In this paper, a new error bound for the linear complementarity problems of B−matrices which is a subclass of the P−matrices is presented. Theoretical analysis and numerical example illustrate that the new error bound improves some existing results.
Citation: Hongmin Mo, Yingxue Dong. A new error bound for linear complementarity problems involving B−matrices[J]. AIMS Mathematics, 2023, 8(10): 23889-23899. doi: 10.3934/math.20231218
[1] | Yuanjie Geng, Deshu Sun . Error bounds for linear complementarity problems of strong $ SDD_{1} $ matrices and strong $ SDD_{1} $-$ B $ matrices. AIMS Mathematics, 2023, 8(11): 27052-27064. doi: 10.3934/math.20231384 |
[2] | Deshu Sun . Note on error bounds for linear complementarity problems involving $ B^S $-matrices. AIMS Mathematics, 2022, 7(2): 1896-1906. doi: 10.3934/math.2022109 |
[3] | Lanlan Liu, Pan Han, Feng Wang . New error bound for linear complementarity problem of $ S $-$ SDDS $-$ B $ matrices. AIMS Mathematics, 2022, 7(2): 3239-3249. doi: 10.3934/math.2022179 |
[4] | Xinnian Song, Lei Gao . CKV-type $ B $-matrices and error bounds for linear complementarity problems. AIMS Mathematics, 2021, 6(10): 10846-10860. doi: 10.3934/math.2021630 |
[5] | Yingxia Zhao, Lanlan Liu, Feng Wang . Error bounds for linear complementarity problems of $ SD{{D}_{1}} $ matrices and $ SD{{D}_{1}} $-$ B $ matrices. AIMS Mathematics, 2022, 7(7): 11862-11878. doi: 10.3934/math.2022662 |
[6] | Dizhen Ao, Yan Liu, Feng Wang, Lanlan Liu . Schur complement-based infinity norm bounds for the inverse of $ S $-Sparse Ostrowski Brauer matrices. AIMS Mathematics, 2023, 8(11): 25815-25844. doi: 10.3934/math.20231317 |
[7] | Lanlan Liu, Yuxue Zhu, Feng Wang, Yuanjie Geng . Infinity norm bounds for the inverse of $ SDD_1^{+} $ matrices with applications. AIMS Mathematics, 2024, 9(8): 21294-21320. doi: 10.3934/math.20241034 |
[8] | Maja Nedović, Dunja Arsić . New scaling criteria for $ H $-matrices and applications. AIMS Mathematics, 2025, 10(3): 5071-5094. doi: 10.3934/math.2025232 |
[9] | Hsien-Chung Wu . Numerical method for solving the continuous-time linear programming problems with time-dependent matrices and piecewise continuous functions. AIMS Mathematics, 2020, 5(6): 5572-5627. doi: 10.3934/math.2020358 |
[10] | Mengting Gan . Global error bounds for the extended vertical LCP of $ \sum-SDD $ matrices. AIMS Mathematics, 2024, 9(9): 24326-24335. doi: 10.3934/math.20241183 |
In this paper, a new error bound for the linear complementarity problems of B−matrices which is a subclass of the P−matrices is presented. Theoretical analysis and numerical example illustrate that the new error bound improves some existing results.
The linear complementarity problem LCP(A,q) has a wide range of applications in the contact problems, the optimal stopping, the free boundary problem for journal bearing, and the network equilibrium problems, etc, for more details see [1,2,3]. The LCP(A,q) is to find a vector x∈Rn satisfying
x⩾0,Ax+q⩾0,(Ax+q)Tx=0, | (1.1) |
where q∈Rn and A=(aij)∈Rn×n. As we all know that a matrix A=(aij)∈Rn×n is called an P−matrix if all its principal minors are positive [4], and that the LCP(A,q) has a unique solution for any q∈Rn if and only if A is an P−matrix [2]. In [5], Chen and Xiang presented the following error bound of the LCP(A,q) when A is an P−matrix:
‖x−x∗‖∞⩽maxd∈[0,1]n‖(I−D+DA)−1‖∞‖r(x)‖∞, |
where x∗ is the solution of the LCP(A,q), r(x)=min{x,Ax+q}, D=diag(d1,⋯,dn) (0⩽di⩽1), and the min operator r(x) denotes the componentwise minimum of two vectors.
The upper bound of the maxd∈[0,1]n‖(I−D+DA)−1‖∞ is related with the special structure of the matrix A which is involved in the LCP(A,q), for details, see [7,8,9] and references therein. B−matrices which are introduced in [4] is a subclass of P−matrices. M. García-Esnaola and J.M. Peňa in [7] presented the upper bound of the maxd∈[0,1]n‖(I−D+DA)−1‖∞ when A is an B−matrix.
Definition 1. [4, Definition 2.1]. A matrix A=(aij)∈Rn×n is called an B−matrix if for any i,j∈N={1,2,⋯,n},
∑k∈Naik>0,1n(∑k∈Naik)>aij,j≠i. |
Theorem 1. [7, Theorem 2.2]. Let A=(aij)∈Rn×n be an B-matrix with the form A=B++C, where
B+=(bij)=(a11−r+1⋯a1n−r+1⋮⋱⋮an1−r+n⋯ann−r+n),C=(r+1⋯r+1⋮⋱⋮r+n⋯r+n), | (1.2) |
and r+i=max{0,aij|j≠i}, then
maxd∈[0,1]n‖(I−D+DA)−1‖∞⩽n−1min{β,1}, | (1.3) |
where β=mini∈N{βi} and βi=bii−∑j≠i|bij|.
In 2016, Li et al. improved the previous bound (3) as show below.
Theorem 2. [8, Theorem 4]. Let A=(aij)∈Rn×n be an B-matrix with the form A=B++C, where B+=(bij) is expressed as (2). Then
maxd∈[0,1]n‖(I−D+DA)−1‖∞⩽n∑i=1n−1min{ˉβi,1}i−1∏j=1(1+1ˉβjn∑k=j+1|bjk|), | (1.4) |
where ˉβi=bii−n∑j=i+1|bij|li(B+),lk(B+)=maxk⩽i⩽n{n∑j=k,≠i|bij||bii|} and
i−1∏j=1(1+1ˉβjn∑k=j+1|bjk|)=1ifi=1. |
In the same year, Li et al. also derived the error bounds for linear complementarity problems of weakly chained diagonally dominant B−matrix, this bound holds for the case that weakly chained diagonally dominant B−matrix is an B−matrix. the error bound as follows.
Theorem 3. [9, Theorem 2]. Let A=(aij)∈Rn×n be an B-matrix with the form A=B++C, where B+=(bij) is expressed as (2). Then
maxd∈[0,1]n‖(I−D+DA)−1‖∞⩽n∑i=1(n−1min{˜βi,1}i−1∏j=1bjj˜βj), | (1.5) |
where ˜βi=bii−n∑j=i+1|bij|>0 and i−1∏j=1bjj˜βj=1 if i = 1.
Next, we will continue to research the upper bound of the maxd∈[0,1]n‖(I−D+DA)−1‖∞ when the matrix A is an B−matrix based on the bound of the infinity norm of the inverse of strictly diagonally dominant M−matrices. We first recall some related definitions.
Definition 2. [4, Corollary 2.7]. A matrix A=(aij)∈Rn×n is called an Z−matrix if aij⩽0 for any i≠j.
Definition 3. [6, Corollary 3]. A matrix A=(aij)∈Rn×n is called a strictly diagonally dominant (SDD) matrix if for any i,j∈N={1,2,⋯,n},
|aii|>ri(A)=n∑j=1,j≠i|aij|. |
Definition 4. [6, Corollary 4]. A matrix A=(aij)∈Rn×n is called an M−matrix if A is an Z−matrix and A−1⩾0.
For convenience, we employ the following notations throughout the paper. Let A=(aij)∈Rn×n,i,j,k,m,n∈N,i≠j, denote
di=∑j∈N,j≠i|aij|aii,ui=n∑j=i+1|aij|aii, |
r(1)ji=|aji||ajj|−n∑k≠j,i|ajk|, rji=r(1)ji, |
r(m)ji=|aji|(|ajj|−n∑k≠j,i|ajk|)r(1)ir(2)i⋯r(m−1)i,m=2,3,⋯,n, |
r(m)i=maxj≠i{r(m)ji},m=1,2,⋯,n, |
d(m)ki=|aki|+∑j≠k,i|akj|r(1)ir(2)i⋯r(m)i|akk|r(1)ir(2)i⋯r(m)i,k≠i;m=1,2,⋯,n, |
q(m)ji=|aji|+∑k≠j,i|ajk|r(1)ir(2)i⋯r(m)id(m)ki|ajj|, |
q(m)i=maxj≠i{q(m)ji},q(m)=maxm⩽i⩽n{q(m)i},m=1,2,⋯,n. |
In this part, we first give some lemmas which will be used later, then a new upper bound of the maxd∈[0,1]n∥(I−D+DA)−1∥∞ when A is an B−matrix will be derived.
Lemma 1. [10, Theorem 5]. Let A=(aij)∈Rn×n be an SDD M-matrix. Then
∥A−1∥∞⩽max{1a11−n∑j=2|a1j|q(1)j1+n∑i=2[1aii−n∑j=i+1|aij|q(i)jii−1∏j=1uj(1−ujq(j))],q(1)a11−n∑j=2|a1j|q(1)j1+n∑i=2[q(i)aii−n∑j=i+1|aij|q(i)jii−1∏j=11(1−ujq(j))]}, | (2.1) |
where 0∏j=1uj(1−ujq(j))=1 and 0∏j=11(1−ujq(j))=1.
Lemma 2. [9, Lemma 4]. Let θ>0 and η⩾0. Then for any x∈[0,1],
11−x+θx⩽1min{θ,1}, | (2.2) |
and
ηx1−x+θx⩽ηθ. | (2.3) |
Lemma 3. [9, Lemma 5]. Let A=(aij)∈Rn×n and aii>n∑k=i+1|aik|(∀i∈N). Then for any xi∈[0,1],
1−xi+aiixi1−xi+aiixi−n∑k=i+1|aik|xi⩽aiiaii−n∑k=i+1|aik|. | (2.4) |
Lemma 4. [7, Theorem 2.2]. Let P=(p1,p2,⋯,pn)Te,e=(1,1,⋯,1),p1,p2,⋯,pn⩾0, then
∥(I+P)−1∥∞⩽n−1. |
Theorem 4. Let A=(aij)∈Rn×n be an B-matrix with the form A=B++C, where B+=(bij) is expressed as (2). Then
maxd∈[0,1]n‖(I−D+DA)−1‖∞⩽max{n−1min{t1,1}+n∑i=2[n−1min{ti,1}i−1∏j=1∑k=j+1|bjk|˜tj],(n−1)q(1)(B+)min{t1,1}+n∑i=2[(n−1)q(i)(B+)min{ti,1}i−1∏j=1bjj˜tj]}, | (2.5) |
where ti=bii−n∑j=i+1|bij|q(i)ji(B+),˜tj=bjj−n∑k=j+1|bjk|q(j)(B+).
Proof. Let AD=I−D+DA. Then
AD=I−D+DA=I−D+D(B++C)=B+D+CD, |
where B+D=I−D+DB+ and CD=DC. By Theorem 2.2 in [7], we can get that B+D is an SDD M-matrix with positive diagonal elements, by Lemma 4, then
∥A−1D∥∞⩽∥(I+(B+D)−1CD)−1∥∞∥(B+D)−1∥∞⩽(n−1)∥(B+D)−1∥∞. | (2.6) |
Next, we will give an upper bound for ∥(B+D)−1∥∞. By Lemma 1, we have
∥(B+D)−1∥∞⩽max{11−d1+b11d1−n∑j=2|b1j|d1q(1)j1(B+D)+n∑i=2[11−di+biidi−n∑j=i+1|bij|diq(i)ji(B+D)i−1∏j=1uj(B+D)1−uj(B+D)q(j)(B+D)],q(1)(B+D)1−d1+b11d1−n∑j=2|b1j|d1q(1)j1(B+D)+n∑i=2[q(i)(B+D)1−di+biidi−n∑j=i+1|bij|diq(i)ji(B+D)i−1∏j=111−uj(B+D)q(j)(B+D)]}. | (2.7) |
By Lemma 2, we can easily deduce the following results for any i,j,k,m,n∈N,
r(1)ji(B+D)=|bji|dj1−dj+bjjdj−n∑k≠j,i|bjk|dj⩽|bji|bjj−n∑k≠j,i|bjk|=r(1)ji(B+), | (2.8) |
r(2)ji(B+D)=|bji|dj(1−dj+bjjdj−∑k≠j,i|bjk|dj)maxj≠i{|bji|dj1−dj+bjjdj−∑k≠j,i|bjk|dj}⩽1, | (2.9) |
r(2)ji(B+)=|bji|(|bjj|−∑k≠j,i|bjk|)maxj≠i{|bji||bjj|−∑k≠j,i|bjk|}⩽1. | (2.10) |
By (13)–(15), we have
r(1)i(B+D)=maxj≠i{r(1)ji(B+D)}⩽maxj≠i{r(1)ji(B+)}=r(1)i(B+), | (2.11) |
r(2)i(B+D)=maxj≠i{r(2)ji(B+D)}=1,r(2)i(B+)=maxj≠i{r(2)ji(B+)}=1. | (2.12) |
By analogy, we can get that for any m⩾2,
r(m)i=maxj≠i{r(m)ji}=1, | (2.13) |
therefore
r(1)i(B+D)r(2)i(B+D)⋯r(m)i(B+D)⩽r(1)i(B+)r(2)i(B+)⋯r(m)i(B+). | (2.14) |
Because of
d(m)ki(B+D)=|bki|dk+∑j≠k,i|bkj|dkr(1)i(B+D)r(2)i(B+D)⋯r(m)i(B+D)(1−dk+bkkdk)r(1)i(B+D)r(2)i(B+D)⋯r(m)i(B+D), | (2.15) |
and
d(m)ki(B+)=|bki|+∑j≠k,i|bkj|r(1)i(B+)r(2)i(B+)⋯r(m)i(B+)|bkk|r(1)i(B+)r(2)i(B+)⋯r(m)i(B+). | (2.16) |
By (20), (21) and Lemma 2, we get
r(1)i(B+D)r(2)i(B+D)⋯r(m)i(B+D)d(m)ki(B+D)=|bki|dk+∑j≠k,i|bkj|dkr(1)i(B+D)r(2)i(B+D)⋯r(m)i(B+D)(1−dk+bkkdk)⩽|bki|+∑j≠k,i|bkj|r(1)i(B+D)r(2)i(B+D)⋯r(m)i(B+D)|bkk|⩽|bki|+∑j≠k,i|bkj|r(1)i(B+)r(2)i(B+)⋯r(m)i(B+)|bkk|=r(1)i(B+)r(2)i(B+)⋯r(m)i(B+)d(m)ki(B+). | (2.17) |
By (22) and Lemma 2, we have
q(m)ji(B+D)=|bji|dj+∑k≠j,i|bjk|djr(1)i(B+D)r(2)i(B+D)⋯r(m)i(B+D)d(m)ki(B+D)1−dj+bjjdj⩽|bji|+∑k≠j,i|bjk|r(1)i(B+)r(2)i(B+)⋯r(m)i(B+)d(m)ki(B+)|bjj|=q(m)ji(B+). | (2.18) |
By (23), we have
q(m)i(B+D)=maxj≠i{q(m)ji(B+D)}⩽maxj≠i{q(m)ji(B+)}=q(m)i(B+),m=1,2,⋯,n, |
q(m)(B+D)=maxm⩽i⩽n{q(m)i(B+D)}⩽maxm⩽i⩽n{q(m)i(B+)}=q(m)(B+),m=1,2,⋯,n. |
By Lemmas 2 and 3, we obtain
11−di+biidi−n∑j=i+1|bij|diq(i)ji(B+D)⩽1min{bii−n∑j=i+1|bij|q(i)ji(B+),1}⩽1min{ti,1}, | (2.19) |
ui(B+D)1−ui(B+D)q(i)(B+D)=n∑j=i+1|bij|di1−di+biidi−n∑j=i+1|bij|diq(i)(B+D)⩽n∑j=i+1|bij|bii−n∑j=i+1|bij|q(i)(B+)=n∑j=i+1|bij|˜ti, | (2.20) |
and
11−ui(B+D)q(i)(B+D)=1−di+biidi1−di+biidi−n∑j=i+1|bij|diq(i)(B+D)⩽biibii−n∑j=i+1|bij|q(i)(B+)=bii˜ti. | (2.21) |
By (24)–(26), we have
∥(B+D)−1∥∞⩽max{1min{t1,1}+n∑i=2[1min{ti,1}i−1∏j=1n∑k=j+1|bjk|˜tj],q(1)(B+)min{t1,1}+n∑i=2[q(i)(B+)min{ti,1}i−1∏j=1bjj˜tj]}. | (2.22) |
Therefore, (10) holds from (11) and (27).
Theorem 5. Let A=(aij)∈Rn×n be an B-matrix with the form A=B++C, where B+=(bij) is expressed as (2). Then
max{n−1min{t1,1}+n∑i=2[n−1min{ti,1}i−1∏j=1∑k=j+1|bjk|˜tj],(n−1)q(1)(B+)min{t1,1}+n∑i=2[(n−1)q(i)(B+)min{ti,1}i−1∏j=1bjj˜tj]}⩽n∑i=1n−1min{ˉβi,1}i−1∏j=1(1+1ˉβjn∑k=j+1|bjk|)⩽n∑i=1(n−1min{˜βi,1}i−1∏j=1bjj˜βj), | (2.23) |
where ˉβi and ˜βi are defined as (4), (5).
Proof. Since B+=(bij) is an SDD matrix with positive diagonal elements, by Theorem 6 in [10], we have
q(i)ji(B+)⩽q(i)(B+)⩽li(B+)<1. | (2.24) |
Notice that
˜βi=bii−n∑j=i+1|bij|,ˉβi=bii−n∑j=i+1|bij|li(B+), |
ti=bii−n∑j=i+1|bij|q(i)ji(B+),˜tj=bjj−n∑k=j+1|bjk|q(j)(B+), |
then
q(i)(B+)min{ti,1}⩽1min{ti,1}⩽1min{ˉβi,1}⩽1min{˜βi,1}, | (2.25) |
∑k=j+1|bjk|˜tj⩽∑k=j+1|bjk|ˉβj<1+1ˉβjn∑k=j+1|bjk|, | (2.26) |
bjj˜tj=bjj−n∑k=j+1|bjk|q(j)(B+)+n∑k=j+1|bjk|q(j)(B+)˜tj=1+n∑k=j+1|bjk|q(j)(B+)˜tj⩽1+1ˉβjn∑k=j+1|bjk|, | (2.27) |
and
1+1ˉβjn∑k=j+1|bjk|⩽1+1˜βjn∑k=j+1|bjk|=1˜βj(˜βj+n∑k=j+1|bjk|)=bjj˜βj. | (2.28) |
By (30)–(33), we can obtain (28).
Theoretical analysis shows that the new upper bound (10) of the maxd∈[0,1]n‖(I−D+DA)−1‖∞ when the matrix A is an B−matrix is better than bounds (4) and (5) which all be provided by Li in [8,9]. Next, we further illustrate the effectiveness of the result through numerical example.
Example 1. Consider the family of B−matrices in [8]:
Ak=(1.50.50.40.5−0.11.70.70.60.8−0.1kk+11.80.700.70.81.8), |
where k⩾1. Then Ak=B+k+Ck, where
B+k=(10−0.10−0.810−0.10−0.1kk+1−0.81−0.1−0.8−0.101). |
By Theorem 1, we have
maxd∈[0,1]4∥(I−D+DAk)−1∥∞⩽4−1min{β,1}=30(k+1), |
it is obvious to see that 30(k+1)→+∞, when k→+∞. bound (3) in Theorem 1 can be arbitrarily large.
By Theorem 2, we have
maxd∈[0,1]4∥(I−D+DAk)−1∥∞⩽2.97(90k+91)(190k+192)+6.24(100k+101)20.99(90k+91)2, |
when k=1,
maxd∈[0,1]4∥(I−D+DAk)−1∥∞⩽14.1044, |
when k=2,
maxd∈[0,1]4∥(I−D+DAk)−1∥∞⩽14.1079. |
By Theorem 3, for each k∈N={1,2,⋯,n}, we have
maxd∈[0,1]4∥(I−D+DAk)−1∥∞⩽15.2675. |
By Theorem 4, we have
maxd∈[0,1]4∥(I−D+DAk)−1∥∞⩽26.73k+23.798.2k+8.28+27(k+1)(89.1k+79.3)(8.838k+8.846)(81.09k+82.07)+243(k+1)(9k+8)(9k+10)0.9911(k+2)(81.09k+82.07)2+243(k+1)2(9k+8)(9k+10)(81.09k+82.07)2(0.919k2+2.838k+1.92), |
when k=1,
maxd∈[0,1]4∥(I−D+DAk)−1∥∞⩽10.2779, |
when k=2,
maxd∈[0,1]4∥(I−D+DAk)−1∥∞⩽10.9614. |
The numerical example above further illustrate that the bound (10) in Theorem 4 is better than those bounds in Theorems 1–3.
In this paper, we present a new upper bound for maxd∈[0,1]n‖(I−D+DA)−1‖∞ when A is an B−matrix, theoretical analysis and numerical example illustrate that the new estimation improves the bounds obtained in [7,8,9].
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors would like to thank editors and referees for their valuable suggestions.
This work is supported by the National Natural Science Foundation of China (No. 11461027), Scientific Research Fund of Hunan Education Department (No. 16A173). We are grateful for their help.
The authors declare no conflict of interest.
[1] |
X. J. Chen, S. H. Xiang, Perturbation bounds of P-matrix linear complementarity problems, SIAM J. Optim., 18 (2007), 1250–1265. https://doi.org/10.1137/060653019 doi: 10.1137/060653019
![]() |
[2] | R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, Academic Press, San Diego, 1992. |
[3] | K. G. Murty, Linear complementarity, linear and nonlinear programming, Heldermann Verlag, Berlin, 1998. |
[4] |
J. M. Peña, A class of P-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 22 (2001), 1027–1037. https://doi.org/10.1137/S0895479800370342 doi: 10.1137/S0895479800370342
![]() |
[5] |
X. Y. Chen, S. H. Xiang, Computation of error bounds for P-matrix linear complementarity problem, Math. Program., 106 (2006), 513–525. https://doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9
![]() |
[6] |
P. N. Shivakumar, K. H. Chew, A sufficient condition for nonvanishing of determinants, Proc. Am. Math. Soc., 43 (1974), 63–66. https://doi.org/10.1002/pauz.19740030203 doi: 10.1002/pauz.19740030203
![]() |
[7] |
M. García-Esnaola, J. M. Peňa, Error bounds for linear complementarity problems for $B-$matrices, Appl. Math. Lett., 22 (2009), 1071–1075. https://doi.org/10.1016/j.aml.2008.09.001 doi: 10.1016/j.aml.2008.09.001
![]() |
[8] |
C. Q. Li, Y. T. Li, Note on error bounds for linear complementarity problems for $B-$matrices, Appl. Math. Lett., 57 (2016), 108–113. https://doi.org/10.1016/j.aml.2016.01.013 doi: 10.1016/j.aml.2016.01.013
![]() |
[9] |
C. Q. Li, Y. T. Li, Weakly chained diagonally dominant B-matrices and error bounds for linear complementarity problems, Numer. Algor., 73 (2016), 985–998. https://doi.org/10.1007/s11075-016-0125-8 doi: 10.1007/s11075-016-0125-8
![]() |
[10] | R. Q. Zhao, A new upper bound of infinity norms of inverses for strictly diagonally dominant B-matrices, J. Sw. China. Normal. U., 45 (2020), 6–11. |