Loading [MathJax]/jax/output/SVG/jax.js
Research article

Inverse problem of determining diffusion matrix between different structures for time fractional diffusion equation

  • Received: 20 December 2023 Revised: 12 March 2024 Accepted: 17 March 2024 Published: 21 March 2024
  • In this paper we consider some inverse problems of determining the diffusion matrix between different structures for the time fractional diffusion equation featuring a Caputo derivative. We first study an inverse problem of determining the diffusion matrix in the period structure using data from the corresponding homogenized equation, then we investigate an inverse problem of determining the diffusion matrix in the homogenized equation using data from the corresponding period structure of the oscillating equation. Finally, we establish the stability and uniqueness for the first inverse problem, and the asymptotic stability for the second inverse problem.

    Citation: Feiyang Peng, Yanbin Tang. Inverse problem of determining diffusion matrix between different structures for time fractional diffusion equation[J]. Networks and Heterogeneous Media, 2024, 19(1): 291-304. doi: 10.3934/nhm.2024013

    Related Papers:

    [1] Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar . Optimal control for continuous supply network models. Networks and Heterogeneous Media, 2006, 1(4): 675-688. doi: 10.3934/nhm.2006.1.675
    [2] Simone Göttlich, Oliver Kolb, Sebastian Kühn . Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Networks and Heterogeneous Media, 2014, 9(2): 315-334. doi: 10.3934/nhm.2014.9.315
    [3] Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli . A continuum-discrete model for supply chains dynamics. Networks and Heterogeneous Media, 2007, 2(4): 661-694. doi: 10.3934/nhm.2007.2.661
    [4] Michael Herty, Veronika Sachers . Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media, 2007, 2(4): 733-750. doi: 10.3934/nhm.2007.2.733
    [5] Alexandre M. Bayen, Alexander Keimer, Nils Müller . A proof of Kirchhoff's first law for hyperbolic conservation laws on networks. Networks and Heterogeneous Media, 2023, 18(4): 1799-1819. doi: 10.3934/nhm.2023078
    [6] Ciro D'Apice, Rosanna Manzo . A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379
    [7] Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang . Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks and Heterogeneous Media, 2015, 10(4): 749-785. doi: 10.3934/nhm.2015.10.749
    [8] Mauro Garavello . A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5(3): 565-581. doi: 10.3934/nhm.2010.5.565
    [9] Ciro D'Apice, Peter I. Kogut, Rosanna Manzo . On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9(3): 501-518. doi: 10.3934/nhm.2014.9.501
    [10] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
  • In this paper we consider some inverse problems of determining the diffusion matrix between different structures for the time fractional diffusion equation featuring a Caputo derivative. We first study an inverse problem of determining the diffusion matrix in the period structure using data from the corresponding homogenized equation, then we investigate an inverse problem of determining the diffusion matrix in the homogenized equation using data from the corresponding period structure of the oscillating equation. Finally, we establish the stability and uniqueness for the first inverse problem, and the asymptotic stability for the second inverse problem.





    [1] M. A. F. Dos Santos, Analytic approaches of the anomalous diffusion: a review, Chaos Soliton Fract, 124 (2019), 86–96. https://doi.org/10.1016/j.chaos.2019.04.039 doi: 10.1016/j.chaos.2019.04.039
    [2] Y. Zhao, Y. Tang, Critical behavior of a semilinear time fractional diffusion equation with forcing term depending on time and space, Chaos Soliton Fract, 178 (2024), 114309. https://doi.org/10.1016/j.chaos.2023.114309 doi: 10.1016/j.chaos.2023.114309
    [3] A. V. Chechkin, F. Seno, R. Metzler, I. M. Sokolov, Brownian yet non-gaussian diffusion: from superstatistics to subordination of diffusing diffusivities, Phys. Rev. X, 7 (2017), 021002. https://doi.org/10.1103/PhysRevX.7.021002 doi: 10.1103/PhysRevX.7.021002
    [4] Hatano Y, Hatano N, Dispersive transport of ions in column experiments: an explanation of long-tailed profiles, Water Resour Res, 34 (1998), 1027–1033. https://doi.org/10.1029/98WR00214 doi: 10.1029/98WR00214
    [5] Mirko Lukovic, Anomalous diffusion in ecology, (English), Doctoral Thesis of Georg-August University School of Science, Gottingen, 2014.
    [6] S. F. A. Carlos, L. O. Murta, Anomalous diffusion paradigm for image denoising process, The Insight Journal, (2016).
    [7] E. E Adams, L. W Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis, Water Resour Res, 28 (1992), 3293–3307. https://doi.org/10.1029/92WR01757 doi: 10.1029/92WR01757
    [8] R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equations, Physica A, 278 (2000), 107–125. https://doi.org/10.1016/S0378-4371(99)00503-8 doi: 10.1016/S0378-4371(99)00503-8
    [9] H. Ma, Y. Tang, Homogenization of a semilinear elliptic problem in a thin composite domain with an imperfect interface, Math. Methods Appl. Sci., 46 (2023), 19329–19350. https://doi.org/10.1002/mma.9628 doi: 10.1002/mma.9628
    [10] J. Chen, Y. Tang, Homogenization of nonlocal nonlinear pLaplacian equation with variable index and periodic structure, J Math Phys, 64 (2023), 061502. https://doi.org/10.1063/5.0091156 doi: 10.1063/5.0091156
    [11] J. Chen, Y. Tang, Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure, Netw. Heterog. Media., 18 (2023), 1118–1177. http://dx.doi.org/10.3934/nhm.2023049 doi: 10.3934/nhm.2023049
    [12] K. Sakamoto, M. Yamamoto, Initial value boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J Math Anal Appl, 382 (2011), 426–447.
    [13] A. Kubica, K. Ryszewska, M. Yamamoto, Time-Fractional Differential Equations: A Theoretical Introduction, Singapore: Springer, 1999.
    [14] J. Hu, G. Li, Homogenization of time-fractional diffusion equations with periodic coefficients, J Comput Phys, 408 (2020), 109231. https://doi.org/10.1016/j.jcp.2020.109231 doi: 10.1016/j.jcp.2020.109231
    [15] A. Kawamoto, M. Machida, M. Yamamoto, Homogenization and inverse problems for fractional diffusion equations, Fract. Calc. Appl. Anal, 26 (2023), 2118–2165. https://doi.org/10.1007/s13540-023-00195-8 doi: 10.1007/s13540-023-00195-8
    [16] R. Gorenflo, Y. Luchko, M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal, 18 (2015), 799–820. https://doi.org/10.1515/fca-2015-0048 doi: 10.1515/fca-2015-0048
    [17] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler functions, related topics and applications, Berlin: Springer, 2020.
    [18] Y. Luchko, M. Yamamoto, On the maximum principle for a time-fractional diffusion equation, Fract. Calc. Appl. Anal, 20 (2017), 1131–1145. https://doi.org/10.1515/fca-2017-0060 doi: 10.1515/fca-2017-0060
    [19] Y. Luchko, M. Yamamoto, Maximum principle for the time-fractional PDEs, Volume 2 Fractional Differential Equations, Berlin: De Gruyter, 2019,299–326.
    [20] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin: Springer-Verlag, 2001.
    [21] X. C. Zheng, H. Wang, Uniquely identifying the variable order of time-fractional partial differential equations on general multi-dimensional domains, Inverse Probl Sci Eng, 29 (2021), 1401–1411. https://doi.org/10.1080/17415977.2020.1849182 doi: 10.1080/17415977.2020.1849182
    [22] J. Cheng, J. Nakagawa, M. Yamamoto, T. Yamazaki, Uniqueness in an inverse problem for a one dimensional fractional diffusion equation, Inverse Probl, 25 (2009), 115002. https://doi.org/10.1088/0266-5611/25/11/115002 doi: 10.1088/0266-5611/25/11/115002
  • This article has been cited by:

    1. C. D'Apice, R. Manzo, B. Piccoli, Numerical Schemes for the Optimal Input Flow of a Supply Chain, 2013, 51, 0036-1429, 2634, 10.1137/120889721
    2. Mauro Garavello, Benedetto Piccoli, Time-varying Riemann solvers for conservation laws on networks, 2009, 247, 00220396, 447, 10.1016/j.jde.2008.12.017
    3. Simone Göttlich, Stephan Martin, Thorsten Sickenberger, Time-continuous production networks with random breakdowns, 2011, 6, 1556-181X, 695, 10.3934/nhm.2011.6.695
    4. S. Göttlich, M. Herty, C. Ringhofer, U. Ziegler, Production systems with limited repair capacity, 2012, 61, 0233-1934, 915, 10.1080/02331934.2011.615395
    5. Felix Bestehorn, Christoph Hansknecht, Christian Kirches, Paul Manns, 2019, A switching cost aware rounding method for relaxations of mixed-integer optimal control problems, 978-1-7281-1398-2, 7134, 10.1109/CDC40024.2019.9030063
    6. D.B. Work, A.M. Bayen, Convex Formulations of Air Traffic Flow Optimization Problems, 2008, 96, 0018-9219, 2096, 10.1109/JPROC.2008.2006150
    7. Felix Bestehorn, Christoph Hansknecht, Christian Kirches, Paul Manns, Switching Cost Aware Rounding for Relaxations of Mixed-Integer Optimal Control Problems: The 2-D Case, 2022, 6, 2475-1456, 548, 10.1109/LCSYS.2021.3082989
    8. Simone Göttlich, Patrick Schindler, Optimal inflow control of production systems with finite buffers, 2015, 20, 1553-524X, 107, 10.3934/dcdsb.2015.20.107
    9. Khaled A.A.A. Othman, Thomas Meurer, Demand Tracking Control in Manufacturing Systems, 2020, 53, 24058963, 11219, 10.1016/j.ifacol.2020.12.334
    10. Simone Göttlich, Michael Herty, Optimal control for supply network models: Mixed integer programming, 2007, 7, 16177061, 2060051, 10.1002/pamm.200700618
    11. Alfredo Cutolo, Benedetto Piccoli, Luigi Rarità, An Upwind-Euler Scheme for an ODE-PDE Model of Supply Chains, 2011, 33, 1064-8275, 1669, 10.1137/090767479
    12. Ciro D'Apice, Peter I. Kogut, Rosanna Manzo, On Approximation of Entropy Solutions for One System of Nonlinear Hyperbolic Conservation Laws with Impulse Source Terms, 2010, 2010, 1687-5249, 1, 10.1155/2010/982369
    13. Michael N. Jung, Christian Kirches, Sebastian Sager, Susanne Sass, Computational Approaches for Mixed Integer Optimal Control Problems with Indicator Constraints, 2018, 46, 2305-221X, 1023, 10.1007/s10013-018-0313-z
    14. Khaled A.A.A. Othman, Thomas Meurer, Optimal Boundary Control for the Backlog Problem in Production Systems, 2022, 55, 24058963, 511, 10.1016/j.ifacol.2022.09.146
    15. Tanmay Sarkar, A numerical study on a nonlinear conservation law model pertaining to manufacturing system, 2016, 47, 0019-5588, 655, 10.1007/s13226-016-0199-y
    16. Agnes Dittel, Simone Göttlich, Ute Ziegler, Optimal design of capacitated production networks, 2011, 12, 1389-4420, 583, 10.1007/s11081-010-9123-1
    17. A. Fügenschuh, S. Göttlich, M. Herty, C. Kirchner, A. Martin, Efficient reformulation and solution of a nonlinear PDE-controlled flow network model, 2009, 85, 0010-485X, 245, 10.1007/s00607-009-0038-7
    18. A. Fügenschuh, S. Göttlich, M. Herty, A. Klar, A. Martin, A Discrete Optimization Approach to Large Scale Supply Networks Based on Partial Differential Equations, 2008, 30, 1064-8275, 1490, 10.1137/060663799
    19. Oliver Kolb, Simone Göttlich, A continuous buffer allocation model using stochastic processes, 2015, 242, 03772217, 865, 10.1016/j.ejor.2014.10.065
    20. Ciro D'Apice, Peter I. Kogut, Rosanna Manzo, On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains, 2014, 9, 1556-181X, 501, 10.3934/nhm.2014.9.501
    21. Simone Göttlich, Michael Herty, Claus Kirchner, Optimal control for supply network models: adjoint calculus, 2007, 7, 16177061, 2060053, 10.1002/pamm.200700624
    22. Simone Göttlich, Axel Klar, 2013, Chapter 8, 978-3-642-32159-7, 395, 10.1007/978-3-642-32160-3_8
    23. Ingenuin Gasser, Martin Rybicki, Winnifried Wollner, Optimal control of the temperature in a catalytic converter, 2014, 67, 08981221, 1521, 10.1016/j.camwa.2014.02.006
    24. Simone Göttlich, Sebastian Kühn, Jan Peter Ohst, Stefan Ruzika, Markus Thiemann, Evacuation dynamics influenced by spreading hazardous material, 2011, 6, 1556-181X, 443, 10.3934/nhm.2011.6.443
    25. P. Degond, C. Ringhofer, Stochastic Dynamics of Long Supply Chains with Random Breakdowns, 2007, 68, 0036-1399, 59, 10.1137/060674302
    26. S. Göttlich, S. Kühn, J. A. Schwarz, R. Stolletz, Approximations of time-dependent unreliable flow lines with finite buffers, 2016, 83, 1432-2994, 295, 10.1007/s00186-015-0529-6
    27. Simone Göttlich, Oliver Kolb, Sebastian Kühn, Optimization for a special class of traffic flow models: Combinatorial and continuous approaches, 2014, 9, 1556-181X, 315, 10.3934/nhm.2014.9.315
    28. Sebastian Sager, 2012, Chapter 22, 978-1-4614-1926-6, 631, 10.1007/978-1-4614-1927-3_22
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1387) PDF downloads(99) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog