Research article

A new error bound for linear complementarity problems involving Bmatrices

  • Received: 20 October 2022 Revised: 20 February 2023 Accepted: 26 February 2023 Published: 07 August 2023
  • MSC : 65G50, 90C31, 90C33

  • In this paper, a new error bound for the linear complementarity problems of Bmatrices which is a subclass of the Pmatrices is presented. Theoretical analysis and numerical example illustrate that the new error bound improves some existing results.

    Citation: Hongmin Mo, Yingxue Dong. A new error bound for linear complementarity problems involving Bmatrices[J]. AIMS Mathematics, 2023, 8(10): 23889-23899. doi: 10.3934/math.20231218

    Related Papers:

    [1] Yuanjie Geng, Deshu Sun . Error bounds for linear complementarity problems of strong $ SDD_{1} $ matrices and strong $ SDD_{1} $-$ B $ matrices. AIMS Mathematics, 2023, 8(11): 27052-27064. doi: 10.3934/math.20231384
    [2] Deshu Sun . Note on error bounds for linear complementarity problems involving $ B^S $-matrices. AIMS Mathematics, 2022, 7(2): 1896-1906. doi: 10.3934/math.2022109
    [3] Lanlan Liu, Pan Han, Feng Wang . New error bound for linear complementarity problem of $ S $-$ SDDS $-$ B $ matrices. AIMS Mathematics, 2022, 7(2): 3239-3249. doi: 10.3934/math.2022179
    [4] Xinnian Song, Lei Gao . CKV-type $ B $-matrices and error bounds for linear complementarity problems. AIMS Mathematics, 2021, 6(10): 10846-10860. doi: 10.3934/math.2021630
    [5] Yingxia Zhao, Lanlan Liu, Feng Wang . Error bounds for linear complementarity problems of $ SD{{D}_{1}} $ matrices and $ SD{{D}_{1}} $-$ B $ matrices. AIMS Mathematics, 2022, 7(7): 11862-11878. doi: 10.3934/math.2022662
    [6] Dizhen Ao, Yan Liu, Feng Wang, Lanlan Liu . Schur complement-based infinity norm bounds for the inverse of $ S $-Sparse Ostrowski Brauer matrices. AIMS Mathematics, 2023, 8(11): 25815-25844. doi: 10.3934/math.20231317
    [7] Lanlan Liu, Yuxue Zhu, Feng Wang, Yuanjie Geng . Infinity norm bounds for the inverse of $ SDD_1^{+} $ matrices with applications. AIMS Mathematics, 2024, 9(8): 21294-21320. doi: 10.3934/math.20241034
    [8] Maja Nedović, Dunja Arsić . New scaling criteria for $ H $-matrices and applications. AIMS Mathematics, 2025, 10(3): 5071-5094. doi: 10.3934/math.2025232
    [9] Hsien-Chung Wu . Numerical method for solving the continuous-time linear programming problems with time-dependent matrices and piecewise continuous functions. AIMS Mathematics, 2020, 5(6): 5572-5627. doi: 10.3934/math.2020358
    [10] Mengting Gan . Global error bounds for the extended vertical LCP of $ \sum-SDD $ matrices. AIMS Mathematics, 2024, 9(9): 24326-24335. doi: 10.3934/math.20241183
  • In this paper, a new error bound for the linear complementarity problems of Bmatrices which is a subclass of the Pmatrices is presented. Theoretical analysis and numerical example illustrate that the new error bound improves some existing results.



    The linear complementarity problem LCP(A,q) has a wide range of applications in the contact problems, the optimal stopping, the free boundary problem for journal bearing, and the network equilibrium problems, etc, for more details see [1,2,3]. The LCP(A,q) is to find a vector xRn satisfying

    x0,Ax+q0,(Ax+q)Tx=0, (1.1)

    where qRn and A=(aij)Rn×n. As we all know that a matrix A=(aij)Rn×n is called an Pmatrix if all its principal minors are positive [4], and that the LCP(A,q) has a unique solution for any qRn if and only if A is an Pmatrix [2]. In [5], Chen and Xiang presented the following error bound of the LCP(A,q) when A is an Pmatrix:

    xxmaxd[0,1]n(ID+DA)1r(x),

    where x is the solution of the LCP(A,q), r(x)=min{x,Ax+q}, D=diag(d1,,dn) (0di1), and the min operator r(x) denotes the componentwise minimum of two vectors.

    The upper bound of the maxd[0,1]n(ID+DA)1 is related with the special structure of the matrix A which is involved in the LCP(A,q), for details, see [7,8,9] and references therein. Bmatrices which are introduced in [4] is a subclass of Pmatrices. M. García-Esnaola and J.M. Peňa in [7] presented the upper bound of the maxd[0,1]n(ID+DA)1 when A is an Bmatrix.

    Definition 1. [4, Definition 2.1]. A matrix A=(aij)Rn×n is called an Bmatrix if for any i,jN={1,2,,n},

    kNaik>0,1n(kNaik)>aij,ji.

    Theorem 1. [7, Theorem 2.2]. Let A=(aij)Rn×n be an B-matrix with the form A=B++C, where

    B+=(bij)=(a11r+1a1nr+1an1r+nannr+n),C=(r+1r+1r+nr+n), (1.2)

    and r+i=max{0,aij|ji}, then

    maxd[0,1]n(ID+DA)1n1min{β,1}, (1.3)

    where β=miniN{βi} and βi=biiji|bij|.

    In 2016, Li et al. improved the previous bound (3) as show below.

    Theorem 2. [8, Theorem 4]. Let A=(aij)Rn×n be an B-matrix with the form A=B++C, where B+=(bij) is expressed as (2). Then

    maxd[0,1]n(ID+DA)1ni=1n1min{ˉβi,1}i1j=1(1+1ˉβjnk=j+1|bjk|), (1.4)

    where ˉβi=biinj=i+1|bij|li(B+),lk(B+)=maxkin{nj=k,i|bij||bii|} and

    i1j=1(1+1ˉβjnk=j+1|bjk|)=1ifi=1.

    In the same year, Li et al. also derived the error bounds for linear complementarity problems of weakly chained diagonally dominant Bmatrix, this bound holds for the case that weakly chained diagonally dominant Bmatrix is an Bmatrix. the error bound as follows.

    Theorem 3. [9, Theorem 2]. Let A=(aij)Rn×n be an B-matrix with the form A=B++C, where B+=(bij) is expressed as (2). Then

    maxd[0,1]n(ID+DA)1ni=1(n1min{˜βi,1}i1j=1bjj˜βj), (1.5)

    where ˜βi=biinj=i+1|bij|>0 and i1j=1bjj˜βj=1 if i = 1.

    Next, we will continue to research the upper bound of the maxd[0,1]n(ID+DA)1 when the matrix A is an Bmatrix based on the bound of the infinity norm of the inverse of strictly diagonally dominant Mmatrices. We first recall some related definitions.

    Definition 2. [4, Corollary 2.7]. A matrix A=(aij)Rn×n is called an Zmatrix if aij0 for any ij.

    Definition 3. [6, Corollary 3]. A matrix A=(aij)Rn×n is called a strictly diagonally dominant (SDD) matrix if for any i,jN={1,2,,n},

    |aii|>ri(A)=nj=1,ji|aij|.

    Definition 4. [6, Corollary 4]. A matrix A=(aij)Rn×n is called an Mmatrix if A is an Zmatrix and A10.

    For convenience, we employ the following notations throughout the paper. Let A=(aij)Rn×n,i,j,k,m,nN,ij, denote

    di=jN,ji|aij|aii,ui=nj=i+1|aij|aii,
    r(1)ji=|aji||ajj|nkj,i|ajk|, rji=r(1)ji,
    r(m)ji=|aji|(|ajj|nkj,i|ajk|)r(1)ir(2)ir(m1)i,m=2,3,,n,
    r(m)i=maxji{r(m)ji},m=1,2,,n,
    d(m)ki=|aki|+jk,i|akj|r(1)ir(2)ir(m)i|akk|r(1)ir(2)ir(m)i,ki;m=1,2,,n,
    q(m)ji=|aji|+kj,i|ajk|r(1)ir(2)ir(m)id(m)ki|ajj|,
    q(m)i=maxji{q(m)ji},q(m)=maxmin{q(m)i},m=1,2,,n.

    In this part, we first give some lemmas which will be used later, then a new upper bound of the maxd[0,1]n(ID+DA)1 when A is an Bmatrix will be derived.

    Lemma 1. [10, Theorem 5]. Let A=(aij)Rn×n be an SDD M-matrix. Then

    A1max{1a11nj=2|a1j|q(1)j1+ni=2[1aiinj=i+1|aij|q(i)jii1j=1uj(1ujq(j))],q(1)a11nj=2|a1j|q(1)j1+ni=2[q(i)aiinj=i+1|aij|q(i)jii1j=11(1ujq(j))]}, (2.1)

    where 0j=1uj(1ujq(j))=1 and 0j=11(1ujq(j))=1.

    Lemma 2. [9, Lemma 4]. Let θ>0 and η0. Then for any x[0,1],

    11x+θx1min{θ,1}, (2.2)

    and

    ηx1x+θxηθ. (2.3)

    Lemma 3. [9, Lemma 5]. Let A=(aij)Rn×n and aii>nk=i+1|aik|(iN). Then for any xi[0,1],

    1xi+aiixi1xi+aiixink=i+1|aik|xiaiiaiink=i+1|aik|. (2.4)

    Lemma 4. [7, Theorem 2.2]. Let P=(p1,p2,,pn)Te,e=(1,1,,1),p1,p2,,pn0, then

    (I+P)1n1.

    Theorem 4. Let A=(aij)Rn×n be an B-matrix with the form A=B++C, where B+=(bij) is expressed as (2). Then

    maxd[0,1]n(ID+DA)1max{n1min{t1,1}+ni=2[n1min{ti,1}i1j=1k=j+1|bjk|˜tj],(n1)q(1)(B+)min{t1,1}+ni=2[(n1)q(i)(B+)min{ti,1}i1j=1bjj˜tj]}, (2.5)

    where ti=biinj=i+1|bij|q(i)ji(B+),˜tj=bjjnk=j+1|bjk|q(j)(B+).

    Proof. Let AD=ID+DA. Then

    AD=ID+DA=ID+D(B++C)=B+D+CD,

    where B+D=ID+DB+ and CD=DC. By Theorem 2.2 in [7], we can get that B+D is an SDD M-matrix with positive diagonal elements, by Lemma 4, then

    A1D⩽∥(I+(B+D)1CD)1(B+D)1(n1)(B+D)1. (2.6)

    Next, we will give an upper bound for (B+D)1. By Lemma 1, we have

    (B+D)1max{11d1+b11d1nj=2|b1j|d1q(1)j1(B+D)+ni=2[11di+biidinj=i+1|bij|diq(i)ji(B+D)i1j=1uj(B+D)1uj(B+D)q(j)(B+D)],q(1)(B+D)1d1+b11d1nj=2|b1j|d1q(1)j1(B+D)+ni=2[q(i)(B+D)1di+biidinj=i+1|bij|diq(i)ji(B+D)i1j=111uj(B+D)q(j)(B+D)]}. (2.7)

    By Lemma 2, we can easily deduce the following results for any i,j,k,m,nN,

    r(1)ji(B+D)=|bji|dj1dj+bjjdjnkj,i|bjk|dj|bji|bjjnkj,i|bjk|=r(1)ji(B+), (2.8)
    r(2)ji(B+D)=|bji|dj(1dj+bjjdjkj,i|bjk|dj)maxji{|bji|dj1dj+bjjdjkj,i|bjk|dj}1, (2.9)
    r(2)ji(B+)=|bji|(|bjj|kj,i|bjk|)maxji{|bji||bjj|kj,i|bjk|}1. (2.10)

    By (13)–(15), we have

    r(1)i(B+D)=maxji{r(1)ji(B+D)}maxji{r(1)ji(B+)}=r(1)i(B+), (2.11)
    r(2)i(B+D)=maxji{r(2)ji(B+D)}=1,r(2)i(B+)=maxji{r(2)ji(B+)}=1. (2.12)

    By analogy, we can get that for any m2,

    r(m)i=maxji{r(m)ji}=1, (2.13)

    therefore

    r(1)i(B+D)r(2)i(B+D)r(m)i(B+D)r(1)i(B+)r(2)i(B+)r(m)i(B+). (2.14)

    Because of

    d(m)ki(B+D)=|bki|dk+jk,i|bkj|dkr(1)i(B+D)r(2)i(B+D)r(m)i(B+D)(1dk+bkkdk)r(1)i(B+D)r(2)i(B+D)r(m)i(B+D), (2.15)

    and

    d(m)ki(B+)=|bki|+jk,i|bkj|r(1)i(B+)r(2)i(B+)r(m)i(B+)|bkk|r(1)i(B+)r(2)i(B+)r(m)i(B+). (2.16)

    By (20), (21) and Lemma 2, we get

    r(1)i(B+D)r(2)i(B+D)r(m)i(B+D)d(m)ki(B+D)=|bki|dk+jk,i|bkj|dkr(1)i(B+D)r(2)i(B+D)r(m)i(B+D)(1dk+bkkdk)|bki|+jk,i|bkj|r(1)i(B+D)r(2)i(B+D)r(m)i(B+D)|bkk||bki|+jk,i|bkj|r(1)i(B+)r(2)i(B+)r(m)i(B+)|bkk|=r(1)i(B+)r(2)i(B+)r(m)i(B+)d(m)ki(B+). (2.17)

    By (22) and Lemma 2, we have

    q(m)ji(B+D)=|bji|dj+kj,i|bjk|djr(1)i(B+D)r(2)i(B+D)r(m)i(B+D)d(m)ki(B+D)1dj+bjjdj|bji|+kj,i|bjk|r(1)i(B+)r(2)i(B+)r(m)i(B+)d(m)ki(B+)|bjj|=q(m)ji(B+). (2.18)

    By (23), we have

    q(m)i(B+D)=maxji{q(m)ji(B+D)}maxji{q(m)ji(B+)}=q(m)i(B+),m=1,2,,n,
    q(m)(B+D)=maxmin{q(m)i(B+D)}maxmin{q(m)i(B+)}=q(m)(B+),m=1,2,,n.

    By Lemmas 2 and 3, we obtain

    11di+biidinj=i+1|bij|diq(i)ji(B+D)1min{biinj=i+1|bij|q(i)ji(B+),1}1min{ti,1}, (2.19)
    ui(B+D)1ui(B+D)q(i)(B+D)=nj=i+1|bij|di1di+biidinj=i+1|bij|diq(i)(B+D)nj=i+1|bij|biinj=i+1|bij|q(i)(B+)=nj=i+1|bij|˜ti, (2.20)

    and

    11ui(B+D)q(i)(B+D)=1di+biidi1di+biidinj=i+1|bij|diq(i)(B+D)biibiinj=i+1|bij|q(i)(B+)=bii˜ti. (2.21)

    By (24)–(26), we have

    (B+D)1max{1min{t1,1}+ni=2[1min{ti,1}i1j=1nk=j+1|bjk|˜tj],q(1)(B+)min{t1,1}+ni=2[q(i)(B+)min{ti,1}i1j=1bjj˜tj]}. (2.22)

    Therefore, (10) holds from (11) and (27).

    Theorem 5. Let A=(aij)Rn×n be an B-matrix with the form A=B++C, where B+=(bij) is expressed as (2). Then

    max{n1min{t1,1}+ni=2[n1min{ti,1}i1j=1k=j+1|bjk|˜tj],(n1)q(1)(B+)min{t1,1}+ni=2[(n1)q(i)(B+)min{ti,1}i1j=1bjj˜tj]}ni=1n1min{ˉβi,1}i1j=1(1+1ˉβjnk=j+1|bjk|)ni=1(n1min{˜βi,1}i1j=1bjj˜βj), (2.23)

    where ˉβi and ˜βi are defined as (4), (5).

    Proof. Since B+=(bij) is an SDD matrix with positive diagonal elements, by Theorem 6 in [10], we have

    q(i)ji(B+)q(i)(B+)li(B+)<1. (2.24)

    Notice that

    ˜βi=biinj=i+1|bij|,ˉβi=biinj=i+1|bij|li(B+),
    ti=biinj=i+1|bij|q(i)ji(B+),˜tj=bjjnk=j+1|bjk|q(j)(B+),

    then

    q(i)(B+)min{ti,1}1min{ti,1}1min{ˉβi,1}1min{˜βi,1}, (2.25)
    k=j+1|bjk|˜tjk=j+1|bjk|ˉβj<1+1ˉβjnk=j+1|bjk|, (2.26)
    bjj˜tj=bjjnk=j+1|bjk|q(j)(B+)+nk=j+1|bjk|q(j)(B+)˜tj=1+nk=j+1|bjk|q(j)(B+)˜tj1+1ˉβjnk=j+1|bjk|, (2.27)

    and

    1+1ˉβjnk=j+1|bjk|1+1˜βjnk=j+1|bjk|=1˜βj(˜βj+nk=j+1|bjk|)=bjj˜βj. (2.28)

    By (30)–(33), we can obtain (28).

    Theoretical analysis shows that the new upper bound (10) of the maxd[0,1]n(ID+DA)1 when the matrix A is an Bmatrix is better than bounds (4) and (5) which all be provided by Li in [8,9]. Next, we further illustrate the effectiveness of the result through numerical example.

    Example 1. Consider the family of Bmatrices in [8]:

    Ak=(1.50.50.40.50.11.70.70.60.80.1kk+11.80.700.70.81.8),

    where k1. Then Ak=B+k+Ck, where

    B+k=(100.100.8100.100.1kk+10.810.10.80.101).

    By Theorem 1, we have

    maxd[0,1]4(ID+DAk)141min{β,1}=30(k+1),

    it is obvious to see that 30(k+1)+, when k+. bound (3) in Theorem 1 can be arbitrarily large.

    By Theorem 2, we have

    maxd[0,1]4(ID+DAk)12.97(90k+91)(190k+192)+6.24(100k+101)20.99(90k+91)2,

    when k=1,

    maxd[0,1]4(ID+DAk)114.1044,

    when k=2,

    maxd[0,1]4(ID+DAk)114.1079.

    By Theorem 3, for each kN={1,2,,n}, we have

    maxd[0,1]4(ID+DAk)115.2675.

    By Theorem 4, we have

    maxd[0,1]4(ID+DAk)126.73k+23.798.2k+8.28+27(k+1)(89.1k+79.3)(8.838k+8.846)(81.09k+82.07)+243(k+1)(9k+8)(9k+10)0.9911(k+2)(81.09k+82.07)2+243(k+1)2(9k+8)(9k+10)(81.09k+82.07)2(0.919k2+2.838k+1.92),

    when k=1,

    maxd[0,1]4(ID+DAk)110.2779,

    when k=2,

    maxd[0,1]4(ID+DAk)110.9614.

    The numerical example above further illustrate that the bound (10) in Theorem 4 is better than those bounds in Theorems 1–3.

    In this paper, we present a new upper bound for maxd[0,1]n(ID+DA)1 when A is an Bmatrix, theoretical analysis and numerical example illustrate that the new estimation improves the bounds obtained in [7,8,9].

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to thank editors and referees for their valuable suggestions.

    This work is supported by the National Natural Science Foundation of China (No. 11461027), Scientific Research Fund of Hunan Education Department (No. 16A173). We are grateful for their help.

    The authors declare no conflict of interest.



    [1] X. J. Chen, S. H. Xiang, Perturbation bounds of P-matrix linear complementarity problems, SIAM J. Optim., 18 (2007), 1250–1265. https://doi.org/10.1137/060653019 doi: 10.1137/060653019
    [2] R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, Academic Press, San Diego, 1992.
    [3] K. G. Murty, Linear complementarity, linear and nonlinear programming, Heldermann Verlag, Berlin, 1998.
    [4] J. M. Peña, A class of P-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 22 (2001), 1027–1037. https://doi.org/10.1137/S0895479800370342 doi: 10.1137/S0895479800370342
    [5] X. Y. Chen, S. H. Xiang, Computation of error bounds for P-matrix linear complementarity problem, Math. Program., 106 (2006), 513–525. https://doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9
    [6] P. N. Shivakumar, K. H. Chew, A sufficient condition for nonvanishing of determinants, Proc. Am. Math. Soc., 43 (1974), 63–66. https://doi.org/10.1002/pauz.19740030203 doi: 10.1002/pauz.19740030203
    [7] M. García-Esnaola, J. M. Peňa, Error bounds for linear complementarity problems for $B-$matrices, Appl. Math. Lett., 22 (2009), 1071–1075. https://doi.org/10.1016/j.aml.2008.09.001 doi: 10.1016/j.aml.2008.09.001
    [8] C. Q. Li, Y. T. Li, Note on error bounds for linear complementarity problems for $B-$matrices, Appl. Math. Lett., 57 (2016), 108–113. https://doi.org/10.1016/j.aml.2016.01.013 doi: 10.1016/j.aml.2016.01.013
    [9] C. Q. Li, Y. T. Li, Weakly chained diagonally dominant B-matrices and error bounds for linear complementarity problems, Numer. Algor., 73 (2016), 985–998. https://doi.org/10.1007/s11075-016-0125-8 doi: 10.1007/s11075-016-0125-8
    [10] R. Q. Zhao, A new upper bound of infinity norms of inverses for strictly diagonally dominant B-matrices, J. Sw. China. Normal. U., 45 (2020), 6–11.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1261) PDF downloads(55) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog