Research article Special Issues

Generalized polynomial exponential sums and their fourth power mean

  • The study of the power mean of the generalized polynomial exponential sums plays a very important role in analytic number theory, and many classical number theory problems are closely related to it. In this article, we use the elementary methods and the properties of the exponential sums to study the calculating problem of one kind of fourth power mean of some special generalized polynomial exponential sums, and we give some exact calculating formulae for them.

    Citation: Li Wang, Yuanyuan Meng. Generalized polynomial exponential sums and their fourth power mean[J]. Electronic Research Archive, 2023, 31(7): 4313-4323. doi: 10.3934/era.2023220

    Related Papers:

    [1] Rodolfo Acuňa-Soto, Luis Castaňeda-Davila, Gerardo Chowell . A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences and Engineering, 2011, 8(1): 223-238. doi: 10.3934/mbe.2011.8.223
    [2] Gilberto González-Parra, Cristina-Luisovna Pérez, Marcos Llamazares, Rafael-J. Villanueva, Jesus Villegas-Villanueva . Challenges in the mathematical modeling of the spatial diffusion of SARS-CoV-2 in Chile. Mathematical Biosciences and Engineering, 2025, 22(7): 1680-1721. doi: 10.3934/mbe.2025062
    [3] Eunha Shim . Prioritization of delayed vaccination for pandemic influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 95-112. doi: 10.3934/mbe.2011.8.95
    [4] Fangyuan Chen, Rong Yuan . Dynamic behavior of swine influenza transmission during the breed-slaughter process. Mathematical Biosciences and Engineering, 2020, 17(5): 5849-5863. doi: 10.3934/mbe.2020312
    [5] Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky . A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362
    [6] Hiroshi Nishiura . Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 49-64. doi: 10.3934/mbe.2011.8.49
    [7] Suman Ganguli, David Gammack, Denise E. Kirschner . A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis. Mathematical Biosciences and Engineering, 2005, 2(3): 535-560. doi: 10.3934/mbe.2005.2.535
    [8] Ahmed Alshehri, Saif Ullah . A numerical study of COVID-19 epidemic model with vaccination and diffusion. Mathematical Biosciences and Engineering, 2023, 20(3): 4643-4672. doi: 10.3934/mbe.2023215
    [9] Christian Costris-Vas, Elissa J. Schwartz, Robert Smith? . Predicting COVID-19 using past pandemics as a guide: how reliable were mathematical models then, and how reliable will they be now?. Mathematical Biosciences and Engineering, 2020, 17(6): 7502-7518. doi: 10.3934/mbe.2020383
    [10] Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez . Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 141-170. doi: 10.3934/mbe.2011.8.141
  • The study of the power mean of the generalized polynomial exponential sums plays a very important role in analytic number theory, and many classical number theory problems are closely related to it. In this article, we use the elementary methods and the properties of the exponential sums to study the calculating problem of one kind of fourth power mean of some special generalized polynomial exponential sums, and we give some exact calculating formulae for them.





    [1] A. Weil, Basic Number Theory, Springer-Verlag, New York, 1974.
    [2] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci., 34 (1948), 204–207. https://doi.org/10.1073/pnas.34.5.204 doi: 10.1073/pnas.34.5.204
    [3] J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, On the hidden shifted power problem, SIAM J. Comput., 41 (2012), 1524–1557. https://doi.org/10.1137/110850414 doi: 10.1137/110850414
    [4] W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
    [5] W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta. Math. Sin.-English Ser., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8
    [6] L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034
    [7] W. P. Zhang, H. L. Li, Elementary Number Theory, Shaanxi Normal University Press, Xi'an, 2013.
    [8] X. C. Du, D. Han, On the fourth power mean of the three-term exponential sums, J. Northwest Univ., 43 (2013), 541–544.
    [9] T. T. Wang, W. P. Zhang, On the fourth and sixth power mean of mixed exponential sums, Sci. China Math., 38 (2011), 265–270.
    [10] X. C. Ai, J. H. Chen, S. L. Zhang, H. Chen, A research on the relation between the three-term exponential sums and the system of the congruence equations, J. Math., 33 (2013), 535–540. https://doi.org/10.3969/j.issn.0255-7797.2013.03.021 doi: 10.3969/j.issn.0255-7797.2013.03.021
    [11] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81.
    [12] H. N. Liu, W. M. Li, On the fourth power mean of the three-term exponential sums, Adv. Math., 46 (2017), 529–547.
    [13] X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Math., 7 (2019), 907. https://doi.org/10.3390/math7100907 doi: 10.3390/math7100907
    [14] L. Chen, Z. Y. Chen, Some new hybrid power mean formulae of trigonometric sums, Adv. Differ. Equation, 2020 (2020), 220. https://doi.org/10.1186/s13662-020-02660-7 doi: 10.1186/s13662-020-02660-7
    [15] X. Y. Wang, X. X. Li, One kind sixth power mean of the three-term exponential sums, Open Math., 15 (2017), 705–710. https://doi.org/10.1515/math-2017-0060 doi: 10.1515/math-2017-0060
    [16] J. Bourgain, Estimates on polynomial exponential sums, Isr. J. Math., 176 (2010), 221–240. https://doi.org/10.1007/s11856-010-0027-8 doi: 10.1007/s11856-010-0027-8
    [17] D. Gomez-Perez, J. Gutierrez, I. E. Shparlinski, Exponential sums with Dickson polynomials, Finite Fields Th. App., 12 (2006), 16–25. https://doi.org/10.1016/j.ffa.2004.08.001 doi: 10.1016/j.ffa.2004.08.001
    [18] H. Jiao, Y. Shang, W. Wang, Solving generalized polynomial problem by using new affine relaxed technique, Int. J. Comput. Math., 99 (2022), 309–331. https://doi.org/10.1080/00207160.2021.1909727 doi: 10.1080/00207160.2021.1909727
    [19] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
    [20] Z. H. Sun, Legendre polynomials and supercongruences, Acta Arith., 159 (2013), 169–200.
    [21] Z. H. Sun, Supplements to the theory of quartic residues, Acta Arith., 97 (2001), 361–377.
  • This article has been cited by:

    1. Sergey V. Ivanov, Vasiliy N. Leonenko, Prediction of influenza peaks in Russian cities: Comparing the accuracy of two SEIR models, 2017, 15, 1551-0018, 209, 10.3934/mbe.2018009
    2. Vasiliy N. Leonenko, Sergey V. Ivanov, Yulia K. Novoselova, A Computational Approach to Investigate Patterns of Acute Respiratory Illness Dynamics in the Regions with Distinct Seasonal Climate Transitions, 2016, 80, 18770509, 2402, 10.1016/j.procs.2016.05.538
    3. Raimund Bürger, Gerardo Chowell, Elvis Gavilán, Pep Mulet, Luis M. Villada, Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents, 2017, 15, 1551-0018, 95, 10.3934/mbe.2018004
    4. Gerardo Chowell, Lisa Sattenspiel, Shweta Bansal, Cécile Viboud, Mathematical models to characterize early epidemic growth: A review, 2016, 18, 15710645, 66, 10.1016/j.plrev.2016.07.005
    5. Francesc Aràndiga, Antonio Baeza, Isabel Cordero-Carrión, Rosa Donat, M. Carmen Martí, Pep Mulet, Dionisio F. Yáñez, A Spatial-Temporal Model for the Evolution of the COVID-19 Pandemic in Spain Including Mobility, 2020, 8, 2227-7390, 1677, 10.3390/math8101677
    6. Christian Garcia-Calavaro, Lee H. Harrison, Darya Pokutnaya, Christina F. Mair, Maria M. Brooks, Wilbert van Panhuis, North to south gradient and local waves of influenza in Chile, 2022, 12, 2045-2322, 10.1038/s41598-022-06318-0
    7. Kangwei Tu, Andras Reith, Changes in Urban Planning in Response to Pandemics: A Comparative Review from H1N1 to COVID-19 (2009–2022), 2023, 15, 2071-1050, 9770, 10.3390/su15129770
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1525) PDF downloads(78) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog