι+σ1(s)),...,x(ι+σm(s)))ds, (1.5)

    in which x: RRn, γ(ι),σi(ι),i=1,...,m, are real continuous Υ-periodic functions on R, Υ>0. A(ι) and G(s) are n×n real matrices with the continuous Υ-periodic function defined on R and (,0], respectively, with

    0G(s)ds=I.

    The vector functions g(ι,v) and p(ι,v1,...,vm) are real continuous functions defined on R×Rn and R×(Rn)m, respectively, such that

    p(ι+Υ,v1,v2,...,vm)=p(ι,v1,v2,...,vm)

    and

    g(ι+Υ,v)=g(ι,v).

    The authors in [10] considered the systems (1.4) and (1.5) as a generalization of the work [9] and proved the existence and the uniqueness under the integrable dichotomy condition. So, to the best of our knowledge, no earlier studies have investigated the systems (1.4) and (1.5) by using matrix measure. On the other hand, among the specific advantages and potential impact of our work over existing results in the literature, for example, we can deduce the uniqueness of the solution of (1.1) in [2].

    To generalize them to become totally nonlinear and to study the uniqueness of solutions, which has not been studied previously, some other research was also studied in system form.

    This article is divided into five parts. Section 2 provides some background information that we will employ to show the existence and uniqueness of solutions of (1.4) and (1.5). Section 3 is concerned with establishing some criteria for the existence and uniqueness of periodic solutions of systems (1.4) and (1.5), respectively. Section 4 includes two examples to demonstrate our findings, followed by a conclusion.

    For the sake of convenience, we list some results, definitions of matrix measure, and linear systems, which will be crucial in the proofs of our results. Let the system

    x(ι)=A(ι)x(ι), (2.1)

    in which A(ι) is a continuous n×n matrix function. Denote by G(ι,ι0) the fundamental matrix solution of system (2.1) with G(ι0,ι0)=I. Recall that

    G(ι,ι0)G(ι0,ζ)=G(ι,ζ),  ι,ι0,ζR,

    and

    G1(ι,ζ)=G(ζ,ι),  ι,ζR.

    Let ||1 be the 1-norm for the real Euclidean space Rn and A the induced matrix norm of A corresponding to the vector norm ||. So, for

    x=(x1,x2,...,x3)Rn,A=(aij)n×nRn×n,

    then

    |x|1=ni=1|xi|,A=max

    The matrix measure of the matrix A is the function (see [18] for more details)

    \begin{align*} \mu \left( A\right) & = \lim\limits_{\epsilon \rightarrow 0^{+}}\frac{\left\Vert I+\epsilon A\right\Vert -1}{\epsilon } \\ & = \max\limits_{1\leq j\leq n}\left\{ a_{jj}+\sum\limits_{i = 1,i\neq j}^{n}\left\vert a_{ij}\right\vert \right\} . \end{align*}

    Lemma 2.1. [18] Let x\left(\iota \right) be a solution of system (2.1), then

    \begin{equation*} \left\vert x\left( \iota _{0}\right) \right\vert _{1}e^{\int_{\iota _{0}}^{\iota }-\mu \left( -A\left( \zeta \right) \right) d\zeta }\leq \left\vert x\right\vert _{1}\leq \left\vert x\left( \iota _{0}\right) \right\vert _{1}e^{\int_{\iota _{0}}^{\iota }\mu \left( A\left( \zeta \right) \right) d\zeta }, \end{equation*}

    for \iota \geq \iota _{0} .

    Lemma 2.2. [2] The fundamental matrix of (2.1) satisfies

    \begin{equation*} \left\Vert \mathcal{G}\left( \iota ,\zeta \right) \right\Vert \leq e^{\int_{\zeta }^{\iota }\mu \left( A\left( s\right) \right) ds},\ \; \ \iota \geq \zeta . \end{equation*}

    Lemma 2.3. [2] If

    \begin{equation*} e^{\int_{0}^{\Upsilon }\mu \left( A\left( \zeta \right) \right) d\zeta } < 1, \end{equation*}

    then the linear system (2.1) does not have any nontrivial \Upsilon -periodic solution.

    Lemma 2.4. [19] If the linear system (2.1) does not have any nontrivial \Upsilon -periodic solution, then for any \Upsilon -periodic continuous function p\left(\iota \right) , the nonhomogeneous system

    \begin{equation*} x^{\prime }\left( \iota \right) = A\left( \iota \right) x\left( \iota \right) +p\left( \iota \right) \end{equation*}

    has a unique \Upsilon -periodic solution x\left(\iota \right) determined by

    \begin{equation*} x\left( \iota \right) = \mathcal{G}\left( \iota ,\iota _{0}\right) x\left( \iota _{0}\right) +\int_{\iota _{0}}^{\iota }\mathcal{G}\left( \iota ,\zeta \right) p\left( \zeta \right) d\zeta ,\ \ \; \iota \in \mathbb{R} . \end{equation*}

    Now, for our study we consider the following lemma.

    Lemma 2.5. Assume that

    \begin{equation} \theta : = e^{\int_{0}^{\Upsilon }\mu \left( A\left( \zeta \right) \right) d\zeta } < 1 \end{equation} (2.2)

    holds, then the solutions of the systems (1.4) and (1.5) are equivalent to

    \begin{align} x\left( \iota \right) = & g\left( \iota ,x\left( \iota -\gamma \left( \iota \right) \right) \right) +\left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1} \\ & \times \int_{\iota }^{\iota +\Upsilon }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) A\left( \zeta \right) g\left( \zeta ,x\left( \zeta -\gamma \left( \zeta \right) \right) \right) d\zeta +\left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1} \\ & \times \int_{\iota }^{\iota +\Upsilon }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) p\left( \zeta ,x\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,x\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) d\zeta \end{align} (2.3)

    and

    \begin{align} x\left( \iota \right) = & \int_{-\infty }^{0}G\left( s\right) g\left( \iota ,x\left( \iota +\gamma \left( s\right) \right) \right) ds+\left( I-\mathcal{G }\left( \iota +\Upsilon ,\iota \right) \right) ^{-1} \\ & \times \int_{\iota }^{\iota +\Upsilon }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) A\left( \zeta \right) \int_{-\infty }^{0}G\left( s\right) g\left( \zeta ,x\left( \zeta +\gamma \left( s\right) \right) \right) dsd\zeta +\left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1} \\ & \times \int_{\iota }^{\iota +\Upsilon }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) \int_{-\infty }^{0}G\left( s\right) p\left( \zeta ,x\left( \zeta +\sigma _{1}\left( s\right) \right) ,...,x\left( \zeta +\sigma _{m}\left( s\right) \right) \right) dsd\zeta , \end{align} (2.4)

    respectively.

    Proof. Let

    \begin{equation*} y\left( \iota \right) = x\left( \iota \right) -g\left( \iota ,x\left( \iota -\gamma \left( \iota \right) \right) \right) , \end{equation*}

    so, the system (1.4) can be written as

    \begin{equation*} y^{\prime }\left( \iota \right) = A\left( \iota \right) y\left( \iota \right) +A\left( \iota \right) g\left( \iota ,x\left( \iota -\gamma \left( \iota \right) \right) \right) +p\left( \iota ,x\left( \iota -\sigma _{1}\left( \iota \right) \right) ,...,x\left( \iota -\sigma _{m}\left( \iota \right) \right) \right) . \end{equation*}

    By Lemma 2.4, for \iota \in \mathbb{R} , we have

    \begin{align*} y\left( \iota \right) = & \mathcal{G}\left( \iota ,\iota _{0}\right) y\left( \iota _{0}\right) +\int_{\iota _{0}}^{\iota }\mathcal{G}\left( \iota ,\zeta \right) A\left( \zeta \right) g\left( \zeta ,x\left( \zeta -\gamma \left( \zeta \right) \right) \right) d\zeta \\ & +\int_{\iota _{0}}^{\iota }\mathcal{G}\left( \iota ,\zeta \right) p\left( \zeta ,x\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,x\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) d\zeta , \\ y\left( \iota \right) = & y\left( \iota +\Upsilon \right) \\ = & \mathcal{G}\left( \iota +\Upsilon ,\iota _{0}\right) y\left( \iota _{0}\right) +\int_{\iota _{0}}^{\iota +\Upsilon }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) A\left( \zeta \right) g\left( \zeta ,x\left( \zeta -\gamma \left( \zeta \right) \right) \right) d\zeta \\ & +\int_{\iota _{0}}^{\iota +\Upsilon }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) p\left( \zeta ,x\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,x\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) d\zeta \end{align*}

    and

    \begin{align*} \mathcal{G}\left( \iota +\Upsilon ,\iota \right) y\left( \iota \right) = & \mathcal{G}\left( \iota +\Upsilon ,\iota \right) \mathcal{G}\left( \iota ,\iota _{0}\right) y\left( \iota _{0}\right) +\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \int_{\iota _{0}}^{\iota }\mathcal{G}\left( \iota ,\zeta \right) A\left( \zeta \right) g\left( \zeta ,x\left( \zeta -\gamma \left( \zeta \right) \right) \right) d\zeta \\ & +\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \int_{\iota _{0}}^{\iota }\mathcal{G}\left( \iota ,\zeta \right) p\left( \zeta ,x\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,x\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) d\zeta \\ = & \mathcal{G}\left( \iota +\Upsilon ,\iota _{0}\right) y\left( \iota _{0}\right) +\int_{\iota _{0}}^{\iota }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) A\left( \zeta \right) g\left( \zeta ,x\left( \zeta -\gamma \left( \zeta \right) \right) \right) d\zeta \\ & +\int_{\iota _{0}}^{\iota }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) p\left( \zeta ,x\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,x\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) d\zeta . \end{align*}

    Thus,

    \begin{align*} \left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) y\left( \iota \right) = & \int_{\iota }^{\iota +\Upsilon }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) A\left( \zeta \right) g\left( \zeta ,x\left( \zeta -\gamma \left( \zeta \right) \right) \right) d\zeta \\ & +\int_{\iota }^{\iota +\Upsilon }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) p\left( \zeta ,x\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,x\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) d\zeta . \end{align*}

    Furthermore, since (2.2) holds, then \left(I-\mathcal{G}\left(\iota +\Upsilon, \iota \right) \right) ^{-1} exists for every \iota \in \mathbb{R} . Therefore, we have (2.3).

    By the same way, we can show that (2.4) holds.

    In our study, the proofs of the existence and uniqueness of the periodic solutions to the systems (1.4) and (1.5) utilize the fixed point theorems. So, we present them below (see [20,21]).

    Theorem 2.1. (Banach) Assume that \left(S, \rho \right) is a complete metric space and \Phi : S\rightarrow S. If there is a constant \tau < 1 such that for a, b\in S,

    \begin{equation*} \rho \left( \Phi a,\Phi b\right) \leq \tau \rho \left( a,b\right) , \end{equation*}

    then there is one, and only one, point x\in S with \Phi x = x .

    Theorem 2.2. (Krasnoselskii) Let \Pi be a nonempty, convex, closed, bounded subset of a Banach space S . Assume that \Phi _{1} and \Phi _{2} map \Pi into S such that:

    \left(i\right) \; \Phi _{1} is a contraction mapping on \Pi;

    \left(ii\right) \; \Phi _{2} is completely continuous on \Pi;

    \left(iii\right) \; a, b\in \Pi, implies \Phi _{1}a+\Phi _{2}b\in \Pi.

    Thus, there exists x\in \Pi with x = \Phi _{1}x+\Phi _{2}x.

    Now, we state our sufficient conditions. So, let BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) be the space of all bounded continuous functions from \mathbb{R} to \mathbb{R} ^{n} and assume E > 0 is a constant. Denote by

    \begin{equation*} \left\Vert v\right\Vert = \max\limits_{\iota \in \left[ 0,\Upsilon \right] }\left\vert v\left( t\right) \right\vert _{1}, \end{equation*}

    and set

    \begin{equation*} \Pi = \left\{ v\in BC\left( \mathbb{R} , \mathbb{R} ^{n}\right) :\left\Vert v\right\Vert \leq E\text{ and }v\left( \iota +\Upsilon \right) = v\left( \iota \right) \text{ for all }\iota \in \mathbb{R} \right\}. \end{equation*}

    Clearly, the set \Pi is a bounded, nonempty, closed, and convex subset of BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) .

    Assume that, for v, w\in \Pi , there exists L_{1}\in \left(0, 1\right) such that

    \begin{equation} \left\vert g\left( \iota ,v\right) -g\left( \iota ,w\right) \right\vert _{1}\leq L_{1}\left\vert v-w\right\vert _{1},\; \; \; \text{ for all }\iota \in \mathbb{R}, \end{equation} (2.5)

    and for v_{1}, v_{2}, ...v_{m}, w_{1}, w_{2}, ..., w_{m}\in \Pi , there exists L_{2} > 0 such that

    \begin{equation*} \left\vert p\left( \iota ,v_{1},v_{2},...,v_{m}\right) -p\left( \iota ,w_{1},w_{2},...,w_{m}\right) \right\vert _{1}\leq L_{2}\left( \left\vert v_{1}-w_{1}\right\vert _{1}+...+\left\vert v_{m}-w_{m}\right\vert _{1}\right) ,\; \; \; \text{ for all }\iota \in \mathbb{R} . \end{equation*}

    Denote

    \begin{equation*} \sup\limits_{\iota \in \left[ 0,\Upsilon \right] }\left\vert g\left( \iota ,0\right) \right\vert _{1} = \alpha ,\; \; \; \sup\limits_{\iota \in \left[ 0,\Upsilon \right] }\left\vert p\left( \iota ,0,...,0\right) \right\vert _{1} = \beta ,\; \; \; \sup\limits_{\iota \in \left[ 0,\Upsilon \right] }\left\Vert A\left( \iota \right) \right\Vert = \lambda , \end{equation*}

    and we assume there exists a \Upsilon -periodic continuous function \kappa \left(\iota \right) such that for \iota \in \left[ 0, \Upsilon \right], \; \mu \left(A\left(\iota \right) \right) \leq \kappa \left(\iota \right) satisfies

    \begin{equation} \sup\limits_{\zeta \leq s\leq \iota \in \left[ 0,\Upsilon \right] }\int_{\iota }^{\iota +\Upsilon }e^{\int_{\zeta }^{\iota +\Upsilon }\kappa \left( s\right) ds}d\zeta = \mu _{0} \end{equation} (2.6)

    and

    \begin{equation} \frac{\lambda \left( L_{1}E+\alpha \right) +L_{2}mE+\beta }{1-\theta }\mu _{0}\leq E. \end{equation} (2.7)

    We start this section by studying the periodicity of the system (1.4). For v\in BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) , we define the operators \Phi _{1} and \Phi _{2} by

    \begin{equation} \left( \Phi _{1}v\right) \left( \iota \right) = g\left( \iota ,v\left( \iota -\gamma \left( \iota \right) \right) \right) \end{equation} (3.1)

    and

    \begin{align} \left( \Phi _{2}v\right) \left( \iota \right) = & \left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1}\int_{\iota }^{\iota +\Upsilon } \mathcal{G}\left( \iota +\Upsilon ,\zeta \right) A\left( \zeta \right) g\left( \zeta ,v\left( \zeta -\gamma \left( \zeta \right) \right) \right) d\zeta \\ & +\left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1}\int_{\iota }^{\iota +\Upsilon }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) p\left( \zeta ,v\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,v\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) d\zeta . \end{align} (3.2)

    Note that if the operator \Phi _{1}+\Phi _{2} has a fixed point, then this fixed point is a periodic solution of (1.4).

    Lemma 3.1. If (2.2), (2.5) and (2.6) hold, then the operators \Phi _{1} and \Phi _{2} defined by (3.1) and (3.2), respectively, from \Pi turn into BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) , that is, \Phi _{1}, \Phi _{2} : \Pi \rightarrow BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) .

    Proof. Let v\in \Pi , . By (2.5), we have

    \begin{align*} \left\vert \left( \Phi _{1}v\right) \left( \iota \right) \right\vert _{1}& = \left\vert g\left( \iota ,v\left( \iota -\gamma \left( \iota \right) \right) \right) \right\vert _{1} \\ & \leq L_{1}\left\vert v\left( \iota -\gamma \left( \iota \right) \right) \right\vert _{1}+\left\vert g\left( \iota ,0\right) \right\vert _{1} \\ & \leq L_{1}\left\Vert v\right\Vert +\sup\limits_{\iota \in \left[ 0,\Upsilon \right] }\left\vert g\left( \iota ,0\right) \right\vert _{1} \\ & \leq L_{1}E+\alpha . \end{align*}

    Second, for v\in \Pi , by (2.5) and (2.6), we get

    \begin{align*} \left\vert \left( \Phi _{2}v\right) \left( \iota \right) \right\vert _{1}& \leq \left\Vert \left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1}\right\Vert \int_{\iota }^{\iota +\Upsilon }\left\Vert \mathcal{ G}\left( \iota +\Upsilon ,\zeta \right) \right\Vert \left\Vert A\left( \zeta \right) \right\Vert \left\vert g\left( \zeta ,v\left( \zeta -\gamma \left( \zeta \right) \right) \right) \right\vert _{1}d\zeta \\ & +\left\Vert \left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1}\right\Vert \int_{\iota }^{\iota +\Upsilon }\left\Vert \mathcal{ G}\left( \iota +\Upsilon ,\zeta \right) \right\Vert \left\vert p\left( \zeta ,v\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,v\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) \right\vert _{1}d\zeta . \end{align*}

    Since \theta < 1 , then

    \begin{align*} \left\Vert \left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1}\right\Vert & = \left\Vert \sum\limits_{n = 0}^{\infty }\left( \mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{n}\right\Vert \\ & \leq \left\Vert \sum\limits_{n = 0}^{\infty }\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right\Vert ^{n} \\ & \leq \sum\limits_{n = 0}^{\infty }\theta ^{n} \\ & = \frac{1}{1-\theta }, \end{align*}

    and by Lemma 2.2, we have

    \begin{align*} \left\Vert \mathcal{G}\left( \iota +\Upsilon ,\zeta \right) \right\Vert & \leq e^{\int_{\zeta }^{\iota +\Upsilon }\mu \left( A\left( \zeta \right) \right) d\zeta } \\ & \leq e^{\int_{\zeta }^{\iota +\Upsilon }\kappa \left( \zeta \right) d\zeta }, \end{align*}

    so

    \begin{align} \left\vert \left( \Phi _{2}v\right) \left( \iota \right) \right\vert & \leq \frac{\lambda \left( L_{1}E+\alpha \right) +L_{2}mE+\beta }{1-\theta } \int_{\iota }^{\iota +\Upsilon }e^{\int_{\zeta }^{\iota +\Upsilon }\kappa \left( s\right) ds}d\zeta \\ & \leq \frac{\lambda \left( L_{1}E+\alpha \right) +L_{2}mE+\beta }{1-\theta } \mu _{0}. \end{align}

    Due to Lemma 2.5, \Phi _{1} and \Phi _{2} are periodic, then \Phi _{1}, \Phi _{2} : \Pi \rightarrow BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) .

    Lemma 3.2. If (2.5) holds, then the operator \Phi _{1} : \Pi \rightarrow BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) defined by (3.1) is a contraction.

    Proof. Let v, w\in \Pi . By (2.5), we get

    \begin{align*} \left\vert \left( \Phi _{1}v\right) \left( \iota \right) -\left( \Phi _{1}w\right) \left( \iota \right) \right\vert _{1}& = \left\vert g\left( \iota ,v\left( \iota -\gamma \left( \iota \right) \right) \right) -g\left( \iota ,w\left( \iota -\gamma \left( \iota \right) \right) \right) \right\vert _{1} \\ & \leq L_{1}\left\vert v\left( \iota -\gamma \left( \iota \right) \right) -w\left( \iota -\gamma \left( \iota \right) \right) \right\vert _{1} \\ & \leq L_{1}\left\Vert v-w\right\Vert , \end{align*}

    then

    \begin{equation*} \left\Vert \Phi _{1}v-\Phi _{1}w\right\Vert \leq L_{1}\left\Vert v-w\right\Vert . \end{equation*}

    Therefore, \Phi _{1} is a contraction because L_{1}\in \left(0, 1\right) .

    Lemma 3.3. If (2.2), (2.5) and (2.6) hold, then the operator \Phi _{2} : \Pi \rightarrow BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) defined by (3.2) is completely continuous.

    Proof. To show that the operator \Phi _{2} : \Pi \rightarrow BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) is completely continuous, first we must prove the continuity of \Phi _{2} . So, for n\in \mathbb{N} , let v_{n}\in \Pi , such that v_{n}\rightarrow v as n\rightarrow \infty , then

    \begin{align*} \left\vert \left( \Phi _{2}v_{n}\right) \left( \iota \right) -\left( \Phi _{2}v\right) \left( \iota \right) \right\vert _{1}\leq & \left( I-\mathcal{G} \left( \iota +\Upsilon ,\iota \right) \right) ^{-1}\int_{\iota }^{\iota +\Upsilon }\left\Vert \mathcal{G}\left( \iota +\Upsilon ,\zeta \right) \right\Vert \\ & \times \left\Vert A\left( \zeta \right) \right\Vert \left\vert g\left( \zeta ,v_{n}\left( \zeta -\gamma \left( \zeta \right) \right) \right) -g\left( \zeta ,v\left( \zeta -\gamma \left( \zeta \right) \right) \right) \right\vert _{1}d\zeta \\ & +\left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1}\int_{\iota }^{\iota +\Upsilon }\left\Vert \mathcal{G}\left( \iota +\Upsilon ,\zeta \right) \right\Vert \\ & \times \left\vert p\left( \zeta ,v_{n}\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,v_{n}\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) \right. \\ & \left. -p\left( \zeta ,v\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,v\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) \right\vert _{1}d\zeta \\ \leq & \frac{\lambda L_{1}+L_{2}m}{1-\theta }\mu _{0}\left\Vert v_{n}-v\right\Vert , \end{align*}

    which implies

    \begin{equation*} \lim\limits_{n\rightarrow \infty }\left\vert \left( \Phi _{2}v_{n}\right) \left( \iota \right) -\left( \Phi _{2}v\right) \left( \iota \right) \right\vert _{1} = 0, \end{equation*}

    hence, \Phi _{2} is continuous. Now, let v_{n}\in \Pi , where n is a positive integer, then we have

    \begin{equation*} \left\Vert \Phi _{2}v_{n}\right\Vert \leq \mu _{0}\frac{\left[ \lambda \left( L_{1}E+\alpha \right) +L_{2}mE+\beta \right] }{1-\theta }. \end{equation*}

    Second

    \begin{align*} \left( \Phi _{2}v_{n}\right) ^{\prime }\left( \iota \right) & = v_{n}^{\prime }\left( \iota \right) -g^{\prime }\left( \iota ,v_{n}\left( \iota -\gamma \left( \iota \right) \right) \right) \\ & = A\left( \iota \right) v_{n}\left( \iota \right) +p\left( \iota ,v_{n}\left( \iota -\sigma _{1}\left( \iota \right) \right) ,...,v_{n}\left( \iota -\sigma _{m}\left( \iota \right) \right) \right) , \end{align*}

    then

    \begin{equation*} \left\Vert \left( \Phi _{2}v_{n}\right) ^{\prime }\right\Vert \leq \left( \lambda +L_{2}m\right) E+\beta , \end{equation*}

    hence, \left(\Phi _{2}v_{n}\right) is uniformly bounded and equicontinuous. Therefore, by Ascoli-Arzela's theorem, \Phi _{2}\left(\Pi \right) is relatively compact.

    Next, we prove for any v, w\in \Pi that \Phi _{1}v+\Phi _{2}w\in \Pi , in the following lemma.

    Lemma 3.4. If (2.2), (2.5)–(2.7) hold, then for any v, w\in \Pi , we have \Phi _{1}v+\Phi _{2}w\in \Pi .

    Proof. Let v, w\in \Pi , then \left\Vert v\right\Vert, \left\Vert w\right\Vert \leq E . By (2.6), we have

    \begin{align*} \left\vert \left( \Phi _{1}v\right) \left( \iota \right) +\left( \Phi _{2}w\right) \left( \iota \right) \right\vert _{1}\leq & \left\vert g\left( \iota ,v\left( \iota -\gamma \left( \iota \right) \right) \right) \right\vert _{1}+\left\Vert \left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1}\right\Vert \\ & \times \int_{\iota }^{\iota +\Upsilon }\left\Vert \mathcal{G}\left( \iota +\Upsilon ,\zeta \right) \right\Vert \left\Vert A\left( \zeta \right) \right\Vert \left\vert g\left( \zeta ,w\left( \zeta -\gamma \left( \zeta \right) \right) \right) \right\vert _{1}d\zeta +\left\Vert \left( I-\mathcal{ G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1}\right\Vert \\ & \times \int_{\iota }^{\iota +\Upsilon }\left\Vert \mathcal{G}\left( \iota +\Upsilon ,\zeta \right) \right\Vert \left\vert p\left( \zeta ,w\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,w\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) \right\vert _{1}d\zeta \\ \leq & \frac{\lambda \left( L_{1}E+\alpha \right) +L_{2}mE+\beta }{1-\theta } \mu _{0} \\ \leq & E. \end{align*}

    It follows that

    \begin{equation*} \left\Vert \Phi _{1}v+\Phi _{2}w\right\Vert \leq E, \end{equation*}

    for all v, w\in \Pi . Hence, \Phi _{1}v+\Phi _{2}w\in \Pi .

    The following theorem provides the periodicity of solution of (1.4).

    Theorem 3.1. Suppose (2.2), (2.5)–(2.7) hold, then there exists at least one \Upsilon -periodic solution for the system (1.4).

    Proof. Obviously, the requirements of Krasnoselskii's theorem are satisfied due to Lemmas 3.1–2.4. So, there exists a fixed point x\in \Pi such that x = \Phi _{1}x+\Phi _{2}x , and this fixed point is a solution of (1.4). Hence, (1.4) has a \Upsilon -periodic solution.

    Theorem 3.2. Assume that (2.2), (2.5) and (2.6) hold. If

    \begin{equation} L_{1}+\frac{\left( \lambda L_{1}+L_{2}m\right) }{1-\theta }\mu _{0} < 1, \end{equation} (3.3)

    then there exists a unique \Upsilon -periodic solution for the system (1.4).

    Proof. Let \Phi be defined by \Phi = \Phi _{1}+\Phi _{2} . For v_{1}, v_{2}\in BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) , we obtain

    \begin{align*} \left\vert \left( \Phi v_{1}\right) \left( \iota \right) -\left( \Phi v_{2}\right) \left( \iota \right) \right\vert _{1}\leq & \left\vert g\left( \iota ,v_{1}\left( \iota -\gamma \left( \iota \right) \right) \right) -g\left( \iota ,v_{2}\left( \iota -\gamma \left( \iota \right) \right) \right) \right\vert _{1} \\ & +\left\Vert \left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1}\right\Vert \int_{\iota }^{\iota +\Upsilon }\left\Vert \mathcal{ G}\left( \iota +\Upsilon ,\zeta \right) \right\Vert \left\Vert A\left( \zeta \right) \right\Vert \left\vert g\left( \zeta ,v_{1}\left( \zeta -\gamma \left( \zeta \right) \right) \right) \right. \\ & -\left. g\left( \zeta ,v_{2}\left( \zeta -\gamma \left( \zeta \right) \right) \right) \right\vert _{1}d\zeta +\left\Vert \left( I-\mathcal{G} \left( \iota +\Upsilon ,\iota \right) \right) ^{-1}\right\Vert \int_{\iota }^{\iota +\Upsilon }\left\Vert \mathcal{G}\left( \iota +\Upsilon ,\zeta \right) \right\Vert \\ & \times \left\vert p\left( \zeta ,v_{1}\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,v_{1}\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) \right. \\ & -\left. p\left( \zeta ,v_{2}\left( \zeta -\sigma _{1}\left( \zeta \right) \right) ,...,v_{2}\left( \zeta -\sigma _{m}\left( \zeta \right) \right) \right) \right\vert _{1}d\zeta \\ = & \left( L_{1}+\frac{\left( \lambda L_{1}+L_{2}m\right) }{1-\theta }\mu _{0}\right) \left\Vert v_{1}-v_{2}\right\Vert , \end{align*}

    then

    \begin{equation*} \left\Vert \Phi v_{1}-\Phi v_{2}\right\Vert \leq \left( L_{1}+\frac{\left( \lambda L_{1}+L_{2}m\right) }{1-\theta }\mu _{0}\right) \left\Vert v_{1}-v_{2}\right\Vert . \end{equation*}

    Since the condition (3.3) holds, system (1.4) has a unique \Upsilon -periodic solution by the Banach fixed point theorem.

    Now, to study the periodicity of the system (1.5), we define, for v\in BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) , the operators \Psi _{1} and \Psi _{2} by

    \begin{equation} \left( \Psi _{1}v\right) \left( \iota \right) = \int_{-\infty }^{0}G\left( t\right) g\left( \iota ,v\left( \iota +\gamma \left( t\right) \right) \right) dt \end{equation} (3.4)

    and

    \begin{align} \left( \Psi _{2}v\right) \left( \iota \right) = & \int_{-\infty }^{0}G\left( s\right) g\left( \iota ,v\left( \iota +\gamma \left( s\right) \right) \right) ds \\ & +\left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1}\int_{\iota }^{\iota +\Upsilon }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) A\left( \zeta \right) \int_{-\infty }^{0}G\left( s\right) g\left( \zeta ,v\left( \zeta +\gamma \left( s\right) \right) \right) dsd\zeta \\ & +\left( I-\mathcal{G}\left( \iota +\Upsilon ,\iota \right) \right) ^{-1} \\ & \times \int_{\iota }^{\iota +\Upsilon }\mathcal{G}\left( \iota +\Upsilon ,\zeta \right) \int_{-\infty }^{0}G\left( s\right) p\left( \zeta ,v\left( \zeta +\sigma _{1}\left( s\right) \right) ,...,v\left( \zeta +\sigma _{m}\left( s\right) \right) \right) dsd\zeta . \end{align} (3.5)

    We will study the fixed point of the operator \Psi _{1}+\Psi _{2} .

    Lemma 3.5. If (2.2), (2.5) and (2.6) hold, then the operators \Psi _{1} and \Psi _{2} defined above are operators from \Pi into BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) , that is, \Psi _{1}, \Psi _{2} : \Pi \rightarrow BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) .

    Proof. Let v\in \Pi . By (2.5), we get

    \begin{align*} \left\vert \left( \Psi _{1}v\right) \left( \iota \right) \right\vert _{1}& = \left\vert \int_{-\infty }^{0}G\left( t\right) g\left( \iota ,v\left( \iota +\gamma \left( t\right) \right) \right) dt\right\vert _{1} \\ & \leq \left( L_{1}\left\vert v\left( \iota -\gamma \left( \iota \right) \right) \right\vert _{1}+\left\vert g\left( \iota ,0\right) \right\vert _{1}\right) \left\Vert \int_{-\infty }^{0}G\left( t\right) dt\right\Vert \\ & \leq \left( L_{1}\left\Vert v\right\Vert +\sup\limits_{\iota \in \left[ 0,\iota \right] }\left\vert g\left( \iota ,0\right) \right\vert _{1}\right) \left\Vert I\right\Vert \\ & \leq L_{1}E+\alpha . \end{align*}

    Next, for v\in \Pi , by Lemma 2.2 and the conditions (2.5) and (2.6), we get

    \begin{align} \left\vert \left( \Psi _{2}v\right) \left( \iota \right) \right\vert & \leq \frac{\lambda \left( L_{1}E+\alpha \right) +L_{2}mE+\beta }{1-\theta } \int_{\iota }^{\iota +\Upsilon }e^{\int_{\zeta }^{\iota +\Upsilon }\kappa \left( s\right) ds}\left\Vert \int_{-\infty }^{0}G\left( s\right) ds\right\Vert d\zeta \\ & \leq \mu _{0}\frac{\lambda \left( L_{1}E+\alpha \right) +L_{2}mE+\beta }{ 1-\theta }. \end{align} (3.6)

    Due to Lemma 2.5, \Psi _{1} and \Psi _{2} are periodic, then \Psi _{1}, \Psi _{2} : \Pi \rightarrow BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) .

    By the same technique, the proof of the following lemmas is similar to that of Lemmas 3.2–2.4.

    Lemma 3.6. If (2.5) holds, then the operator \Psi _{1} : \Pi \rightarrow BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) defined by (3.4) is a contraction.

    Lemma 3.7. If (2.2), (2.5) and (2.6) hold, then the operator \Psi _{2} : \Pi \rightarrow BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) defined by (3.5) is completely continuous.

    Lemma 3.8. If (2.2), (2.5)–(2.7), then for any v, w\in \Pi , we have \Psi _{1}v+\Psi _{2}w\in \Pi .

    The following theorem provides the periodicity of solution of (1.5).

    Theorem 3.3. Suppose (2.2), (2.5)–(2.7) hold, then there exists at least one \Upsilon -periodic solution for the system (1.5).

    Proof. The requirements in Krasnoselskii's theorem are satisfied due to Lemmas 3.5–3.8. Hence, (1.5) has a \Upsilon -periodic solution.

    Theorem 3.4. Suppose the conditions (2.2), (2.5), (2.6) and (3.3) hold, then there exists a unique \Upsilon -periodic solution for the system (1.5).

    Proof. Le \Psi = \Psi _{1}+\Psi _{2} . For v_{1}, v_{2}\in BC\left(\mathbb{R}, \mathbb{R} ^{n}\right) ; it is easy to see that,

    \begin{equation*} \left\Vert \Psi v_{1}-\Psi v_{2}\right\Vert \leq \left( L_{1}+\frac{\left( \lambda L_{1}+L_{2}m\right) }{1-\theta }\mu _{0}\right) \left\Vert v_{1}-v_{2}\right\Vert . \end{equation*}

    The condition (3.3) confirms to us that the system (1.5) has one \Upsilon -periodic solution.

    We provide in this section two examples to confirm and strengthen the previous results.

    Example 4.1. Let v = \left(v_{1}, v_{2}\right) ^{t} , m = 2 , and \Upsilon = 2\pi in the system (1.4), where

    \begin{align*} v\left( \iota \right) & = \left( \begin{array}{c} x_{1}\left( \iota \right) \\ x_{2}\left( \iota \right) \end{array} \right) ,\; \; \; \; \; A\left( \iota \right) = \left( \begin{array}{cc} -\frac{1}{2} & \frac{1}{4}\sin \left( \iota \right) \\ \frac{1}{2} & -\frac{1}{2} \end{array} \right) , \\ g\left( \iota ,v\left( \iota -\gamma \left( \iota \right) \right) \right) & = 10^{-4}\sin \left( \iota \right) \left( \begin{array}{c} v_{2}\left( \iota -\cos \left( \iota \right) \right) +1 \\ v_{1}\left( \iota -\cos \left( \iota \right) \right) \end{array} \right) , \\ p\left( \iota ,v\left( \iota -\sigma _{1}\left( \iota \right) \right) ,v\left( \iota -\sigma _{2}\left( \iota \right) \right) \right) & = 10^{-5}\cos \left( \iota \right) \left( \begin{array}{c} v_{1}\left( \iota -10^{-2}\right) +v_{2}\left( \iota -\sin \left( \iota \right) \right) \\ v_{2}\left( \iota -10^{-2}\right) +v_{1}\left( \iota -\sin \left( \iota \right) \right) \end{array} \right) . \end{align*}

    Note that L_{1} = 10^{-4} , L_{2} = 10^{-5} , \alpha = 10^{-4} , \beta = 0 , \lambda = 1 , \mu \left(A\left(\iota \right) \right) \leq -\frac{1}{4} , and

    \begin{align*} \theta & = e^{\int_{0}^{2\pi }\mu \left( A\left( \zeta \right) \right) d\zeta } \\ & = e^{\int_{0}^{2\pi }\left( -\frac{1}{2}+\frac{1}{4}\left\vert \sin \left( \zeta \right) \right\vert \right) d\zeta } \\ & = e^{-\pi } < 1, \\ \mu _{0}& = \sup\limits_{\zeta \leq \iota \in \left[ 0,2\pi \right] }\int_{\iota }^{\iota +2\pi }e^{-\int_{\zeta }^{\iota +2\pi }\frac{1}{4}ds}d\zeta \\ & = 4\left( 1-e^{-\frac{\pi }{2}}\right) \approx 3.16. \end{align*}

    So, the conditions (2.2), (2.5)–(2.7) are held; hence, by Theorem 3.1, the system (1.4) has a 2\pi -periodic solution. Since g\left(\iota, x\left(\iota -\gamma \left(\iota \right) \right) \right) is not identically zero, this solution is also nontrivial.

    Example 4.2. Let v = \left(v_{1}, v_{2}\right) ^{t} , m = 2 , and \Upsilon = 2\pi in the system (1.5), where

    \begin{align*} g\left( \iota ,v\left( \iota +\gamma \left( \iota \right) \right) \right) & = 10^{-3}\cos \left( \iota \right) \left( \begin{array}{c} v_{2}\left( \iota +\sin \left( \iota \right) \right) +3 \\ v_{1}\left( \iota +\sin \left( \iota \right) \right) \end{array} \right) ,\ \; \; \; v\left( \iota \right) = \left( \begin{array}{c} v_{1}\left( \iota \right) \\ v_{2}\left( \iota \right) \end{array} \right) , \\ A\left( \iota \right) & = \left( \begin{array}{cc} -\frac{1}{4} & \frac{1}{8}\cos \left( \iota \right) \\ \frac{1}{4} & -\frac{1}{4} \end{array} \right) ,\ \ \; \; G\left( \iota \right) = \left( \begin{array}{cc} e^{\iota } & e^{2\iota }-\frac{1}{2}e^{\iota } \\ e^{3\iota }-\frac{1}{3}e^{\iota } & e^{\iota } \end{array} \right) , \\ p\left( \iota ,v\left( \iota -\sigma _{1}\left( \iota \right) \right) ,v\left( \iota -\sigma _{2}\left( \iota \right) \right) \right) & = 10^{-7}\sin \left( \iota \right) \left( \begin{array}{c} v_{1}\left( \iota +10^{-3}\right) +v_{2}\left( \iota +\sin \left( \iota \right) \right) \\ v_{2}\left( \iota +10^{-3}\right) +v_{1}\left( \iota +\sin \left( \iota \right) \right) \end{array} \right) . \end{align*}

    Note that L_{1} = 10^{-3} , L_{2} = 10^{-5} , \alpha = 3\times 10^{-3} , \beta = 0 , \lambda = \frac{1}{2} , \mu \left(A\left(\iota \right) \right) \leq -\frac{1}{8} , and

    \begin{align*} \theta & = e^{\int_{0}^{2\pi }\mu \left( A\left( \zeta \right) \right) d\zeta } = e^{\int_{0}^{2\pi }\left( -\frac{1}{4}+\frac{1}{8}\left\vert \cos \left( \zeta \right) \right\vert \right) d\zeta } = e^{\frac{1}{2}-\frac{1}{2}\pi } < 1, \\ \int_{-\infty }^{0}G\left( \iota \right) d\iota & = \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) = I, \\ \mu _{0}& = \sup\limits_{\zeta \leq \iota \in \left[ 0,2\pi \right] }\int_{\iota }^{\iota +2\pi }e^{-\int_{\zeta }^{\iota +2\pi }\frac{1}{8}ds}d\zeta = 8\left( 1-e^{-\frac{\pi }{4}}\right) \approx 4.35. \end{align*}

    So, the conditions (2.2), (2.5) and (2.6) are held, and since

    \begin{equation*} L_{1}+\frac{\left( \lambda L_{1}+L_{2}m\right) }{1-\theta }\mu _{0}\approx 4.44\times 10^{-3} < 1, \end{equation*}

    then the condition (3.3) is held too. Hence, by Theorem 3.4, the system (1.5) has a unique 2\pi -periodic solution. Since g\left(\iota, x\left(\iota +\gamma \left(\iota \right) \right) \right) is not identically zero, then this solution is also nontrivial.

    This research addressed more broadly the study of the kinds of neutral equations represented in nonlinear systems with multiple delays by using matrix measure and the fixed point technique to prove existence and uniqueness.

    The purpose of this study is to enhance and generalize various well-known studies such as [2,12]. Indeed, our study is in the space C^{0} ; however, [2] is in the space C^{1} . Furthermore, if

    \begin{equation*} g\left( \iota ,v\left( \iota -\gamma \left( \iota \right) \right) \right) = cv\left( \iota -\gamma \right) , \end{equation*}

    then our findings will be applicable to system (1.3) of [2]. Additionally, the periodic solutions of (1.1) and (1.2) in [12] can be found by our systems (1.4) and (1.5) in n -dimensional case.

    Finally, some of the concrete goals and explicit directions in the future study of this field are the studies of periodic solutions in both advanced and delayed differential systems or impulsive systems which means with piecewise constant arguments. For example, we can rely on the articles [22,23] in the future works, since they provide some useful insights about both numerical and theoretical aspects in the context of piecewise constant arguments and irregularities in delay differential equations. Another very important area in which the study of our current systems can be considered, is the regularizations of systems by showing the uniqueness, stability, and periodicity of the orbit like in [24].

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    There are no conflicts of interest.



    [1] K. Gu, V. Kharitonov, J. Chen, Stability of time-delay systems, Birkhauser, 2003. https://doi.org/10.1007/978-1-4612-0039-0
    [2] C. J. Guo, G. Q. Wang, S. S. Cheng, Periodic solutions for a neutral functional differential equation with multiple variable lags, Arch. Math., 42 (2006), 1–10.
    [3] M. N. Islam, Y. N. Raffoul, Periodic solutions of neutral nonlinear system of differential equations with functional delay, J. Math. Anal. Appl., 331 (2007), 1175–1186. https://doi.org/10.1016/j.jmaa.2006.09.030 doi: 10.1016/j.jmaa.2006.09.030
    [4] M. Pinto, Dichotomy and existence of periodic solutions of quasilinear functional differential equations, Nonlinear Anal. Theory Methods Appl., 72 (2010), 1227–1234. https://doi.org/10.1016/j.na.2009.08.007 doi: 10.1016/j.na.2009.08.007
    [5] C. Tunç, O. Tunç, J. C. Yao, On the stability, integrability and boundedness analysis of systems of integro-differential equations with time-delay, Fixed Point Theory, 24 (2023), 753–774. https://doi.org/10.24193/fpt-ro.2023.2.19 doi: 10.24193/fpt-ro.2023.2.19
    [6] O. Tunç, C. Tunç, On Ulam stabilities of delay Hammerstein integral equation, Symmetry, 15 (2023), 1736. https://doi.org/10.3390/sym15091736 doi: 10.3390/sym15091736
    [7] W. W. Mohammed, F. M. Al-Askar, C. Cesarano, On the dynamical behavior of solitary waves for coupled stochastic Korteweg-de Vries equations, Mathematics, 11 (2023), 3506. https://doi.org/10.3390/math11163506 doi: 10.3390/math11163506
    [8] H. E. Khochemane, A. Ardjouni, S. Zitouni, Existence and Ulam stability results for two orders neutral fractional differential equations, Afr. Mat., 33 (2022), 35. https://doi.org/10.1007/s13370-022-00970-5 doi: 10.1007/s13370-022-00970-5
    [9] P. S. Ngiamsunthorn, Existence of periodic solutions for differential equations with multiple delays under dichotomy condition, Adv. Differ. Equations, 2015 (2015), 259. https://doi.org/10.1186/s13662-015-0598-0 doi: 10.1186/s13662-015-0598-0
    [10] M. B. Mesmouli, A. A. Attiya, A. A. Elmandouha, A. Tchalla, T. S. Hassan, Dichotomy condition and periodic solutions for two nonlinear neutral systems, J. Funct. Spaces, 2022 (2022), 6319312. https://doi.org/10.1155/2022/6319312 doi: 10.1155/2022/6319312
    [11] M. B. Mesmouli, M. Alesemi, W. W. Mohammed, Periodic solutions for a neutral system with two Volterra terms, Mathematics, 11 (2023), 2204. https://doi.org/10.3390/math11092204 doi: 10.3390/math11092204
    [12] Y. Luo, W. Wang, J. H. Shen, Existence of positive periodic solutions for two kinds of neutral functional differential equations, Appl. Math. Lett., 21 (2008), 581–587. https://doi.org/10.1016/j.aml.2007.07.009 doi: 10.1016/j.aml.2007.07.009
    [13] J. Luo, J. Yu, Global asymptotic stability of nonautonomous mathematical ecological equations with distributed deviating arguments, Acta Math. Sin., 41 (1998), 1273–1282. https://doi.org/10.12386/A1998sxxb0191 doi: 10.12386/A1998sxxb0191
    [14] P. Weng, M. Liang, The existence and behavior of periodic solution of Hematopoiesis model, Math. Appl., 1995,434–439.
    [15] W. S. C. Gurney, S. P. Blythe, R. M. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 17–20. https://doi.org/10.1038/287017a0 doi: 10.1038/287017a0
    [16] W. Joseph, H. So, J. Yu, Global attractivity and uniform persistence in Nicholson's blowflies, Differ. Equations Dyn. Syst., 1 (1994), 11–18.
    [17] K. Gopalsamy, Stability and oscillation in delay differential equations of population dynamics, Kluwer Academic Press, 1992. https://doi.org/10.1007/978-94-015-7920-9
    [18] M. Vidyasagar, Nonlinear system analysis, Prentice Hall Inc., 1978.
    [19] R. Reissig, G. Sasone, R. Conti, Non-linear differential equations of higher order, Springer Dordrecht, 1974.
    [20] T. A. Burton, Stability by fixed point theory for functional differential equations, Dover Publications, 2006.
    [21] D. R. Smart, Fixed point theorems, Cambridge University Press, 1980.
    [22] F. V. Difonzo, P. Przybyłowicz, Y. Wu, Existence, uniqueness and approximation of solutions to Carathéodory delay differential equations, J. Comput. Appl. Math., 436 (2024), 115411. https://doi.org/10.1016/j.cam.2023.115411 doi: 10.1016/j.cam.2023.115411
    [23] F. V. Difonzo, P. Przybyłowicz, Y. Wu, X. Xie, A randomized Runge-Kutta method for time-irregular delay differential equations, arXiv, 2024. https://doi.org/10.48550/arXiv.2401.11658
    [24] L. Dieci, C. Elia, D. Pi, Limit cycles for regularized discontinuous dynamical systems with a hyperplane of discontinuity, Discrete Contin. Dyn. Syst., 22 (2017), 3091–3112. https://doi.org/10.3934/dcdsb.2017165 doi: 10.3934/dcdsb.2017165
  • This article has been cited by:

    1. Mouataz Billah Mesmouli, Abdelouaheb Ardjouni, Ioan-Lucian Popa, Hicham Saber, Faten H. Damag, Yasir A. Madani, Taher S. Hassan, Qualitative Properties of Nonlinear Neutral Transmission Line Models and Their Applications, 2025, 14, 2075-1680, 269, 10.3390/axioms14040269
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1157) PDF downloads(37) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog