Processing math: 64%
Research article Special Issues

Advancing towards a sustainable energy model, uncovering the untapped potential of rural areas

  • Received: 01 February 2023 Revised: 03 April 2023 Accepted: 04 April 2023 Published: 13 April 2023
  • Rural areas are essential to moving towards the necessary sustainable energy transition and climate change mitigation through renewable energy (RE) technologies. However, RE planning and decision-making in rural locations have not been developed to date with a focus on the local level and accompanied by a careful and thorough assessment of the simultaneous availability of alternative RE sources in a specific territory. Quite differently, RE investments in rural locations have been primarily driven by the interests of large power utilities to exploit a particular RE source, with benefits escaping from the rural economies to end up in the income statements of those large corporations. There is a need to approach RE planning at the municipal scale considering the availability of alternative RE sources. This study suggests the development of a rural RE potential index that could help in the identification of appropriate locations for the implementation of hybrid renewable energy systems (HRESs). The construction of a composite indicator to measure rural RE potential is exemplified through a case study that deals with ten indicators in the context of Galician rural municipalities, involving different RE potentials and some technical or regulatory constraints. Equal weighting and Principal Component Analysis are considered alternative methods for the index construction. Municipalities are the relevant local decision level where energy policy should be focused in order to diversify both the RE mix and the investor base. The proposed index could be the basis for future analyses aimed at optimizing the design and implementation of HRESs in rural environments at a local-regional-national scale.

    Citation: Vanessa Miramontes-Viña, Noelia Romero-Castro, M. Ángeles López-Cabarcos. Advancing towards a sustainable energy model, uncovering the untapped potential of rural areas[J]. AIMS Environmental Science, 2023, 10(2): 287-312. doi: 10.3934/environsci.2023017

    Related Papers:

    [1] Zohreh Heydarpour, Maryam Naderi Parizi, Rahimeh Ghorbnian, Mehran Ghaderi, Shahram Rezapour, Amir Mosavi . A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction. AIMS Mathematics, 2022, 7(10): 18253-18279. doi: 10.3934/math.20221004
    [2] Weerawat Sudsutad, Chatthai Thaiprayoon, Aphirak Aphithana, Jutarat Kongson, Weerapan Sae-dan . Qualitative results and numerical approximations of the (k,ψ)-Caputo proportional fractional differential equations and applications to blood alcohol levels model. AIMS Mathematics, 2024, 9(12): 34013-34041. doi: 10.3934/math.20241622
    [3] Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172
    [4] Weerawat Sudsutad, Sotiris K. Ntouyas, Chatthai Thaiprayoon . Nonlocal coupled system for ψ-Hilfer fractional order Langevin equations. AIMS Mathematics, 2021, 6(9): 9731-9756. doi: 10.3934/math.2021566
    [5] Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for Ψ-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010
    [6] Jehad Alzabut, Yassine Adjabi, Weerawat Sudsutad, Mutti-Ur Rehman . New generalizations for Gronwall type inequalities involving a ψ-fractional operator and their applications. AIMS Mathematics, 2021, 6(5): 5053-5077. doi: 10.3934/math.2021299
    [7] Tamer Nabil . Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. AIMS Mathematics, 2021, 6(5): 5088-5105. doi: 10.3934/math.2021301
    [8] Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327
    [9] Dinghong Jiang, Chuanzhi Bai . On coupled Gronwall inequalities involving a ψ-fractional integral operator with its applications. AIMS Mathematics, 2022, 7(5): 7728-7741. doi: 10.3934/math.2022434
    [10] Deepak B. Pachpatte . On some ψ Caputo fractional Čebyšev like inequalities for functions of two and three variables. AIMS Mathematics, 2020, 5(3): 2244-2260. doi: 10.3934/math.2020148
  • Rural areas are essential to moving towards the necessary sustainable energy transition and climate change mitigation through renewable energy (RE) technologies. However, RE planning and decision-making in rural locations have not been developed to date with a focus on the local level and accompanied by a careful and thorough assessment of the simultaneous availability of alternative RE sources in a specific territory. Quite differently, RE investments in rural locations have been primarily driven by the interests of large power utilities to exploit a particular RE source, with benefits escaping from the rural economies to end up in the income statements of those large corporations. There is a need to approach RE planning at the municipal scale considering the availability of alternative RE sources. This study suggests the development of a rural RE potential index that could help in the identification of appropriate locations for the implementation of hybrid renewable energy systems (HRESs). The construction of a composite indicator to measure rural RE potential is exemplified through a case study that deals with ten indicators in the context of Galician rural municipalities, involving different RE potentials and some technical or regulatory constraints. Equal weighting and Principal Component Analysis are considered alternative methods for the index construction. Municipalities are the relevant local decision level where energy policy should be focused in order to diversify both the RE mix and the investor base. The proposed index could be the basis for future analyses aimed at optimizing the design and implementation of HRESs in rural environments at a local-regional-national scale.



    Group testing, or pooled testing, was first introduced by Dorfman [1] to identify syphilis infections among U.S. Army personnel during World War II. This approach involves combining specimens (e.g., blood, plasma, urine, swabs) from multiple individuals and conducting a single test to check for infection. According to Dorfman's procedure, if the combined sample tests negative, all individuals in this sample can be confirmed disease-free. Conversely, a positive result necessitates further testing to identify the affected individuals. This strategy gained prominence during the COVID-19 pandemic [2,3,4] and has been applied to detect various infectious diseases, including HIV [5,6], chlamydia and gonorrhea [7], influenza [8], and the Zika virus [9]. The primary motivation for pooled testing lies in its economic efficiency; for instance, the State Hygienic Laboratory at the University of Iowa saved approximately fanxiexian_myfh3.1 million over five years by employing a modified Dorfman protocol for testing chlamydia and gonorrhea among residents of Iowa [10,11].

    Despite its cost-effectiveness, group testing poses significant challenges for statistical analysis due to the absence of individual response data [12]. However, advancements in digital technology have provided access to rich covariate information, including demographic data, electronic health records, genomic data, lifestyle data, physiological monitoring data, imaging data, and environmental variables [13]. Integrating these covariates into various statistical models for group testing has been shown to enhance accuracy and robustness, as evidenced by studies from Mokalled et al. [14], Huang and Warasi [15], Haber et al. [16]. This integration leads to improved estimations of individual risk probabilities, thereby reducing the number of tests required and overall costs.

    In managing covariates, single-index models offer advantages, such as less restrictive assumptions, good interpretability, and adaptability to high-dimensional data [17]. For high-dimensional single-index models, Radchenko [18] proposed a novel estimation method based on L1 regularization, extending it to generalized linear models. Elmezouar et al. [19] developed a functional single index expectile model with a nonparametric estimator to address spatial dependency in financial data, showing strong consistency and practical applicability. Chen and Samworth [20] explored generalized additive models, deriving non-parametric estimators for each additive component by maximizing the likelihood function, and adapted this approach to generalized additive index models. Kereta et al. [21] employed a k-nearest neighbor estimator, enhanced by geodesic metrics, to extend local linear regression for single-index models. However, research on generalized semi-parametric single-index models in high-dimensional contexts remains limited, particularly in group testing applications, which are still underexplored.

    Most current integrations of covariate information with group testing are developed based on parametric regression models. For example, Wang et al. [22] introduced a comprehensive binary regression framework, while McMahan et al. [11] developed a Bayesian regression framework. Gregory et al. [23] adopted an adaptive elastic net method, which remains effective as data dimensionality increases. Ko et al. [24] compared commonly used group testing procedures with group lasso regarding true positive selection in high-dimensional genomic data analysis. Furthermore, nonparametric regression methods have gained traction for applying covariates in group testing. Delaigle and Hall [25] proposed a nonparametric method for estimating conditional probabilities and testing specificity and sensitivity, addressing the unique dilution effects and complex data structures inherent in group testing. Self et al. [26] introduced a Bayesian generalized additive regression method to tackle dilution effects further, while Yuan et al. [12] developed a semiparametric monotone regression model using the expectation-maximization (EM) algorithm to navigate the complexities of group testing data. Zuo et al. [27] proposed a more flexible generalized nonparametric additive model, utilizing B-splines and group lasso methods for model estimation in high-dimensional data.

    This article proposes a generalized single-index group testing model aimed at enhancing flexibility in addressing various nonlinear models and facilitating the selection of important variables. Given the absence of individual disease testing results in group testing data, the EM algorithm is employed to perform the necessary calculations for the model. B-spline functions are utilized to approximate the nonlinear unknown smooth functions, with model parameters estimated by maximizing the likelihood function. In modern group testing, a substantial amount of individual covariate information is typically collected during sample testing. Consequently, a penalty term is incorporated into the likelihood function, promoting the construction of a sparse model and enabling effective variable selection. We apply the method to four group testing strategies: master pool, Dorfman, halving, and array. The method is evaluated using both simulated and real data.

    The remaining sections are organized as follows. Section 2 introduces our model with B-spline approximation, detailing the corresponding algorithm employing the EM algorithm. Section 3 elaborates on the E-step in the EM algorithm, facilitating the acceleration of our algorithm's convergence. Sections 4 and 5 present comprehensive simulations and real data application, demonstrating the method's robust performance. Finally, we conclude our findings and provide some discussion in Section 6.

    Consider a dataset comprising n individuals. For each i{1,2,,n}, let the true disease status of the i-th individual be denoted by ˜Yi{0,1}, where ˜Yi=1 indicates disease presence, and ˜Yi=0 indicates absence. Additionally, the dataset includes covariate information for each individual, represented as Xi=(Xi1,,Xiqn)TRqn, where Rqn denotes a qn-dimensional real vector space. We assume the number of covariates qn is high-dimensional.

    Let the risk probability for the i-th individual be defined as pi=Pr(˜Yi=1Xi), where i{1,2,,n}. In many cases, the influence of covariates may be nonlinear; imposing linearity can result in inaccurate estimations. This study explores nonlinear scenarios, assuming pi follows a flexible logistic single-index model, expressed as

    Pr(˜Yi=1|Xi)=exp[g(Xiβ)]1+exp[g(Xiβ)], (2.1)

    where β=(β1,β2,,βqn)Rqn represents the unknown parameters, and g() is an unknown smooth function capturing the relationship between covariates and risk probabilities.

    In semiparametric single-index models, the true parameters are generally considered non-identifiable without imposed constraints. To ensure the identifiability of β, we impose a classical constraint: β1=1β122, where β1=(β2,β3,,βqn)Rqn1, and 2 denotes the L2-norm. Note that both the function g() and the coefficient β in the single-index model are unknown. The L2-norm constraint β2=1 is crucial for the identifiability of β as shown by Carroll et al. [28], Zhu et al. [29], Lin et al. [30], Cui et al. [31], and Guo et al. [32]. We assume that the true parameter β is sparse, defining the true model as M={j{1,2,,qn}:βj0}.

    For i{1,2,,n}, ˜Yi follows a Binomial distribution with parameter pi, denoted as ˜YiBinom(1,pi). In traditional single-index model studies, the true status ˜Y={˜Yi,i=1,2,,n}, is directly observable. However, in group testing, ˜Y is unobservable [33]. This paper investigates parameter estimation and statistical inference of single-index models based on group testing data. Moreover, if a group test result is positive, further testing is required to identify infected individuals. These results may depend on shared characteristics, leading to correlations within group test outcomes, complicating the modeling.

    In group testing, we partition n individuals into J groups, denoted as P1,1,P2,1,,PJ,1. Here, Pj,1 represents the initial index set of individuals for the j-th group, ensuring Jj=1Pj,1={1,2,,n}. For j{1,2,,J}, if any testing result for Pj,1 is positive, further testing may be warranted. Define Zj={Zj,l,l=1,2,,Lj} as the set of testing outcomes for the j-th group, where Lj denotes the total number of tests conducted within j-th group. Each Zj,l{0,1}, where Zj,l=0 indicates a negative result and Zj,l=1 indicates a positive result. If Zj,1=0, then Lj=1; otherwise, Lj1. Let Pj={Pj,l,l=1,2,,Lj}, where Pj,l corresponds to the individuals associated with Zj,l. Define ˜Zj={˜Zj,l,l=1,2,,Lj} as the true status corresponding to Zj. The true statuses of individuals determine the group's true status, defined as ˜Zj,l=I(iPj,l˜Yi), where I() denotes the indicator function.

    In practical applications, measurement error of the test kits exists. We define Se=Pr(Zj,l=1˜Zj,l=1) as sensitivity, representing the probability of correctly identifying positive samples, and Sp=Pr(Zj,l=0˜Zj,l=0) as specificity, denoting the probability of correctly identifying negative samples, where l{1,2,,Lj} and j{1,2,,J}. According to the definitions of Se and Sp, given the true status ˜Zj,l, the group's testing results satisfy Zj,l|˜Zj,lBinom(1,Se˜Zj,l(1Sp)1˜Zj,l).

    Our approach is based on two widely accepted fundamental assumptions in group testing. The first assumption is that Se and Sp are independent of group size, supported by various studies [34,35,36,37]. The second assumption posits that, given the true statuses of individuals in the j-th group {˜Yi,iPj,1}, the group's true statuses ˜Zj are mutually independent, as supported by previous research [23,34,35].

    We apply our method to four group testing methods: master pool testing, Dorfman testing, halving testing, and array testing. Figure 1 illustrates the process of four testing methods: (a) Master pool testing, where a group of individuals (e.g., Pj,1 consisting of individuals 1, 2, 3, and 4) is tested as a whole to obtain the group testing result Zj,1; (b) Dorfman testing, where initially the same group testing as in master pool testing is conducted, and if the result of the master pool testing is positive (Zj,1=1), each individual in the group is then tested separately to obtain individual testing results Zj,2, Zj,3, Zj,4, and Zj,5; (c) Halving testing, where the entire group (e.g., Pj,1) is tested as a whole, and if the result is positive (Zj,1=1), the group is divided into two subgroups (e.g., Pj,2 and Pj,3) for subgroup testing, and if the result of subgroup testing is positive (e.g., Zj,2=1), individuals in the positive subgroup are then tested individually; and (d) Array testing, where multiple individuals (e.g., 16 individuals) are arranged in an array for group testing to obtain multiple group testing results such as Zj,1, and if a specific group testing result is positive (e.g., Zj,1=1), further subgroup testing is performed (e.g., obtaining results Zj,2, Zj,3), and if the group testing results for both the row and column where an individual is located are positive (e.g., Zj,3=Zj,4=Zj,7=1), the individuals (e.g., 6-th individual and 10-th individual) are then tested.

    Figure 1.  A flowchart of four group testing procedure.

    Due to the nature of group testing, the true status of individuals, denoted as ˜Y, remains unknown. Our objective is to estimate M, β, and g() based on observed data Z={Zj,j=1,2,,J} and covariate information X=(X1,X2,,Xn)TRn×qn to ascertain individual risk probabilities. The likelihood function based on the observed data Z is defined as

    P(Z|X)=˜Y{0,1}nP(Z|˜Y)P(˜Y|X), (2.2)

    where

    P(Z˜Y)=Jj=1Ljl=1P(Zj,l˜YPj,l),

    and ˜YPj,l={˜Yi,iPj,l} represents the set of true statuses for individuals in Pj,l. Furthermore, the conditional probability P(Zj,l˜YPj,l) is expressed as

    P(Zj,l˜YPj,l)={S˜Zj,le(1Sp)1˜Zj,l}Zj,l{(1Se)˜Zj,lS1˜Zj,lp}1Zj,l.

    The likelihood function for the true disease status ˜Y can be written as

    P(˜Y|X)=ni=1p˜Yii(1pi)1˜Yi.

    Combining this with the logistic single-index model defined in (2.1), we obtain the log-likelihood function for ˜Y:

    lnP(˜Y|X)=ni=1{˜Yig(Xiβ)ln(1+exp[g(Xiβ)])}. (2.3)

    Since the smooth function g() is unknown, we approximate it using B-spline functions. Let the support interval of g() be [a,b]. We partition [a,b] at points a=d0<d1<<dN<b=dN+1 into several segments, referred to as knots or internal nodes. This division generates subintervals Ik=[dk,dk+1) for 0kN1 and IN=[dN,dN+1], ensuring that

    max0kN|dkdk+1|min0kN|dkdk+1|M,

    where M(0,). The B-spline basis functions of order q are denoted as Φ()=(ϕ1(),ϕ2(),,ϕS())RS, with S=N+q. Thus, g() can be approximated as

    g()Ss=1ϕs()γs,

    where γs are the spline coefficients to be estimated [38]. Denote γ=(γ1,γ2,,γS)RS. We approximate g(XTiβ) as

    g(XTiβ)=Φ(Xiβ)γ,

    where Φ(Xiβ)=(ϕ1(Xiβ),ϕ2(Xiβ),,ϕS(Xiβ)). Therefore, we approximate pi by using a spline function, and denote the spline approximation of pi as piB, which is defined as follows:

    piB=exp[Φ(Xiβ)γ]1+exp[Φ(Xiβ)γ]. (2.4)

    In the following, we use the spline approximation piB of pi to construct the log-likelihood function and the objective function in the subsequent EM algorithm. Thus, the log-likelihood function (2.3) for ˜Y can be reformulated as

    lnPB(˜Y|X)=ni=1{˜YiΦ(Xiβ)γln(1+exp[Φ(Xiβ)γ])}.

    Furthermore, the target likelihood function (2.2) can be represented as

    PB(Z|X)=˜Y{0,1}nP(Z|˜Y)PB(˜Y|X).

    By employing spline approximation, we transform the estimation problem of β1 and g() into estimating β1 and γ.

    For high-dimensional group testing data, we aim to estimate β1 using the penalized approach within a single-index model framework. The penalized log-likelihood function is defined as follows:

    lnPB(Z|X)qnj=2Pλ(βj), (2.5)

    where Pλ() is the penalty function and λ is a tuning parameter. We consider three common penalty functions: LASSO [39], SCAD [40], and MCP [41]. Specifically, for LASSO, Pλ(x)=λ|x|. For SCAD, it is defined as

    Pλ(x)={λ|x|if |x|λ,x2+2δλ|x|λ22(δ1)if λ<|x|δλ,(δ+1)λ22if |x|>δλ,

    where δ>2. In MCP, the penalty function is given by

    Pλ(x)={λ|x|x22δif |x|δλ,12δλ2if |x|>δλ,

    with δ>1. The following section will detail the parameter estimation process.

    The penalized log-likelihood function (2.5) lacks the individual latent status ˜Y. The complete data penalized log-likelihood function can be expressed as

    lnPB(Z,˜Y|X)qnj=2Pλ(βj)=lnP(Z|˜Y)+lnPB(˜Y|X)qnj=2Pλ(βj). (2.6)

    Notably, lnP(Z|˜Y) depends solely on known parameters Se and Sp, allowing us to disregard it in computations. The presence of the latent variable ˜Y complicates direct maximization of the complete data penalized log-likelihood function (2.6). Therefore, we employ the EM algorithm, comprising two steps: the Expectation (E) step, and the Maximization (M) step.

    In the E step, given the observed data Z and the parameters from the t-th iteration (β(t)1,γ(t)), calculate the following function:

    S(t)(β1,γ)=E{ni=1{˜YiΦ(Xiβ)γln(1+exp[Φ(Xiβ)γ])}|Z,β(t)1,γ(t)}qnj=2Pλ(βj)=ni=1{w(t)iΦ(Xiβ)γln(1+exp[Φ(Xiβ)γ])}qnj=2Pλ(βj), (2.7)

    where w(t)i=E[˜Yi|Z,γ(t),β(t)1],i=1,2,,n. The calculation of the w(t)i varies among the four grouping testing methods, which will be discussed in Section 3.

    In the M step, we update β(t+1)1 and γ(t+1), respectively. Initially, we update γ(t+1) by maximizing:

    S(t)(β(t)1,γ)=ni=1{w(t)iΦ(Xiβ(t))γln(1+exp[Φ(Xiβ(t))γ])}qnj=2Pλ(β(t)j). (2.8)

    Subsequently, we maximize S(t)(β1,γ(t+1)) to update the parameters β(t+1)1:

    S(t)(β1,γ(t+1))=ni=1{w(t)iΦ(Xiβ)γ(t+1)ln(1+exp[Φ(Xiβ)γ(t+1)])}qnj=2Pλ(βj). (2.9)

    Given that β1 appears in each B-spline basis function ϕ(Xiβ), direct iteration presents challenges. Let ˜g(t)(XTiβ)=Φ(XTiβ)γ(t+1). We apply the approach by Guo et al. [42], approximating ˜g(t)(XTiβ) via a first-order Taylor expansion

    ˜g(t)(XTiβ)˜g(t)(XTiβ(t))+˜g(t)(XTiβ(t))XTiJ(β(t))(β1β(t)1),

    where J(β)=β/β1=(β1/1β122,Iqn1) represents the Jacobian matrix of size qn×(qn1) and Iqn1 denotes the (qn1)-dimensional identity matrix. This approximation is incorporated into S(t)(β1,γ(t+1)) to maximize the expression and update β(t+1)1. Therefore, we approximate S(t)(β1,γ(t+1)) by ˜S(t)(β1,γ(t+1)) as follows:

    ˜S(t)(β1,γ(t+1))=ni=1{w(t)i˜g(t)(Xiβ)ln(1+exp[˜g(t)(Xiβ)])}qnj=2Pλ(βj)=ni=1{w(t)i[˜g(t)(XTiβ(t))+˜g(t)(XTiβ(t))XTiJ(β(t))(β1β(t)1)]ln(1+exp[˜g(t)(XTiβ(t))+˜g(t)(XTiβ(t))XTiJ(β(t))(β1β(t)1)])}qnj=2Pλ(βj). (2.10)

    We employ stochastic gradient descent [43] and coordinate descent [44] to update γ and β, respectively. Let ˆγ and ˆβ1 denote the estimated parameters, and ˆM={j{1,2,,qn}:ˆβj0} represent the estimated model. Furthermore, ˆγ and ˆβ1 can be used to calculate individual risk probabilities and guide subsequent testing strategies. In summary, the EM algorithm offers a structured approach to handle the latent variable ˜Y and estimate model parameters. The detailed steps of this method are summarized in Algorithm 1.

    Algorithm 1: Regularized single-index model for group testing.
    Input: Z, X, tmax and initialization (β(0)1,γ(0)).
    For: t=0,1,2,,tmax

        ● Step 1 (E-step): In the E step, given the parameters (β(t)1,γ(t)) and Z, calculate the conditional expectation S(t)(β1,γ) in (2.7).
        ● Step 2 (M-step): Update the iterative parameters β(t+1)1 and γ(t+1) in two substeps:
            1. Update γ(t+1) by maximizing S(t)(β(t)1,γ) in (2.8).
            2. Update β(t+1)1 by maximizing ˜S(t)(β1,γ(t+1)) in (2.10).

    End for: Repeat steps 1 and 2 until parameters converge or reach the maximum number of iterations tmax.
    Output: The estimates ˆβ1 and ˆγ.

    Implementing Algorithm 1 requires deriving formulas to calculate the conditional expectations of individuals' true statuses. These expressions are essential for the effective application of the EM algorithm in various testing scenarios. Common group testing methods include master pool testing, Dorfman testing, halving testing, and array testing. We have derived the conditional expectation formula of these methods under our methodological framework, which will facilitate our other calculations.

    For master pool testing, samples are divided into J distinct groups, with each sample assigned to only one group, and each group undergoes a single test without subsequent testing. When the i-th individual is assigned to the j-th group, consider two cases for w(t)i:

    While Zj=0,

    w(t)i=P(˜Yi=1,Zj=0)P(Zj=0)=P(Zj=0|˜Yi=1)P(˜Yi=1)P(Zj=0).

    Due to

    P(Zj=1)=P(Zj=1|˜Zj=1)P(˜Zj=1)+P(Zj=1|˜Zj=0)P(˜Zj=0)=Se[1iPj(1p(t)iB)]+(1Sp)iPj(1p(t)iB)=Se+(1SeSp)iPj(1p(t)iB),

    let Δj=Se+(1SeSp)iPj(1p(t)iB), where piB is an approximate result of pi in (2.4). Therefore,

    P(Zj=0)=1[Se+(1SeSp)iPj(1p(t)iB)]=1Δj.

    Then,

    w(t)i=(1Se)p(t)iB1[Se+(1SeSp)iPj(1p(t)iB)]=(1Se)p(t)iB(1Δj).

    While Zj=1,

    w(t)i=P(˜Yi=1|Zj=1)=p(Zj=1|˜Yi=1)P(˜Yi=1)P(Zj=1)=Sep(t)iBSe+(1SeSp)iPj(1p(t)iB)=Sep(t)iBΔj.

    In conclusion,

    w(t)i={P(˜Yi=1|Zj=0)=(1Se)p(t)iB/(1Δj),ifZj=0,P(˜Yi=1|Zj=1)=Sep(t)iB/Δj,ifZj=1.

    We apply our method to four group testing algorithms: master pool testing, Dorfman testing, halving testing, and array testing. For other algorithms, detailed expressions can be found in Appendix C. Using these expressions, we apply the EM algorithm to estimate the model parameters.

    In this section, we assess the performance of the proposed method using simulated datasets. The generation of covariates follows the approach described by Guo et al. [42]. Specifically, covariates XRn×qn are drawn from a truncated multivariate normal distribution. We first generate covariates from N(0,Σ), where ΣRqn×qn and Σij=0.5|ij| for 1i,jqn. These covariates are then truncated to the range (2,2) to obtain X. We consider logistic single-index models to describe pi=Pr(˜Yi=1Xi), with the function g(Xiβ) in the model (2.1) defined as follows,

    Example 4.1. We set n=500 and β=(315.25,2.515.25,0,,0). We consider two scenarios: qn=50 and qn=100. The model is described as follows:

    g(Xiβ)=exp(Xiβ)7.

    Under this setting, the disease prevalence is approximately 8.93%.

    Example 4.2. We set n=1000 and β=(13,13,13,0,,0). We consider two scenarios: qn=100 and qn=500. The model is described as follows:

    g(Xiβ)=Xiβ(1Xiβ)+exp(Xiβ)6.

    In this example, the disease prevalence is approximately 11.41%.

    Example 4.3. We set qn=50 and β=(9181,8181,6181,0,,0). We consider two scenarios: n=500 and n=1000. The model is described as follows:

    g(Xiβ)=Xiβ(1Xiβ)+0.5sin(πXiβ2)6.

    In this example, the disease prevalence is approximately 9.42%.

    Example 4.4. We set qn=100 and β=(0.5,0.5,0.5,0.5,0,,0). Two scenarios are considered: n=750 and n=1000. The model is described as follows:

    g(Xiβ)=Xiβ(1Xiβ)+exp(Xiβ)+0.1sin(πXiβ2)6.

    In this scenario, the disease prevalence is approximately 10.32%.

    In our simulation study, we employed four group testing algorithms: master pool testing (MPT), Dorfman testing (DT), halving testing (HT), and array testing (AT) to evaluate the model. For MPT, DT, and HT, the group size was set to 4, while in AT, individuals were arranged in a 4×4 array. Both sensitivity and specificity were fixed at Se=Sp=0.98. Based on the methodologies of Fan and Li [40] and Zhang [41], we set δ values of 3.7 and 2 for SCAD and MCP, respectively. Each scenario was simulated B=100 times, where ˆβ[b] denotes the estimated β in the b-th simulation, with b{1,2,,B}.

    Following the approach of Guan et al. [45], we measured the estimation accuracy of ˆβj (j=1,2,3,4) using the mean squared error (MSE), defined as

    MSE=1BBb=1(βjˆβ[b]j)2,j=1,2,3,4.

    We utilized average mean squared error (AMSE) to assess the accuracy of ˆβ, consistent with methods employed by Wang and Yang [46]:

    AMSE=1BqnBb=1βˆβ[b]22.

    Average mean absolute error (AMAE) was used to evaluate the estimation performance of g() and individual risk probabilities pi [42]. The AMAE for g() is defined as

    AMAEg=1BnBb=1ni=1|g(Xiβ)g(Xiˆβ[b])|,

    while the AMAE for ˆp[b]i=eg(Xiˆβ[b])1+eg(Xiˆβ[b]) is defined as

    AMAEp=1BnBb=1ni=1|piˆp[b]i|,

    where pi=g(Xiβ)1+eg(Xiβ).

    To evaluate variable selection performance, we employed true positive rate (TPR) and false positive rate (FPR). The FPR represents the proportion of false positives among identified predictors, while the TPR indicates the proportion of true positives among relevant predictors. Table 1 shows the results of variable selection. TPR and FPR are defined as follows:

    TPR=TPTP+FN,FPR=FPFP+TN.
    Table 1.  Four outcomes of variable selection.
    Metric Implication
    True positive (TP) Actual positive and predicted positive
    False positive (FP) Actual negative and predicted positive
    False negative (FN) Actual positive and predicted negative
    True negative (TN) Actual negative and predicted negative

     | Show Table
    DownLoad: CSV

    The simulation results are summarized in Tables 2 to 5. As shown in the tables, the TPR was approximately 97%, with a very low FPR. The result shows that the probability that M is contained in ˆM is very close to 1. This demonstrates the notable performance of our model in variable selection. The AMAE for g() and pi was approximately 0.5 and 0.01, respectively. This shows that we have accurately captured the form of the unknown smooth function g() and are able to precisely predict the individual risk probability. The AMSE for the model parameters β was around 104, while the AMSE for significant variables βj was approximately 103. This demonstrates the accuracy of our model in parameter estimation.

    Table 2.  Simulation results for Example 4.1.
    AMAE AMSE MSE
    Model Setting Test Penalty TPR FPR g() Prob β β1 β2
    Example 4.1 (n=500) qn=50 MPT MCP 0.980 0.061 0.325 0.011 0.0003 0.0022 0.0015
    HT 0.985 0.003 0.413 0.007 0.0002 0.0068 0.0025
    DT 0.968 0.062 0.295 0.011 0.0003 0.0001 0.0004
    AT 0.987 0.035 0.388 0.009 0.0004 0.0019 0.0009
    MPT SCAD 0.967 0.060 0.508 0.014 0.0003 0.0012 0.0021
    HT 0.988 0.001 0.479 0.008 0.0001 0.0021 0.0023
    DT 0.980 0.051 0.511 0.012 0.0003 0.0005 0.0004
    AT 0.974 0.063 0.432 0.009 0.0003 0.0035 0.0024
    MPT LASSO 0.964 0.060 0.337 0.011 0.0003 0.0038 0.0051
    HT 0.986 0.003 0.436 0.006 0.0001 0.0003 0.0002
    DT 1.000 0.029 0.522 0.013 0.0001 0.0004 0.0003
    AT 0.981 0.034 0.320 0.007 0.0001 0.0006 0.0008
    qn=100 MPT MCP 0.985 0.010 0.511 0.009 0.0001 0.0004 0.0004
    HT 0.973 0.038 0.374 0.009 0.0002 0.0022 0.0033
    DT 0.986 0.023 0.338 0.010 0.0001 0.0004 0.0001
    AT 0.982 0.023 0.470 0.005 0.0001 0.0004 0.0005
    MPT SCAD 0.987 0.031 0.265 0.013 0.0002 0.0002 0.0003
    HT 0.988 0.038 0.458 0.015 0.0005 0.0017 0.0001
    DT 0.978 0.051 0.451 0.011 0.0001 0.0008 0.0004
    AT 0.985 0.010 0.422 0.009 0.0001 0.0058 0.0047
    MPT LASSO 0.987 0.026 0.478 0.010 0.0001 0.0008 0.0012
    HT 0.966 0.044 0.364 0.011 0.0003 0.0029 0.0052
    DT 0.984 0.031 0.503 0.012 0.0001 0.0001 0.0003
    AT 0.987 0.031 0.401 0.008 0.0001 0.0016 0.0014

     | Show Table
    DownLoad: CSV
    Table 3.  Simulation results for Example 4.2.
    AMAE AMSE MSE
    Model Setting Test Penalty TPR FPR g() Prob β β1 β2 β3
    Example 4.2 (n=1000) qn=100 MPT MCP 0.980 0.001 0.569 0.011 0.0001 0.0006 0.0025 0.0073
    HT 0.974 0.001 0.626 0.012 0.0003 0.0059 0.0167 0.0054
    DT 0.971 0.027 0.601 0.012 0.0002 0.0035 0.0022 0.0019
    AT 0.986 0.010 0.582 0.011 0.0001 0.0059 0.0011 0.0032
    MPT SCAD 0.970 0.019 0.551 0.010 0.0014 0.0006 0.0011
    HT 0.964 0.029 0.588 0.011 0.0001 0.0021 0.0041 0.0001
    DT 0.972 0.021 0.572 0.011 0.0001 0.0037 0.0002 0.0034
    AT 0.971 0.021 0.575 0.011 0.0001 0.0057 0.0005 0.0042
    MPT LASSO 0.974 0.048 0.553 0.010 0.0001 0.0000 0.0002 0.0003
    HT 0.972 0.056 0.601 0.010 0.0001 0.0003 0.0001 0.0006
    DT 0.982 0.021 0.574 0.010 0.0001 0.0035 0.0001 0.0042
    AT 0.986 0.010 0.584 0.011 0.0001 0.0041 0.0002 0.0056
    qn=500 MPT MCP 0.964 0.011 0.562 0.013 0.0001 0.0005 0.0015 0.0042
    HT 0.972 0.010 0.670 0.018 0.0001 0.0056 0.0001 0.0115
    DT 0.987 0.011 0.567 0.012 0.0044 0.0003 0.0058
    AT 0.986 0.020 0.669 0.015 0.0001 0.0022 0.0108 0.0012
    MPT SCAD 0.965 0.014 0.515 0.010 0.0001 0.0003 0.0055 0.0045
    HT 0.968 0.018 0.547 0.015 0.0001 0.0023 0.0112 0.0069
    DT 0.989 0.007 0.534 0.011 0.0001 0.0048 0.0001 0.0047
    AT 0.985 0.005 0.608 0.010 0.0042 0.0021 0.0007
    MPT LASSO 0.978 0.006 0.536 0.012 0.0001 0.0013 0.0132 0.0104
    HT 0.970 0.002 0.644 0.015 0.0001 0.0000 0.0092 0.0126
    DT 0.987 0.005 0.545 0.012 0.0015 0.0007 0.0019
    AT 0.981 0.002 0.526 0.012 0.0011 0.0093 0.0045
    Symbol indicates value smaller than 0.0001.

     | Show Table
    DownLoad: CSV
    Table 4.  Simulation results for Example 4.3.
    AMAE AMSE MSE
    Model Setting Test Penalty TPR FPR g() Prob β β1 β2 β3
    Example 4.3 (qn=50) n=500 MPT MCP 0.951 0.103 0.466 0.019 0.0003 0.0003 0.0009 0.0011
    HT 0.966 0.091 0.571 0.021 0.0005 0.0007 0.0036 0.0045
    DT 0.982 0.043 0.360 0.006 0.0001 0.0002 0.0001 0.0001
    AT 0.981 0.021 0.464 0.012 0.0001 0.0005 0.0009 0.0006
    MPT SCAD 0.957 0.139 0.527 0.023 0.0005 0.0001 0.0031 0.0098
    HT 0.968 0.082 0.433 0.020 0.0004 0.0006 0.0001 0.0003
    DT 0.954 0.140 0.411 0.013 0.0002 0.0011 0.0018 0.0012
    AT 0.972 0.064 0.793 0.018 0.0002 0.0038 0.0021 0.0004
    MPT LASSO 0.981 0.024 0.604 0.021 0.0003 0.0042 0.0014 0.0019
    HT 0.983 0.021 0.432 0.026 0.0001 0.0017 0.0005 0.0016
    DT 0.971 0.094 0.470 0.013 0.0002 0.0004 0.0014 0.0023
    AT 0.980 0.061 0.447 0.013 0.0002 0.0002 0.0004 0.0015
    n=1000 MPT MCP 0.988 0.040 0.358 0.015 0.0002 0.0011 0.0024 0.0042
    HT 0.984 0.021 0.399 0.017 0.0006 0.0008 0.0009 0.0013
    DT 0.989 0.000 0.583 0.014 0.0001 0.0001 0.0019 0.0024
    AT 0.985 0.009 0.405 0.013 0.0001 0.0017 0.0041 0.0012
    MPT SCAD 0.989 0.043 0.537 0.016 0.0002 0.0025 0.0004 0.0038
    HT 0.987 0.003 0.512 0.012 0.0001 0.0012 0.0032 0.0031
    DT 0.986 0.003 0.515 0.012 0.0001 0.0001 0.0002 0.0004
    AT 1.000 0.000 0.410 0.013 0.0001 0.0013 0.0022 0.0013
    MPT LASSO 0.988 0.004 0.441 0.011 0.0002 0.0029 0.0012 0.0021
    HT 0.982 0.007 0.326 0.007 0.0001 0.0002 0.0004 0.0002
    DT 0.987 0.008 0.489 0.013 0.0001 0.0008 0.0001 0.0032
    AT 0.977 0.043 0.283 0.007 0.0001 0.0012 0.0024 0.0034

     | Show Table
    DownLoad: CSV
    Table 5.  Simulation results for Example 4.4.
    AMAE AMSE MSE
    Model Setting Test Penalty TPR FPR g() Prob β β1 β2 β3 β4
    Example 4.4 (qn=100) n=750 MPT MCP 0.979 0.053 0.744 0.019 0.0004 0.0028 0.0015 0.0036 0.0076
    HT 0.959 0.100 0.970 0.027 0.0011 0.0024 0.0005 0.0022 0.0018
    DT 0.986 0.035 0.611 0.011 0.0001 0.0001 0.0025 0.0034 0.0016
    AT 0.984 0.043 0.789 0.013 0.0002 0.0012 0.0051 0.0026 0.0012
    MPT SCAD 0.966 0.059 0.723 0.014 0.0003 0.0030 0.0078 0.0081 0.0001
    HT 0.978 0.069 0.576 0.014 0.0002 0.0004 0.0083 0.0052 0.0002
    DT 0.989 0.063 0.698 0.013 0.0003 0.0034 0.0155 0.0011 0.0051
    AT 0.981 0.052 0.671 0.022 0.0005 0.0078 0.0023 0.0085 0.0073
    MPT LASSO 0.977 0.072 0.620 0.014 0.0003 0.0047 0.0041 0.0141 0.0002
    HT 0.964 0.069 0.680 0.015 0.0003 0.0018 0.0071 0.0073 0.0007
    DT 0.986 0.041 0.581 0.016 0.0003 0.0034 0.0090 0.0014 0.0005
    AT 0.984 0.065 0.679 0.016 0.0003 0.0001 0.0095 0.0065 0.0003
    n=1000 MPT MCP 0.967 0.029 0.706 0.015 0.0002 0.0068 0.0097 0.0022 0.0015
    HT 0.986 0.001 0.818 0.012 0.0001 0.0035 0.0061 0.0007 0.0001
    DT 0.987 0.032 0.872 0.012 0.0002 0.0007 0.0074 0.0017 0.0016
    AT 0.988 0.037 0.800 0.027 0.0002 0.0013 0.0061 0.0002 0.0025
    MPT SCAD 0.961 0.059 0.724 0.015 0.0002 0.0081 0.0087 0.0030 0.0006
    HT 0.974 0.010 0.779 0.013 0.0001 0.0036 0.0066 0.0012 0.0001
    DT 0.983 0.071 0.405 0.010 0.0001 0.0013 0.0059 0.0008 0.0001
    AT 0.981 0.041 0.422 0.010 0.0001 0.0003 0.0009 0.0020 0.0011
    MPT LASSO 0.977 0.029 0.819 0.017 0.0004 0.0057 0.0012 0.0083 0.0079
    HT 0.951 0.004 0.545 0.043 0.0001 0.0093 0.0004 0.0004 0.0025
    DT 0.985 0.021 0.408 0.009 0.0001 0.0002 0.0011 0.0026 0.0007
    AT 0.989 0.008 0.581 0.010 0.0001 0.0042 0.0003 0.0004 0.0008

     | Show Table
    DownLoad: CSV

    We set up two different sample sizes (n) or covariate scenarios (qn) for each example. Results of Examples 4.1 and 4.2 suggest that our method maintains robust estimation performance as dimensionality increases in small sample scenarios. Furthermore, results of Examples 4.3 and 4.4 demonstrate that estimation accuracy improves with increased sample size. Figure 2 illustrates the estimation performance of g() and individual risk probabilities pi, confirming our method's efficacy in estimating unknown functions and risk probabilities.

    Figure 2.  Estimation of unknown function (a) and risk probability (b) in Example 4.2, with n=1000 and qn=500, using MPT and the SCAD penalty function.

    Moreover, we aim to evaluate our method's performance under different group sizes. Using Example 4.4, we investigated group sizes of 2, 4, 6, and 8 with the Dorfman algorithm and LASSO penalty function. Results are presented in Table 6, reporting the means of ˆβj for j=1,2,3,4. The simulation results indicate that our method consistently delivers strong estimation performance across various group sizes. At the same time, we set up comparative experiments with different Se and Sp, and the simulation results are shown in Tables 8 to 11 in Appendix A. As shown in these tables, our model maintains a certain level of stability, ensuring that M is still contained within ˆM.

    Table 6.  Simulation results for different group size.
    AMAE MEAN
    Model Setting Group Size TPR FPR g() Prob β1 β2 β3 β4
    Example 4 (qn=100) n=750 2 0.970 0.015 0.611 0.011 0.452 0.465 0.478 0.460
    4 0.965 0.020 0.581 0.016 0.445 0.405 0.464 0.477
    6 0.986 0.041 0.627 0.009 0.519 0.497 0.487 0.495
    8 0.973 0.020 0.594 0.012 0.471 0.467 0.484 0.477
    n=1000 2 0.974 0.014 0.447 0.009 0.468 0.484 0.473 0.485
    4 0.964 0.018 0.408 0.009 0.489 0.468 0.450 0.474
    6 0.985 0.021 0.440 0.011 0.486 0.478 0.443 0.471
    8 0.974 0.010 0.466 0.009 0.494 0.494 0.447 0.437

     | Show Table
    DownLoad: CSV

    In this section, we validate the effectiveness of our method using the diabetes dataset from the National Health and Nutrition Examination Survey (NHANES) conducted between 1999 and 2004. NHANES is a probability-based cross-sectional survey representing the U.S. population, collecting demographic, health history, and behavioral information through household interviews. Participants were also invited to equip mobile examination centers for detailed physical, psychological, and laboratory assessments. The dataset is accessible at https://wwwn.cdc.gov/Nchs/Nhanes/.

    The dataset comprises n=5515 records and 17 variables, categorizing individuals as diabetic or non-diabetic. Covariates include age (X1), waist circumference (X2), BMI (X3), height (X4), weight (X5), smoking age (X6), alcohol use (X7), leg length (X8), total cholesterol (X9), hypertension (X10), education level (X11), household income (X12), family history (X13), physical activity (X14), gender (X15), and race (X16). Notably, nominal variables from X10 to X16 are transformed using one-hot encoding, resulting in qn=47 covariates per individual. The first nine variables are continuous, while the remainder are binary. A detailed explanation of the variables as well as the content of the questionnaire can be found at https://wwwn.cdc.gov/Nchs/Nhanes/search/default.aspx. For convenience, the nominal variables are explained in Table 12. in Appendix B.

    For i{1,2,,n}, we define ˜Yi=1 for diabetes and ˜Yi=0 for non-diabetes. Individual covariate information is represented as Xi=(Xi1,Xi2,,Xiqn). We construct the following single-index model for the probability of diabetes risk for the i-th individual:

    Pr(˜Yi=1|Xi)=exp[g(Xiβ)]1+exp[g(Xiβ)],

    where the smooth function g() is unknown, and our objective is to estimate the coefficients β.

    To verify the accuracy of our method, we compare the results with those obtained from two other methods. The first method is penalized logistic regression (PLR), which uses the true individual status, ˜Yi. This method is implemented using the R package "glmnet". The second method is the adaptive elastic net for group testing (aenetgt) data, as introduced by Gregory et al. [23]. This approach utilizes group testing data and employs a penalized Expectation-Maximization (EM) algorithm to fit an adaptive elastic net logistic regression model. The R package "aenetgt" is used for implementation. We generate Dorfman group testing data with a group size of 6, setting both sensitivity and specificity at Se=Sp=0.98.

    To ensure comparability, we adhere to the standardization techniques referenced in Cui et al. [31]. First, we center the covariates to facilitate the comparison of relative effects across different explanatory variables. Second, we normalize the PLR and aenetgt coefficients by dividing them by their L2-norm, as follows:

    ˆβnormPLR=ˆβPLRˆβPLR2,ˆβnormaenet=ˆβaenetˆβaenet2,

    thereby obtaining coefficients with unit norm. This enables a comparison of regression coefficients from PLR, aenetgt, and the single-index group testing model.

    The estimated coefficients from the three models are summarized in Table 7, and the parameter estimation of our method is denoted as ˆβour. In this study, the estimated coefficients for age, ˆβnormPLR and ˆβour, are 0.280 and 0.307, respectively, indicating that the risk of diabetes increases with age, consistent with the findings of Turi et al. [47]. However, the coefficient ˆβnormaenet is close to zero. For waist circumference, the coefficients ˆβnormPLR, ˆβour, and ˆβnormaenet are 0.178, 0.194, and 0.271, respectively, suggesting a positive association between waist circumference and diabetes risk, which is supported by Bai et al. [48] and Snijder et al. [49]. In addition, all three methods also identified leg length [50], hypertension [51], race [52], family history [53], and sex [54] as variables associated with diabetes. These covariates are widely recognized as being related to diabetes in the biomedical field [55].

    Table 7.  Estimated coefficients for the real data model.
    Variable ˆβnormPLR ˆβour ˆβnormaenet Variable ˆβnormPLR ˆβour ˆβnormaenet Variable ˆβnormPLR ˆβour ˆβnormaenet
    age 0.280 0.307 -0.085 Family history Household income
    waist circumference 0.178 0.194 0.271 family history1 0.000 0.000 0.000 household income1 0.000 0.000 0.000
    BMI 0.000 0.000 0.000 family history2 -0.492 -0.567 -0.466 household income2 0.024 0.000 0.000
    height 0.000 0.000 0.000 family history9 0.000 0.000 0.000 household income3 0.000 0.000 0.000
    weight 0.000 0.000 0.000 Physical activity household income4 0.000 -0.069 0.000
    smoking age 0.000 0.007 0.000 physical activity1 0.000 0.056 0.000 household income5 0.000 0.000 0.000
    alcohol use 0.009 0.013 0.000 physical activity2 -0.086 -0.018 0.000 household income6 0.000 0.000 0.000
    leg length -0.048 -0.100 -0.043 physical activity3 -0.134 -0.039 0.000 household income7 0.000 0.000 0.000
    total cholesterol 0.000 0.000 0.000 physical activity4 -0.088 0.000 0.000 household income8 0.001 0.065 0.000
    Hypertension physical activity9 0.000 0.000 0.000 household income9 0.000 0.000 0.000
    hypertension1 0.000 0.000 0.000 Sex household income10 0.000 0.000 0.000
    hypertension2 -0.350 -0.372 -0.641 sex1 -0.010 0.000 0.000 household income11 0.000 0.000 0.000
    Education sex2 -0.237 -0.225 -0.424 household income12 0.000 0.000 0.000
    education1 0.000 0.000 0.000 race household income13 0.000 0.000 0.000
    education2 0.000 0.000 0.000 race1 0.000 0.000 0.000 household income77 0.000 0.231 0.000
    education3 0.000 0.000 0.000 race2 -0.019 -0.073 0.000 household income99 0.000 0.000 0.000
    education4 0.000 0.000 0.000 race3 -0.399 -0.380 -0.330
    education5 -0.014 -0.052 0.000 race4 0.000 0.000 0.000
    education7 -0.523 -0.335 0.000 race5 0.000 0.124 0.000

     | Show Table
    DownLoad: CSV

    We found that the covariable physical activity is associated with diabetes, but the aenetgt method failed to identify this association. The results of a study by Yu et al. [55], which used the same dataset as ours, are consistent with this finding. In addition, we found that education level was also a covariable associated with diabetes (ˆβnormPLR and ˆβour are -0.523 and -0.335). Evidence for this association can also be found in the study by Aldossari et al. [56], and in this dataset, the probability that these participants will not develop diabetes is 100%. We also identified that household income is associated with diabetes, which is consistent with the study by Yen et al. [57]. In this dataset, the probability of developing diabetes for those who refused to answer about their household income is 60%. Furthermore, our model yields results similar to those obtained by the PLR method, which uses individual observations (˜Y), suggesting that our method is able to extract information from group observations.

    This study presents a group testing framework based on a logistic regression single-index model for disease screening in low-prevalence environments. By employing B-splines to estimate unknown functions and incorporating penalty functions, our approach achieves high flexibility in capturing the relationships between covariates and individual risk probabilities while accurately identifying important variables. To address potential computational challenges in individual disease status estimation, we implemented an iterative EM algorithm for model estimation. Our simulation experiments demonstrate the proposed method's performance in high-dimensional covariate contexts with limited sample sizes, while application to real data confirms its efficacy. Our framework offers a unified approach for various group testing methods, showcasing its practical application value.

    Despite these promising outcomes, our study acknowledges several limitations. First, our model assumes that sensitivity and specificity of testing are independent of group size, which may not always hold in practical applications. Second, data quality and variations in the testing population can impact the model's applicability. Therefore, exploring how to integrate prior information to enhance model accuracy and practical value remains a critical research direction. Furthermore, the potential high dimensionality of individual covariates poses significant challenges, necessitating the development of models capable of handling ultra-high-dimensional data.

    Future research could explore the following directions. Firstly, examining model performance under varying group testing configurations, such as changes in testing errors and group sizes, could yield valuable insights. Secondly, investigating methods to incorporate additional prior knowledge to improve estimation accuracy is a worthwhile endeavor. Additionally, considering computational efficiency, developing faster algorithms for processing large-scale datasets will be a key focus for future work.

    Changfu Yang: Methodolog, formal analysis, writing-original draft; Wenxin Zhou: Methodology, formal analysis; Wenjun Xiong: Conceptualization, methodology, writing-original draft, funding acquisition; Junjian Zhang: Conceptualization, methodology, writing-review and editing, funding acquisition; Juan Ding: Conceptualization, formal analysis, writing-review and editin, funding acquisition. All authors have read and approved the final version of the manuscript for publication.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was supported by the National Natural Science Foundation of China (Grant Nos. 12361055, 11801102), Guangxi Natural Science Foundation (2021GXNSFAA220054), and the Fundamental Research Funds for the Central Universities (B240201095).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.

    In this part, we tested the performance of four examples at different sensitivity and specificity, using the Dofman algorithm and the LASSO penalty function. The simulation results are shown in Tables 8 to 11.

    Table 8.  Example 4.1: Simulation results with different sensitivity and specificity settings.
    AMAE AMSE MSE
    Model Setting (Se,Sp) TPR FPR g() Prob β β1 β2
    Example 4.1 (qn=50) n=500 (0.98, 0.98) 1.000 0.029 0.522 0.013 0.0001 0.0004 0.0003
    (0.95, 0.95) 0.987 0.020 0.474 0.011 0.0001 0.0003 0.0003
    (0.90, 0.90) 0.982 0.036 0.532 0.011 0.0001 0.0006 0.0007
    (0.85, 0.85) 0.984 0.040 0.578 0.016 0.0003 0.0001 0.0002

     | Show Table
    DownLoad: CSV
    Table 9.  Example 4.2: Simulation results with different sensitivity and specificity settings.
    AMAE AMSE MSE
    Model Setting (Se,Sp) TPR FPR g() Prob β β1 β2 β3
    Example 4.2 (qn=100) n=1000 (0.98, 0.98) 0.982 0.021 0.574 0.010 0.0001 0.0035 0.0001 0.0042
    (0.95, 0.95) 0.975 0.030 0.612 0.011 0.0001 0.0047 0.0001 0.0069
    (0.90, 0.90) 0.978 0.020 0.556 0.012 0.0001 0.0023 0.0002 0.0049
    (0.85, 0.85) 0.965 0.020 0.717 0.016 0.0004 0.0158 0.0002 0.0212

     | Show Table
    DownLoad: CSV
    Table 10.  Example 4.3: Simulation results with different sensitivity and specificity settings.
    AMAE AMSE MSE
    Model Setting (Se,Sp) TPR FPR g() Prob β β1 β2 β3
    Example 4.3 (qn=50) n=1000 (0.98, 0.98) 0.987 0.008 0.489 0.013 0.0001 0.0008 0.0001 0.0032
    (0.95, 0.95) 0.971 0.064 0.404 0.011 0.0003 0.0005 0.0033 0.0085
    (0.90, 0.90) 0.963 0.048 0.465 0.011 0.0001 0.0002 0.0012 0.0055
    (0.85, 0.85) 0.966 0.018 0.377 0.015 0.0004 0.0016 0.0023 0.0007

     | Show Table
    DownLoad: CSV
    Table 11.  Example 4.4: Simulation results with different sensitivity and specificity settings.
    AMAE AMSE MSE
    Model Setting (Se,Sp) TPR FPR g() Prob β β1 β2 β3 β4
    Example 4.4 (qn=100) n=750 (0.98, 0.98) 0.986 0.041 0.581 0.016 0.0003 0.0034 0.0090 0.0014 0.0005
    (0.95, 0.95) 0.981 0.026 0.534 0.018 0.0001 0.0016 0.0045 0.0018 0.0005
    (0.90, 0.90) 0.974 0.018 0.546 0.016 0.0002 0.0004 0.0024 0.0014 0.0028
    (0.85, 0.85) 0.976 0.024 0.539 0.011 0.0002 0.0047 0.0085 0.0004 0.0039

     | Show Table
    DownLoad: CSV
    Table 12.  Meaning of the nominal variable.
    Variable Implication Variable Implication
    Hypertension circumstance Family history of diabetes
    hypertension1 Have a history of hypertension family history1 Blood relatives with diabetes
    hypertension2 No history of hypertension family history2 Blood relatives do not have diabetes
    Education level family history9 Not known if any blood relatives have diabetes
    education1 Less Than 9th Grade Physical activity
    education2 9 - 11th Grade (Includes 12th grade with no diploma) physical activity1 Sit during the day and do not walk about very much
    education3 High School Grad/GED or Equivalent physical activity2 Stand or walk about a lot during the day, but do not have to carry or lift things very often
    education4 Some College or AA degree physical activity3 Lift light load or has to climb stairs or hills often
    education5 College Graduate or above physical activity4 Do heavy work or carry heavy loads
    education7 Refuse to answer about the level of education physical activity9 Don't know physical activity level
    Household income Sex
    household income1 0 to 4,999 fanxiexian_myfh sex1 Male
    household income2 5,000 to 9,999 fanxiexian_myfh sex2 Female
    household income3 10,000 to 14,999 fanxiexian_myfh Race/Ethnicity
    household income4 15,000 to 19,999 fanxiexian_myfh race1 Mexican American
    household income5 20,000 to 24,999 fanxiexian_myfh race2 Other Hispanic
    household income6 25,000 to 34,999 fanxiexian_myfh race3 Non - Hispanic White
    household income7 35,000 to 44,999 fanxiexian_myfh race4 Non - Hispanic Black
    household income8 45,000 to 54,999 fanxiexian_myfh race5 Other Race - Including Multi - Racial
    household income9 55,000 to 64,999 fanxiexian_myfh
    household income10 65,000 to 74,999 fanxiexian_myfh
    household income11 75,000 and Over fanxiexian_myfh
    household income12 Over 20,000 fanxiexian_myfh
    household income13 Under 20,000 fanxiexian_myfh
    household income77 Refusal to answer about household income
    household income99 Don't know household income

     | Show Table
    DownLoad: CSV

    In this part, we derive the conditional expectation formulas for Dorfman testing, halving testing, and array testing within the framework of our method. Before proceeding, it is necessary to clarify some notations. Let Pj{i} represent the set of individuals in Pj excluding the i-th individual, and |Pj| denotes the number of individuals in Pj. Let Yi represent the test result of the i-th individual and YPj,l={Yi,iPj,l} represent the set of testing results of individuals in Pj,l.

    If the initial group testing result is negative, no re-testing is performed. However, if Zj,1=1, each individual in the group needs to undergo a separate re-testing.

    1) When Zj,1=0, the result is the same as the master poor testing:

    w(t)i,0=P(˜Yi=1,Zj,1=0)P(Zj,1=0)=(1Se)p(t)iB1[Se+(1SeSp)iPj(1p(t)iB)].

    2) When Zj,1=1, each individual in the group must undergo a separate re-test. In total, the group has undergone |Pj|+1 tests.

    w(t)i,1=P(˜Yi=1,Zj,1,YPj)P(Zj,1,YPj)=P(˜Yi=1)P(Zj,1,YPj|˜Yi=1)P(Zj,1,YPj).

    The denominator is

    P(Zj,1,YPj)=˜YPjP(Zj,1,YPj|˜YPj)P(˜YPj)=˜YPjP(Zj,1|˜Zj,1)iPjP(Yi|˜Yi)P(˜Yi)=˜YPj[S˜Zj,1e(1Sp)1˜Zj,1]iPj[SYie(1Se)(1Yi)]˜Yi×[(1Sp)YiS(1Yi)p](1˜Yi)[p(t)iB]˜Yi[1p(t)iB]1˜Yi=˜YPj[S˜Zj,1e(1Sp)1˜Zj,1]iPj[SYie(1Se)(1Yi)p(t)iB]˜Yi×[(1Sp)YiS(1Yi)p(1p(t)iB)](1˜Yi).

    Thus, the numerator is

    P(˜Yi=1,Zj,1,YPj)=P(Zj,1,YPj|˜Yi=1)P(˜Yi=1)=˜YPjiP(Zj,1,YPj|˜Yi=1,˜YPji)P(˜YPji)P(˜Yi=1)=˜YPjiP(Zj,1|˜Zj,1=1)P(Yi|˜Yi=1)iPj{i}P(Yi|˜Yi)P(˜Yi)P(˜Yi=1)=˜YPjiSeSYie(1Se)(1Yi)iPj{i}[SYie(1Se)(1Yi)]˜Yi×[(1Sp)YiS(1Yi)p](1˜Yi)[p(t)iB]˜Yi[1p(t)iB]1˜Yip(t)iB=˜YPjiS1+Yie(1Se)(1Yi)p(t)iB×iPj{i}[SYie(1Se)(1Yi)p(t)iB]˜Yi×[(1Sp)YiS(1Yi)p(1p(t)iB)](1˜Yi).

    Therefore, the final expression is

    w(t)i=Zj,1w(t)i,1+(1Zj,1)w(t)i,0.

    Assume that the maximum number of partitions required during testing is two. Let the test result of the first testing be Zj,1. At this time, the set of all unpartitioned individuals is Pj,1, which contains |Pj| individuals. After the first partition, the partitioning method is to divide into two equal parts, with the two subsets of individuals being Pj,2 and Pj,3, respectively. The responses of the second testing are Zj,2 and Zj,3. There are five types of testing results in halving testing.

    1) When Zj,1=0:

    Only one testing is performed, and the process is the same as master pool testing. Since the result of one testing is negative, no further partitioning and testing are performed. At this time,

    w(t)i=P(˜Yi=1|Zj,1=0)=P(˜Yi=1,Zj,1=0)P(Zj,1=0)=P(˜Yi=1)P(Zj,1=0|˜Yi=1)P(Zj,1=0)=p(t)iB(1Se)1[Se+(1SeSp)iPj(1p(t)iB)].

    2) When Zj,1=1,Zj,2=0,Zj,3=0:

    That is, the result of the first testing is Zj,1=1. Subsequently, the first partition is performed, dividing into two equal parts Pj,2 and Pj,3. Then, testings are performed on the two sets respectively, with the testing results being Zj,2=Zj,3=0. At this time,

    w(t)i=P(˜Yi=1|Zj,1=1,Zj,2=0,Zj,3=0)=P(Zj,1=1,Zj,2=0,Zj,3=0|˜Yi=1)P(˜Yi=1)P(Zj,1=1,Zj,2=0,Zj,3=0).

    The denominator is

    P(Zj,1=1,Zj,2=0,Zj,3=0)=˜YPj,1P(Zj,1=1,Zj,2=0,Zj,3=0|˜YPj,1)P(˜YPj,2)P(˜YPj,3)=˜YPj,1P(Zj,1=1|˜YPj,1)P(Zj,2=0|˜YPj,2)P(Zj,3=0|˜YPj,3)P(˜YPj,2)P(˜YPj,3)=˜YPj,1[S˜Zj,1e(1Sp)1˜Zj,1][(1Se)˜Zj,2S1˜Zj,2p]iPj,2[p(t)iB]˜Yi[1p(t)iB]1˜Yi×[(1Se)˜Zj,3S1˜Zj,3p]iPj,3[p(t)iB]˜Yi[1p(t)iB]1˜Yi=˜YPj,1[S˜Zj,1e(1Sp)1˜Zj,1]3u=2(1Se)˜Zj,uS1˜Zj,upiPj[p(t)iB]˜Yi[1p(t)iB]1˜Yi.

    Since the placement of the i-th individual in the sets Pj,2 and Pj,3 is symmetric, assume that i-th individual is placed in the set Pj,2. Then, the numerator is

    P(Zj,1=1,Zj,2=0,Zj,3=0,˜Yi=1)=P(Zj,1=1,Zj,2=0,Zj,3=0|˜Yi=1)P(˜Yi=1)=˜YPjiP(Zj,1=1,Zj,2=0,Zj,3=0|˜Yi=1,˜YPj,2)×P(˜YPj,2i)P(˜YPj,3)P(˜Yi=1)=˜YPjiP(Zj,1=1|˜Zj,1=1)P(Zj,2=0|˜Zj,2=1)P(Zj,3=0|˜Zj,3)×P(˜YPj,2i)P(˜YPj,3)P(˜Yi=1)=˜YPjiSe(1Se)iPj,2{i}[p(t)iB]˜Yi[1p(t)iB]1˜Yi(1Se)˜Zj,3S1˜Zj,3piPj,3[p(t)iB]˜Yi[1p(t)iB]1˜Yip(t)iB=˜YPjiSe(1Se)1+˜Zj,3S1˜Zj,3pp(t)iBiPj{i}[p(t)iB]˜Yi[1p(t)iB]1˜Yi.

    3) When Zj,1=1,Zj,2=0,Zj,3=1:

    At this time, the second partitions are performed. The first partition divides all individuals into two sets, Pj,2 and Pj,3, with testing results Zj,2=0 and Zj,3=1, respectively. Individual testings are performed separately on the individuals in Pj,3, and the set of testing results is YPj,3. At this time,

    w(t)i=P(˜Yi=1|Zj,1=1,Zj,2=0,Zj,3=1,YPj,3)=P(Zj,1=1,Zj,2=0,Zj,3=1,YPj,3|˜Yi=1)P(˜Yi=1)P(Zj,1=1,Zj,2=0,Zj,3=1,YPj,3).

    The denominator is

    P(Zj,1=1,Zj,2=0,Zj,3=1,YPj,3)=˜YPjP(Zj,1=1,Zj,2=0,Zj,3=1,YPj,3|˜YPj,2,˜YPj,3)P(˜YPj,2)P(˜YPj,3)=˜YPjP(Zj,1=1|˜YPj)P(Zj,2=0|˜YPj,2)P(Zj,3=1|˜YPj,3)×P(˜YPj,3)P(˜YPj,2)P(YPj,3|˜YPj,3)=˜YPjP(Zj,1=1|˜Zj,1)P(Zj,2=0|˜Zj,2)P(Zj,3=1|˜Zj,3)×iPj,3P(Yi|˜Yi)P(˜YPj,2)P(˜YPj,3)=˜YPj[S˜Zj,1e(1Sp)1˜Zj,1][(1Se)˜Zj,2S1˜Zj,2p][S˜Zj,3e(1Sp)1˜Zj,3]×iPj,2[p(t)iB]˜Yi[1p(t)iB]1˜YiiPj,3[p(t)iB]˜Yi[1p(t)iB]1˜Yi×iPj,3[SYie(1Se)1Yi]˜Yi[(1Sp)YiS1Yip]1˜Yi=˜YPj[S˜Zj,1+˜Zj,3e(1Sp)2˜Zj,1˜Zj,3][(1Se)˜Zj,2S1˜Zj,2p]×iPj[p(t)iB]˜Yi[1p(t)iB]1˜YiiPj,3[SYie(1Se)1Yi]˜Yi[(1Sp)YiS1Yip]1˜Yi.

    Since an i -th individual may belong to either set \mathcal{P}_{j, 2} or \mathcal{P}_{j, 3} , the numerator is discussed accordingly.

    (a) Assume that i -th individual belongs to set \mathcal{P}_{j, 2} . Then, the numerator is

    \begin{align*} &P(\tilde{Y}_i = 1, Z_{j, 1} = 1, Z_{j, 2} = 0, Z_{j, 3} = 1, \mathcal{Y}_{\mathcal{P}_{j, 3}})\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}}P(Z_{j, 1} = 1, Z_{j, 2} = 0, Z_{j, 3} = 1, \mathcal{Y}_{\mathcal{P}_{j, 3}}|\tilde{Y}_i = 1, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2} \setminus i}, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3}}) \\ &\times P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2} \setminus i}, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3}})P(\tilde{Y}_i = 1)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}}P(Z_{j, 1} = 1|\tilde{Z}_{j, 1} = 1)P(Z_{j, 2} = 0|\tilde{Z}_{j, 2} = 1)P(Z_{j, 3} = 1|\tilde{Z}_{j, 3})\\ &\times P(\mathcal{Y}_{\mathcal{P}_{j, 3}}|\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3}})P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2} \setminus i})P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3}})P(\tilde{Y}_i = 1)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}}S_e(1-S_e) S_{e}^{\tilde{Z}_{j, 3}}(1-S_p)^{1-\tilde{Z}_{j, 3}} \prod\limits_{i\in \mathcal{P}_{j, 2} \setminus \{i\}} \left [p_{iB}^{(t)}\right ]^{\tilde{Y}_{i}} \left [1-p_{iB}^{(t)}\right ]^{1-\tilde{Y}_{i}}\\ &\times \prod\limits_{i\in \mathcal{P}_{j, 3}}\left [p_{iB}^{(t)}\right ]^{\tilde{Y}_{i}}\left [1-p_{iB}^{(t)}\right ]^{1-\tilde{Y}_{i}}p_{iB}^{(t)}\\ & \times \prod\limits_{i\in \mathcal{P}_{j, 3}} \left [S_e^{Y_{i}}(1-S_e)^{1-{Y_{i}}}\right ]^{\tilde{Y}_{i}} \left [(1-S_p)^{Y_{i}}S_p^{1-Y_{i}}\right ]^{1-{\tilde{Y}_{i}}} . \end{align*}

    (b) Assume that i -th individual belongs to set \mathcal{P}_{j, 3} . Then, the numerator is

    \begin{align*} & P(\tilde{Y}_i = 1, Z_{j, 1} = 1, Z_{j, 2} = 0, Z_{j, 3} = 1, \mathcal{Y}_{\mathcal{P}_{j, 3}} ) \\ = & \sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}} P(Z_{j, 1} = 1, Z_{j, 2} = 0, Z_{j, 3} = 1, \mathcal{Y}_{\mathcal{P}_{j, 3}} | \tilde{Y}_i = 1, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2}}, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3} \setminus i} ) \\ &\times P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2}}, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3} \setminus i}) P(\tilde{Y}_i = 1) \\ = & \sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}} P(Z_{j, 1} = 1 | \tilde{Z}_{j, 1} = 1) P(Z_{j, 2} = 0 | \tilde{Z}_{j, 2}) P(Z_{j, 3} = 1 | \tilde{Z}_{j, 3} = 1) \\ &\times P(\mathcal{Y}_{\mathcal{P}_{j, 3} \setminus i} | \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3} \setminus i}) P(Y_i | \tilde{Y}_i = 1) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2}}) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3} \ \setminus i}) P(\tilde{Y}_i = 1) \\ = & \sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}} S_e^2 (1-S_e)^{\tilde{Z}_{j, 2}} S_p^{1-\tilde{Z}_{j, 2}} p_{iB}^{(t)} S_e^{Y_i} (1-S_e)^{1-Y_i} \\ & \times \prod\limits_{i\in \mathcal{P}_{j, 3} \setminus \{i\}} \left[ S_e^{Y_{i}}(1-S_e)^{1-{Y_{i}}} \right]^{\tilde{Y}_{i}} \left[ (1-S_p)^{Y_{i}} S_p^{1-Y_{i}} \right]^{1-{\tilde{Y}_{i}}} \\ & \times \prod\limits_{i\in \mathcal{P}_j \setminus \{i\}} \left[ p_{iB}^{(t)} \right]^{\tilde{Y}_{i}} \left[ 1-p_{iB}^{(t)} \right]^{1-\tilde{Y}_{i}} . \end{align*}

    4) When Z_{j, 1} = 1, Z_{j, 2} = 1 , and Z_{j, 3} = 0 , the process is the same as when Z_{j, 1} = 1, Z_{j, 2} = 0 , and Z_{j, 3} = 1 , and the numerator needs to be discussed accordingly. At this time,

    \begin{align*} {w}^{(t)}_i & = P(\tilde{Y}_i = 1 | Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 0, \mathcal{Y}_{\mathcal{P}_{j, 2}} ) \\ & = \frac{ P( Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 0, \mathcal{Y}_{\mathcal{P}_{j, 2}} | \tilde{Y}_i = 1 ) P(\tilde{Y}_i = 1) } { P( Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 0, \mathcal{Y}_{\mathcal{P}_{j, 2}} ) }. \end{align*}

    First, the denominator is

    \begin{align*} &P(Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 0, \mathcal{Y}_{\mathcal{P}_{j, 2}})\\ = &\sum\limits_{\tilde{\mathcal{Y}}} P(Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 0, \mathcal{Y}_{\mathcal{P}_{j, 2}} | \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2}}, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3}} ) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2}}) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3}})\\ = &\sum\limits_{\tilde{\mathcal{Y}}} P(Z_{j, 1} = 1 | \tilde{Z}_{j, 1} ) P(Z_{j, 2} = 1 | \tilde{Z}_{j, 2} ) P(Z_{j, 3} = 0 | \tilde{Z}_{j, 3} ) \\ & \times \prod\limits_{i\in \mathcal{P}_{j, 2}} P(Y_{i} | \tilde{Y}_{i} ) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2}}) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3}})\\ = &\sum\limits_{\tilde{\mathcal{Y}}} S_e^{\tilde{Z}_{j, 1}+\tilde{Z}_{j, 2}} (1-S_p)^{2-\tilde{Z}_{j, 1}-\tilde{Z}_{j, 2}} (1-S_e)^{\tilde{Z}_{j, 3}} S_p^{1-\tilde{Z}_{j, 3}} \\ & \times \prod\limits_{i\in {\mathcal{P}_j}} [ p_{iB}^{(t)} ]^{\tilde{Y}_{i}} [ 1-p_{iB}^{(t)} ]^{1-\tilde{Y}_{i}} \prod\limits_{i\in \mathcal{P}_{j, 2}} [ S_e^{Y_{i}} (1-S_e)^{1-Y_{i}} ]^{\tilde{Y}_{i}} [ (1-S_p)^{Y_{i}} S_p^{1-Y_{i}} ]^{1-\tilde{Y}_{i}} . \end{align*}

    Next, the numerator is discussed.

    (a) Assume that i -th individual belongs to set \mathcal{P}_{j, 2} . Then, the numerator is

    \begin{align*} &P(\tilde{Y}_i = 1, Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 0, \mathcal{Y}_{\mathcal{P}_{j, 2}})\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}} P(Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 0, \mathcal{Y}_{\mathcal{P}_{j, 2}} | \tilde{Y}_i = 1, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2} \setminus i}, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3}} ) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2} \setminus i}, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3}}) P(\tilde{Y}_i = 1)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}} P(Z_{j, 1} = 1 | \tilde{Z}_{j, 1} = 1) P(Z_{j, 2} = 1 | \tilde{Z}_{j, 2} = 1) P(Z_{j, 3} = 0 | \tilde{Z}_{j, 3} )\\ &\times P(\mathcal{Y}_{\mathcal{P}_{j, 2} \setminus i} | \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2} \setminus i}) P(Y_i | \tilde{Y}_i = 1) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2} \setminus i}) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3}}) P(\tilde{Y}_i = 1)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}} S_e^2 (1-S_e)^{\tilde{Z}_{j, 3}} S_p^{1-\tilde{Z}_{j, 3}} S_e^{Y_i} (1-S_e)^{1-Y_i} p_{iB}^{(t)}\\ &\times \prod\limits_{i\in \mathcal{P}_{j, 2} \setminus \{i\}} [ S_e^{Y_{i}}(1-S_e)^{1-{Y_{i}}} ]^{\tilde{Y}_{i}} [ (1-S_p)^{Y_{i}} S_p^{1-Y_{i}} ]^{1-{\tilde{Y}_{i}}} \times \prod\limits_{i\in \mathcal{P}_j \setminus \{i\}} [ p_{iB}^{(t)} ]^{\tilde{Y}_{i}} [ 1-p_{iB}^{(t)} ]^{1-\tilde{Y}_{i}}. \end{align*}

    (b) Assume that i -th individual belongs to set \mathcal{P}_{j, 3} . Then, the numerator is

    \begin{align*} &P(\tilde{Y}_i = 1, Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 0, \mathcal{Y}_{\mathcal{P}_{j, 2}})\\ = &P(Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 0, \mathcal{Y}_{\mathcal{P}_{j, 2}} | \tilde{Y}_i = 1) P(\tilde{Y}_i = 1)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}} P(Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 0, \mathcal{Y}_{\mathcal{P}_{j, 2}} | \tilde{Y}_i = 1, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2}}, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3} \setminus i} ) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2}}, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3} \setminus i}) P(\tilde{Y}_i = 1)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}} P(Z_{j, 1} = 1 | \tilde{Z}_{j, 1} = 1) P(Z_{j, 2} = 1 | \tilde{Z}_{j, 2} ) P(Z_{j, 3} = 0 | \tilde{Z}_{j, 3} = 1 )\\ & \times P(\mathcal{Y}_{\mathcal{P}_{j, 2}} | \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2}}) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2}}) P(\mathcal{Y}_{\mathcal{P}_{j, 3} \setminus i} | \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3} \setminus i}) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3} \setminus i}) P(\tilde{Y}_i = 1)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}} S_e(1-S_e) S_e^{\tilde{Z}_{j, 2}}(1-S_p)^{1-\tilde{Z}_{j, 2}} p_{iB}^{(t)} \times \prod\limits_{i\in \mathcal{P}_{j, 2}} [ S_e^{Y_{i}}(1-S_e)^{1-{Y_{i}}} ]^{\tilde{Y}_{i}}\\ & \times [(1-S_p)^{Y_{i}}S_p^{1-Y_{i}}]^{1-{\tilde{Y}_{i}}} \prod\limits_{i\in \mathcal{P}_j\setminus \{i\}} [ p_{iB}^{(t)} ]^{\tilde{Y}_{i}} [ 1-p_{iB}^{(t)} ]^{1-\tilde{Y}_{i}}. \end{align*}

    5) When Z_{j, 1} = 1, Z_{j, 2} = 1 , and Z_{j, 3} = 1 , two similar partitions are performed as above, and individual retests are conducted separately for all individuals in \mathcal{P}_j . At this time, \mathcal{Y}_{\mathcal{P}_{j}} = \mathcal{Y}_{\mathcal{P}_{j, 2}} \cup \mathcal{Y}_{\mathcal{P}_{j, 3}} , and we have

    \begin{align*} {w}^{(t)}_i = & P(\tilde{Y}_i = 1 | Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 1, \mathcal{Y}_{\mathcal{P}_{j, 2}}, \mathcal{Y}_{\mathcal{P}_{j, 3}} )\\ = &\frac{ P(Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 1, \mathcal{Y}_{\mathcal{P}_{j}} | \tilde{Y}_i = 1 ) P(\tilde{Y}_i = 1) } { P(Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 1, \mathcal{Y}_{\mathcal{P}_{j}} ) }. \end{align*}

    The denominator is

    \begin{align*} &P(Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 1, \mathcal{Y}_{\mathcal{P}_{j}})\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j}}} P(Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 1, \mathcal{Y}_{\mathcal{P}_{j}}| \tilde{\mathcal{Y}}_{\mathcal{P}_{j}}) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j}})\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j}}} P(Z_{j, 1} = 1 | \tilde{Z}_{j, 1}) P(Z_{j, 2} = 1 | \tilde{Z}_{j, 2}) P(Z_{j, 3} = 1 | \tilde{Z}_{j, 3}) \prod\limits_{i\in \mathcal{P}_j} P(Y_{i} | \tilde{Y}_{i}) P(\tilde{Y}_{i})\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j}}} S_e^{\tilde{Z}_{j, 1}} (1-S_p)^{1-\tilde{Z}_{j, 1}} \prod\limits_{u = 2}^{3} S_e^{\tilde{Z}_{j, u}} (1-S_p)^{1-\tilde{Z}_{j, u }}\\ &\times \prod\limits_{i\in \mathcal{P}_j} [ S_e^{Y_{i}} (1-S_e)^{1-{Y_{i}}} p_{iB}^{(t)} ]^{\tilde{Y}_{i}} [ (1-S_p)^{Y_{i}} S_p^{1-Y_{i}} (1-p_{iB}^{(t)}) ]^{1-{\tilde{Y}_{i}}}. \end{align*}

    The results of i -th individual belonging to either set \mathcal{P}_{j, 2} or \mathcal{P}_{j, 3} are symmetric. Assume that i -th individual belongs to set \mathcal{P}_{j, 2} . Then, the numerator is

    \begin{align*} &P(Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 1, \mathcal{Y}_{\mathcal{P}_{j}}, \tilde{Y}_i = 1)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}} P(Z_{j, 1} = 1, Z_{j, 2} = 1, Z_{j, 3} = 1, \mathcal{Y}_{\mathcal{P}_{j}} | \tilde{Y}_i = 1, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2} \setminus i}, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3}} ) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j, 2} \setminus i}, \tilde{\mathcal{Y}}_{\mathcal{P}_{j, 3}})P(\tilde{Y}_i = 1)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}} P(Z_{j, 1} = 1 | \tilde{Z}_{j, 1} = 1)P(Z_{j, 2} = 1 | \tilde{Z}_{j, 2} = 1)P(Z_{j, 3} = 1 | \tilde{Z}_{j, 3})\\ & \times P(Y_i | \tilde{Y}_i = 1)P( \mathcal{Y}_{\mathcal{P}_{j} \setminus i} | \tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}) P(\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i})P(\tilde{Y}_i = 1)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{\mathcal{P}_{j} \setminus i}} S_e^2 S_e^{\tilde{Z}_{j, 3}} (1-S_p)^{1-\tilde{Z}_{j, 3}} p_{iB}^{(t)} S_e^{Y_i} (1-S_e)^{1-Y_i}\\ &\times \prod\limits_{i \in \mathcal{P}_j\setminus \{i\}} \bigg[ S_e^{Y_{i}} (1-S_e)^{1-{Y_{i}}} p_{iB}^{(t)} \bigg]^{\tilde{Y}_{i}} \bigg[ (1-S_p)^{Y_{i}} S_p^{1-Y_{i}} (1-p_{iB}^{(t)}) \bigg]^{1-\tilde{Y}_{i}}. \end{align*}

    For convenience, assume that the set of all individuals is G , and all individuals can be arranged into an R \times C array, that is, G = \left\{(r, c), r \in R, c \in C\right\}. Define \mathcal{R} = (R_1, R_2, \cdots, R_R) and \mathcal{C} = (C_1, C_2, \cdots, C_C) as the collections of row and column testing results, respectively. Let R = \max R_{r} and C = \max C_{c} . Furthermore, define \tilde{R}_r = \max_c \tilde{Y}_{rc} and \tilde{C}_c = \max_r \tilde{Y}_{rc} as the true result sets for rows and columns, respectively. Let Y_{rc} denote the testing result of the individual in the r -th row and c -th column of the array, and \tilde{Y}_{rc} represents the true disease status of the individual in the r -th row and c -th column of the array. Let

    \begin{align*} Q = & \left\{(s, t) \mid R_s = 1, C_t = 1, 1 \leq s \leq R, 1 \leq t \leq C, \right. \\ & \left. \text{or } R_s = 1, C_1 = \cdots = C_C = 0, 1 \leq s \leq R, \right. \\ & \left. \text{or } R_1 = \cdots = R_R = 0, C_t = 1, 1 \leq t \leq C \right\}. \end{align*}

    \mathcal{Y}_Q represents the collection of responses from all potentially positive individuals, and \tilde{\mathcal{Y}}_Q denotes the true disease statuses of all potentially positive individuals. Let \mathcal{Z}_G = (R, C) denote the group testing responses. Since (r, c) \in G , define

    \begin{equation*} \tilde{\mathcal{Y}}_{G \setminus (r, c)} = \left\{\tilde{Y}_{r' c'}, r' \in R \setminus \{r\}, c' \in C \setminus \{c\}\right\}. \end{equation*}

    Then,

    \begin{equation*} {w}^{(t)}_{rc} = P(\tilde{Y}_{rc} = 1 \mid \mathcal{Z}_G, \mathcal{Y}_Q) = \frac{P(\tilde{Y}_{rc} = 1, \mathcal{Z}_G, \mathcal{Y}_Q)}{P(\mathcal{Z}_G, \mathcal{Y}_Q)}. \end{equation*}

    1) When \mathcal{Z}_G = (0, 0) , there is no need to retest individuals within the group. At this time,

    \begin{equation*} {w}^{(t)}_{rc} = P\big(\tilde{Y}_{rc} = 1 \mid \mathcal{Z}_G = (0, 0)\big) = \frac{P\big(\tilde{Y}_{rc} = 1, \mathcal{Z}_G = (0, 0)\big)}{P\big(\mathcal{Z}_G = (0, 0)\big)}. \end{equation*}

    The denominator is

    \begin{align*} P\big(\mathcal{Z}_G = (0, 0)\big) = &\sum\limits_{\tilde{\mathcal{Y}}_G}P\big(\mathcal{Z}_G = (0, 0) | \tilde{\mathcal{Y}}_G\big)P(\tilde{\mathcal{Y}}_G)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_G}P(\mathcal{R} = 0 | \tilde{\mathcal{Y}}_G)P(\mathcal{C} = 0 | \tilde{\mathcal{Y}}_G)P(\tilde{\mathcal{Y}}_G)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_G} \bigg[ \prod\limits_{r' = 1}^{R} P\Big(R_{r'} = 0 | \tilde{Y}_{r'1}, \tilde{Y}_{r'2}, \cdots, \tilde{Y}_{r'C} \Big) \bigg] \bigg[ \prod\limits_{c' = 1}^{C} P\Big(C_{c'} = 0 | \tilde{Y}_{1c'}, \tilde{Y}_{2c'}, \cdots, \tilde{Y}_{Rc'} \Big) \bigg] \\ & \times \prod\limits_{r' \in R} \prod\limits_{c' \in C} {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} \Big(1-{p_{r'c'B}^{(t)}}\Big)^{1-{\tilde{Y}_{r'c'}}}\\ = &\sum\limits_{\tilde{\mathcal{Y}}_G} \prod\limits_{r' = 1}^{R} \bigg[(1-S_e)^{\tilde{R}_{r'}} S_p^{1-\tilde{R}_{r'}} \bigg] \prod\limits_{c' = 1}^{C} \bigg[(1-S_e)^{\tilde{C}_{c'}} S_p^{1-\tilde{C}_{c'}} \bigg] \prod\limits_{(r', c') \in G} \bigg\{ {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} \Big(1-{p_{r'c'B}^{(t)}}\Big)^{1-{\tilde{Y}_{r'c'}}} \bigg\}\\ = &\sum\limits_{\tilde{\mathcal{Y}}_G} \prod\limits_{r' = 1}^{R} \prod\limits_{c' = 1}^{C} \bigg[ (1-S_e)^{\tilde{R}_{r'}+\tilde{C}_{c'}} S_p^{2-\tilde{R}_{r'}-\tilde{C}_{c'}} \bigg] \prod\limits_{(r', c') \in G} \bigg\{ {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} \Big(1-{p_{r'c'B}^{(t)}}\Big)^{1-{\tilde{Y}_{r'c'}}} \bigg\}. \end{align*}

    The numerator is

    \begin{align*} P\big(\mathcal{Z}_G = (0, 0), \tilde{Y}_{rc} = 1\big) & = P\big(\mathcal{Z}_G = (0, 0) | \tilde{Y}_{rc} = 1\big) P(\tilde{Y}_{rc} = 1)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}} P(\mathcal{R} = 0, \mathcal{C} = 0 | \tilde{\mathcal{Y}}_{G \setminus (r, c)}, \tilde{Y}_{rc} = 1) P(\tilde{\mathcal{Y}}_{G \setminus (r, c)})\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}} P(R_r = 0 | \tilde{R}_r = 1) \bigg [\prod\limits_{r'\in R\setminus \{r\}} P(R_{r'} = 0 | \tilde{Y}_{r'1}, \tilde{Y}_{r'2}, \cdots, \tilde{Y}_{r'C}) \bigg ]\\ & \times P(C_c = 0 | \tilde{C}_c = 1) \bigg [\prod\limits_{c'\in C\setminus \{c\}} P(C_{c'} = 0 | \tilde{Y}_{1c'}, \cdots, \tilde{Y}_{Rc'}) \bigg ]\\ & \times \prod\limits_{r' \in R\setminus \{r\}} \prod\limits_{c' \in C\setminus \{c\}} {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} (1-{p_{r'c'B}^{(t)}})^{1-{\tilde{Y}_{r'c'}}} p_{rcB}^{(t)}\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}} (1-S_e)^2 \prod\limits_{r'\in R \setminus \{r\}} (1-S_e)^{\tilde{R}_{r'}} S_p^{1-\tilde{R}_{r'}} \prod\limits_{c'\in C \setminus \{c\}} (1-S_e)^{\tilde{C}_{c'}} S_p^{1-\tilde{C}_{c'}}\\ & \times \prod\limits_{(r', c') \in G} {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} (1-{p_{r'c'B}^{(t)}})^{1-{\tilde{Y}_{r'c'}}} p_{rcB}^{(t)}\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}} \prod\limits_{r' \in R\setminus \{r\}} \prod\limits_{c' \in C\setminus \{c\}} (1-S_e)^{2+\tilde{R}_i+\tilde{C}_c} S_p^{2-\tilde{R}_i-\tilde{C}_c}\\ & \times \prod\limits_{(r', c') \in G\setminus(r, c)} {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} (1-{p_{r'c'B}^{(t)}})^{1-{\tilde{Y}_{r'c'}}} p_{rcB}^{(t)}. \end{align*}

    2) When \mathcal{Z}_G \neq (0, 0) , \mathcal{Z}_G = (R, C) has multiple scenarios, specifically \mathcal{Z}_G = (R, C) = (1, 0) , (R, C) = (0, 1) , and (R, C) = (1, 1) . Therefore, when \mathcal{Z}_G \neq (0, 0) , the following classifications can be discussed:

    (a) When (R, C) = (1, 0) ,

    \begin{equation*} {w}^{(t)}_{rc} = P\big(\tilde{Y}_{rc} = 1 \mid \mathcal{Z}_G = (1, 0)\big) = \frac{P\big(\tilde{Y}_{rc} = 1, \mathcal{Z}_G = (1, 0)\big)}{P\big(\mathcal{Z}_G = (1, 0)\big)}. \end{equation*}

    The denominator is

    \begin{align*} P\big(\mathcal{Z}_G = (1, 0)\big) = & \sum\limits_{\tilde{\mathcal{Y}}_G} P(\mathcal{R} \neq 0, \mathcal{C} = 0, \mathcal{Y}_Q | \tilde{\mathcal{Y}}_G) P(\tilde{\mathcal{Y}}_G) \\ = & \sum\limits_{\tilde{\mathcal{Y}}_G} \bigg[ \prod\limits_{r' = 1}^{R} P\Big(R_{r'} | \tilde{Y}_{r'1}, \tilde{Y}_{r'2}, \dots, \tilde{Y}_{r'C}\Big) \bigg] \bigg[ \prod\limits_{c' = 1}^{C} P\Big(C_{c'} = 0 | \tilde{Y}_{1c'}, \tilde{Y}_{2c'}, \dots, \tilde{Y}_{Rc'}\Big) \bigg] \\ &\times \bigg[ \prod\limits_{(s, t) \in \mathcal{Q}} P\Big(Y_{st} | \tilde{Y}_{st}\Big) \bigg] \bigg[ \prod\limits_{r' \in R} \prod\limits_{c' \in C} {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} \Big(1 - {p_{r'c'B}^{(t)}}\Big)^{1 - \tilde{Y}_{r'c'}} \bigg] \\ = & \sum\limits_{\tilde{\mathcal{Y}}_G} \prod\limits_{r' = 1}^{R} \bigg[ S_e^{R_{r'}} (1 - S_e)^{1 - R_{r'}} \bigg]^{\tilde{R}_{r'c}} \bigg[ (1 - S_p)^{R_{r'}} S_p^{1 - R_{r'}} \bigg]^{1 - \tilde{R}_{r'}} \\ & \times \prod\limits_{c' = 1}^{C} \bigg[ (1 - S_e)^{1 - C_{c'}} \bigg]^{\tilde{C}_{c'}} \bigg[ S_p^{1 - C_{c'}} \bigg]^{1 - \tilde{C}_{c'}} \times \prod\limits_{(s, t) \in Q} \bigg[ S_e^{Y_{st}} (1 - S_e)^{1 - Y_{st}} \bigg]^{\tilde{Y}_{st}} \bigg[ (1 - S_p)^{Y_{st}} S_p^{1 - Y_{st}} \bigg]^{1 - \tilde{Y}_{st}} \\ &\times \prod\limits_{(r', c') \in G} {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} \Big(1 - {p_{r'c'B}^{(t)}}\Big)^{1 - \tilde{Y}_{r'c'}}. \end{align*}

    At this point, the numerator requires further discussion:

    (i) If (r, c) \in Q and R_r = 1 and C_r = 0 , then

    \begin{align*} &P\big(\tilde{Y}_{rc} = 1, \mathcal{Z}_G = (1, 0)\big)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}P\big(\mathcal{Z}_G = \big(1, 0\big), \mathcal{Y}_Q\big|\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)}\big)P\big(\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)}\big) \\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}P\big(\mathcal{R}\neq0\big|\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)}\big)P\big(\mathcal{C} = 0\big|\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)}\big) \\ & \times P\big(\mathcal{Y}_Q\big|\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{Q \setminus (r, c)}\big)P\big(\tilde{Y}_{rc} = 1\big)P\big(\tilde{\mathcal{Y}}_{G \setminus (r, c)}\big) \\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}P\Big(R_r = 1|\tilde{R}_r = 1\Big) \bigg[\prod\limits_{r'\in R\setminus \{r\}} P\Big(R_{r'}|\tilde{Y}_{r'1}, \tilde{Y}_{r'2}, \cdots, \tilde{Y}_{r'C}\Big)\bigg] \\ & \times P\Big(C_c = 0|\tilde{C}_c = 1\Big)\bigg[\prod\limits_{c'\in C\setminus \{c\}}P\Big(C_{c'} = 0|\tilde{Y}_{1c'}, \cdots, \tilde{Y}_{Rc'}\Big)\bigg]P\Big(Y_{rc}|\tilde{Y}_{rc} = 1\Big) \\ & \times \bigg[\prod\limits_{(s, t)\in Q\setminus {(r, c)}}P\Big(Y_{st}|\tilde{Y}_{st}\Big)\bigg] p_{rcB}^{(t)} \times \bigg[\prod\limits_{r'\in R\setminus \{r\}}\prod\limits_{c'\in C\setminus \{c\}} {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} \Big(1-{p_{r'c'B}^{(t)}}\Big)^{1-{\tilde{Y}_{r'c'}}}\bigg] \\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}S_e^{1+Y_{rc}}\Big(1-S_e\Big)^{2-Y_{rc}}p_{rcB}^{(t)}\\ & \times \prod\limits_{r' \in R\setminus \{r\}}\bigg[S_e^{R_{r'}}\Big(1-S_e\Big)^{1-{R_{r'}}}\bigg]^{\tilde{R}_{r'c}} \Big[(1-S_p)^{R_{r'}}S_p^{1-R_{r'}}\Big]^{1-\tilde{R}_{r'}} \\ & \times \prod\limits_{c' \in C\setminus \{c\}}\bigg[(1-S_e)^{1-{C_{c'}}}\bigg]^{\tilde{C}_{c'}} \Big[S_p^{1-C_{c'}}\Big]^{1-\tilde{C}_{c'}} \\ & \times \prod\limits_{(s, t)\in Q\setminus\{(r, c)\}} \bigg[S_e^{Y_{st}}\Big(1-S_e\Big)^{1-Y_{st}}\bigg]^{\tilde{Y}_{st}} \bigg[(1-S_p)^{Y_{st}}S_p^{1-Y_{st}}\bigg]^{1-\tilde{Y}_{st}} \\ & \times \prod\limits_{(r', c')\in G\setminus \{(r, c)\}} {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} \Big(1-{p_{r'c'B}^{(t)}}\Big)^{1-{\tilde{Y}_{r'c'}}} . \end{align*}

    (ii) If (r, c) \notin Q , then \mathcal{R} = 0 , \mathcal{C} \neq 0 , but R_r = 0 and C_r = 0 :

    \begin{align*} &P\big(\tilde{Y}_{rc} = 1, \mathcal{Z}_G = (1, 0)\big)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}P\bigg(\mathcal{R}, \mathcal{C}, \mathcal{Y}_Q|\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)}\bigg)P\big(\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)}\big)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}P\bigg(\mathcal{R}|\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)}\bigg) P\bigg(\mathcal{C}|\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)}\bigg) P\big(\mathcal{Y}_Q\big|\tilde{\mathcal{Y}}_Q\big)P\big(\tilde{Y}_{rc} = 1\big)P\big(\tilde{\mathcal{Y}}_{G \setminus (r, c)}\big)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}P\Big(R_r = 0|\tilde{R}_r = 1\Big) \bigg[\prod\limits_{r'\in R\setminus \{r\}} P\Big(R_{r'}|\tilde{Y}_{r'1}, \tilde{Y}_{r'2}, \cdots, \tilde{Y}_{r'C}\Big)\bigg]\\ & \times P\Big(C_c = 0|\tilde{C}_c = 1\Big) \bigg[\prod\limits_{c'\in C\setminus \{c\}}P\Big(C_{c'} = 0|\tilde{Y}_{1c'}, \cdots, \tilde{Y}_{Rc'}\Big)\bigg]\\ & \times \bigg[\prod\limits_{(s, t)\in Q}P\Big(Y_{st}|\tilde{Y}_{st}\Big)\bigg] p_{rcB}^{(t)} \prod\limits_{(r', c')\in G\setminus \{(r, c)\}} {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} \Big(1-{p_{r'c'B}^{(t)}}\Big)^{1-{\tilde{Y}_{r'c'}}}\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}S_e^{Y_{rc}}\Big(1-S_e\Big)^{3-Y_{rc}}p_{rcB}^{(t)}\\ & \times \prod\limits_{r' \in R\setminus \{r\}} \bigg[S_e^{R_{r'}}\big(1-S_e\big)^{1-{R_{r'}}}\bigg]^{\tilde{R}_{r'c}} \Big[(1-S_p)^{R_{r'}}S_p^{1-R_{r'}}\Big]^{1-\tilde{R}_{r'c}}\\ & \times \prod\limits_{c' \in C\setminus \{c\}} \bigg[(1-S_e)^{1-{C_{c'}}}\bigg]^{\tilde{C}_{c'}} \Big[S_p^{1-C_{c'}}\Big]^{1-\tilde{C}_{c'}}\\ & \times \prod\limits_{(s, t)\in Q} \bigg[S_e^{Y_{st}}\big(1-S_e\big)^{1-Y_{st}}\bigg]^{\tilde{Y}_{st}} \Big[(1-S_p)^{Y_{st}}S_p^{1-Y_{st}}\Big]^{1-\tilde{Y}_{st}}\\ & \times \prod\limits_{(r', c')\in G\setminus \{(r, c)\}} \bigg[{p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} \Big(1-{p_{r'c'B}^{(t)}}\Big)^{1-{\tilde{Y}_{r'c'}}}\bigg]. \end{align*}

    (b) When (R, C) = (0, 1) , the denominator is

    \begin{align*} P\big(\mathcal{Z}_G = (0, 1)\big) = &\sum\limits_{\tilde{\mathcal{Y}}_G}P(\mathcal{R} = 0, \mathcal{C}\neq0, \mathcal{Y}_Q|\tilde{\mathcal{Y}}_G)P\big(\tilde{\mathcal{Y}}_G\big)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_G} \bigg[ \prod\limits_{r' = 1}^{R} P(R_r' = 0|\tilde{Y}_{r'1}, \tilde{Y}_{r'2}, \cdots, \tilde{Y}_{r'C}) \bigg] \\ & \times \bigg[ \prod\limits_{c' = 1}^{C} P(C_{c'}|\tilde{Y}_{1c'}, \tilde{Y}_{2c'}, \cdots, \tilde{Y}_{Rc'}) \bigg] \\ & \times \prod\limits_{(s, t)\in \mathcal{Q}} P\big(Y_{st}\big|\tilde{Y}_{st}\big) \prod\limits_{r' \in R}\prod\limits_{c' \in C} {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} (1-{p_{r'c'B}^{(t)}})^{1-{\tilde{Y}_{r'c'}}} \\ = &\sum\limits_{\tilde{\mathcal{Y}}_G} \prod\limits_{r' = 1}^{R} \bigg[ \big(1-S_e\big)^{1-R_{r'}} \bigg]^{\tilde{R}_{r'}} \Big[ S_p^{1-R_{r'}} \Big]^{1-\tilde{R}_{r'}} \\ & \times \prod\limits_{c' = 1}^{C} \bigg[ S_e^{C_{c'}}\big(1-S_e\big)^{1-C_{c'}} \bigg]^{\tilde{C}_{c'}} \Big[ (1-S_p)^{C_{c'}}S_p^{1-C_{c'}} \Big]^{1-\tilde{C}_{c'}} \\ & \times \prod\limits_{(s, t)\in Q} \bigg[ S_e^{Y_{st}}\big(1-S_e\big)^{1-Y_{st}} \bigg]^{\tilde{Y}_{st}} \Big[ (1-S_p)^{Y_{st}}S_p^{1-Y_{st}} \Big]^{1-\tilde{Y}_{st}} \\ & \times \prod\limits_{(r', c') \in G} \bigg[ {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} (1-{p_{r'c'B}^{(t)}})^{1-{\tilde{Y}_{r'c'}}} \bigg]. \end{align*}

    The numerator requires further discussion:

    (ⅰ) If (r, c) \in Q and R_r = 0 and C_c = 1 , then

    \begin{align*} &P\big(\tilde{Y}_{rc} = 1, \mathcal{Z}_G = (0, 1)\big) = P(\tilde{Y}_{rc} = 1, \mathcal{R}, \mathcal{C}, \tilde{\mathcal{Y}}_Q)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}P(\mathcal{R}, \mathcal{C}, \mathcal{Y}_Q|\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)})P\big(\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)}\big)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}S_e^{Y_{rc}}(3-S_e)^{1-Y_{rc}}p_{rcB}^{(t)} \prod\limits_{r' \in R\setminus \{r\}} \bigg[\big(1-S_e\big)^{1-{R_{r'}}}\bigg]^{\tilde{R}_{r'c}} \Big[S_p^{1-R_{r'}}\Big]^{1-\tilde{R}_{r'c}}\\ & \times \prod\limits_{c' \in C\setminus \{c\}} \bigg[S_e^{C_{c'}}\big(1-S_e\big)^{1-{C_{c'}}}\bigg]^{\tilde{C}_{c'}} \Big[(1-S_p)^{C_{c'}}S_p^{1-C_{c'}}\Big]^{1-\tilde{C}_{c'}}\\ & \times \prod\limits_{(s, t)\in Q} \bigg[S_e^{Y_{st}}\big(1-S_e\big)^{1-Y_{st}}\bigg]^{\tilde{Y}_{st}} \Big[(1-S_p)^{Y_{st}}S_p^{1-Y_{st}}\Big]^{1-\tilde{Y}_{st}}\\ & \times \prod\limits_{(r', c')\in G\setminus \{(r, c)\}} \bigg[{p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} (1-{p_{r'c'B}^{(t)}})^{1-{\tilde{Y}_{r'c'}}}\bigg]. \end{align*}

    (ⅱ) If (r, c) \notin Q , then \mathcal{R} = 0 , \mathcal{C} \neq 0 , but R_r = 0 and C_r = 0 :

    \begin{align*} P\big(\tilde{Y}_{rc} = 1, \mathcal{Z}_G = (0, 1)\big) = &P(\tilde{Y}_{rc} = 1, \mathcal{R}, \mathcal{C}, \mathcal{Y}_Q)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}P(\mathcal{R}, \mathcal{C}, \mathcal{Y}_Q|\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)})P(\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)})\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}S_e^{Y_{rc}}(3-S_e)^{1-Y_{rc}}p_{rcB}^{(t)} \prod\limits_{r' \in R\setminus \big\{r\big\}} \bigg[ \big(1-S_e\big)^{1-{R_{r'}}} \bigg]^{\tilde{R}_{r'c}} \bigg[ S_p^{1-R_{r'}} \bigg]^{1-\tilde{R}_{r'c}}\\ & \times \prod\limits_{c' \in C\setminus \big\{c\big\}} \bigg[ S_e^{C_{c'}}\big(1-S_e\big)^{1-{C_{c'}}} \bigg]^{\tilde{C}_{c'}} \bigg[ \big(1-S_p\big)^{C_{c'}}S_p^{1-C_{c'}} \bigg]^{1-\tilde{C}_{c'}}\\ & \times \prod\limits_{(s, t)\in Q} \bigg[ S_e^{Y_{st}}\big(1-S_e\big)^{1-Y_{st}} \bigg]^{\tilde{Y}_{st}} \bigg[ \big(1-S_p\big)^{Y_{st}}S_p^{1-Y_{st}} \bigg]^{1-\tilde{Y}_{st}}\\ & \times \prod\limits_{(r', c')\in G\setminus \big\{(r, c)\big\}} ( {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} \big(1-{p_{r'c'B}^{(t)}}\big)^{1-{\tilde{Y}_{r'c'}}} ). \end{align*}

    (c) When (R, C) = (1, 1) , the denominator is

    \begin{align*} P\big(\mathcal{Z}_G = (1, 1)\big) = &\sum\limits_{\tilde{\mathcal{Y}}}P(\mathcal{R}, \mathcal{C}, \mathcal{Y}_Q | \tilde{\mathcal{Y}})P(\tilde{\mathcal{Y}})\\ = &\sum\limits_{\tilde{\mathcal{Y}}} \bigg[\prod\limits_{r' = 1}^{R} P(R_r' | \tilde{Y}_{r'1}, \tilde{Y}_{r'2}, \cdots, \tilde{Y}_{r'C} ) \bigg] \bigg[\prod\limits_{c' = 1}^{C} P(C_{c'} | \tilde{Y}_{1c'}, \tilde{Y}_{2c'}, \cdots, \tilde{Y}_{Rc'} ) \bigg] \\ & \times \prod\limits_{(s, t)\in \mathcal{Q}} P(Y_{st} | \tilde{Y}_{st} ) \prod\limits_{r' \in R} \prod\limits_{c' \in C} {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} (1-{p_{r'c'B}^{(t)}})^{1-{\tilde{Y}_{r'c'}}}\\ = &\sum\limits_{\tilde{\mathcal{Y}}} \prod\limits_{r' = 1}^{R} \bigg[ S_e^{R_{r'}}(1-S_e)^{1-{R_{r'}}} \bigg]^{\tilde{R}_{r'c}} \bigg[ (1-S_p)^{R_{r'}}S_p^{1-R_{r'}} \bigg]^{1-\tilde{R}_{r'}}\\ & \times \prod\limits_{c' = 1}^{C} \bigg[ S_e^{C_{c'}}(1-S_e)^{1-C_{c'}} \bigg]^{\tilde{C}_{c'}} \bigg[ (1-S_p)^{C_{c'}}S_p^{1-C_{c'}} \bigg]^{1-\tilde{C}_{c'}}\\ & \times \prod\limits_{(s, t)\in Q} \bigg[ S_e^{Y_{st}}(1-S_e)^{1-Y_{st}} \bigg]^{\tilde{Y}_{st}} \bigg[ (1-S_p)^{Y_{st}}S_p^{1-Y_{st}} \bigg]^{1-\tilde{Y}_{st}}\\ & \times \prod\limits_{(r', c') \in G} \bigg\{ {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} (1-{p_{r'c'B}^{(t)}})^{1-{\tilde{Y}_{r'c'}}} \bigg\}. \end{align*}

    For the numerator, we provide the following derivations:

    (ⅰ) If (r, c) \in Q and R_r = 1 and C_c = 1 , then

    \begin{align*} &P\big(\tilde{Y}_{rc} = 1, \mathcal{Z}_G = (1, 1)\big) = P(\tilde{Y}_{rc} = 1, \mathcal{R}, \mathcal{C}, \mathcal{Y}_Q)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}P(\mathcal{R}, \mathcal{C}, \mathcal{Y}_Q | \tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)})P(\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)})\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}S_e^{2+Y_{rc}}(1-S_e)^{1-Y_{rc}} \cdot p_{rcB}^{(t)}\\ & \times \prod\limits_{r' \in R\setminus \{r\}}\bigg[ S_e^{R_{r'}}(1-S_e)^{1-{R_{r'}}} \bigg]^{\tilde{R}_{r'c}} \bigg[ (1-S_p)^{R_{r'}}S_p^{1-R_{r'}} \bigg]^{1-\tilde{R}_{r'c}}\\ & \times \prod\limits_{c' \in C\setminus \{c\}}\bigg[ S_e^{C_{c'}}(1-S_e)^{1-{C_{c'}}} \bigg]^{\tilde{C}_{c'}} \bigg[ (1-S_p)^{C_{c'}}S_p^{1-C_{c'}} \bigg]^{1-\tilde{C}_{c'}}\\ & \times \prod\limits_{(s, t)\in Q\setminus \{(r, c)\}} \bigg[ S_e^{Y_{st}}(1-S_e)^{1-Y_{st}} \bigg]^{\tilde{Y}_{st}} \bigg[ (1-S_p)^{Y_{st}}S_p^{1-Y_{st}} \bigg]^{1-\tilde{Y}_{st}}\\ & \times \prod\limits_{(r', c')\in G\setminus \{(r, c)\}} \bigg\{ {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} ( 1-{p_{r'c'B}^{(t)}} )^{1-{\tilde{Y}_{r'c'}}} \bigg\}. \end{align*}

    (ⅱ) If (r, c) \notin Q , then \mathcal{R} \neq 0 , \mathcal{C} \neq 0 , but R_r = 0 and C_r = 0 :

    \begin{align*} &P\big(\tilde{Y}_{rc} = 1, \mathcal{Z}_G = (1, 1)\big) = P(\tilde{Y}_{rc} = 1, \mathcal{R}, \mathcal{C}, \mathcal{Y}_Q)\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}P(\mathcal{R}, \mathcal{C}, \mathcal{Y}_Q|\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)})P(\tilde{Y}_{rc} = 1, \tilde{\mathcal{Y}}_{G \setminus (r, c)})\\ = &\sum\limits_{\tilde{\mathcal{Y}}_{G \setminus (r, c)}}(1-S_e)^2S_e^{Y_{rc}}(1-S_e)^{1-Y_{rc}}p_{rcB}^{(t)}\\ & \times \prod\limits_{r' \in R\setminus \{r\}}\bigg [S_e^{R_{r'}}(1-S_e)^{1-{R_{r'}}}\bigg ]^{\tilde{R}_{r'c}} \bigg [(1-S_p)^{R_{r'}}S_p^{1-R_{r'}}\bigg ]^{1-\tilde{R}_{r'c}}\\ & \times \prod\limits_{c' \in C\setminus \{c\}}\bigg [S_e^{C_{c'}}(1-S_e)^{1-{C_{c'}}}\bigg ]^{\tilde{C}_{c'}} \bigg [(1-S_p)^{C_{c'}}S_p^{1-C_{c'}}\bigg ]^{1-\tilde{C}_{c'}}\\ & \times \prod\limits_{(s, t)\in Q} \bigg [S_e^{Y_{st}}(1-S_e)^{1-Y_{st}}\bigg ]^{\tilde{Y}_{st}}\bigg [(1-S_p)^{Y_{st}}S_p^{1-Y_{st}}\bigg ]^{1-\tilde{Y}_{st}}\\ & \times \prod\limits_{(r', c')\in G\setminus \{(r, c)\}} \bigg\{ {p_{r'c'B}^{(t)}}^{\tilde{Y}_{r'c'}} (1-{p_{r'c'B}^{(t)}})^{1-{\tilde{Y}_{r'c'}}} \bigg\}. \end{align*}


    [1] Fuso Nerini F, Sovacool B, Hughes N, et al. (2019) Connecting climate action with other Sustainable Development Goals. Nat Sustain 2: 674–680. https://doi.org/10.1038/s41893-019-0334-y. doi: 10.1038/s41893-019-0334-y
    [2] Lange-Salvia A, Leal Filho W, Londero Brandli L, et al. (2019) Assessing research trends related to Sustainable Development Goals: local and global issues. J Clean Prod 208: 841–849. https://doi.org/10.1016/j.jclepro.2018.09.242. doi: 10.1016/j.jclepro.2018.09.242
    [3] Galli A, Đurović G, Hanscom L, et al. (2018) Think globally, act locally: Implementing the sustainable development goals in Montenegro. Environ Sci Policy 84: 159– https://doi.org/169.10.1016/j.envsci.2018.03.012. doi: 10.1016/j.envsci.2018.03.012
    [4] Graute U (2015) Local Authorities Acting Globally for Sustainable Development. Reg Stud 50: 1931–1942. https://doi.org/10.1080/00343404.2016.1161740. doi: 10.1080/00343404.2016.1161740
    [5] Doukas H, Papadopoulou A, Savvakis N, et al. (2012) Assessing energy sustainability of rural communities using Principal Component Analysis. Renew Sustain Energy Rev 16: 1949–1957. http://dx.doi.org/10.1016/j.rser.2012.01.018. doi: 10.1016/j.rser.2012.01.018
    [6] Krakowiak-Bal A, Ziemianczyk U, Wozniak A, et al. (2017) Building entrepreneurial capacity in rural areas The use of AHP analysis for infrastructure evaluation. Int J Entrep Behav Res 23: 903–918. http://dx.doi.org/10.1108/IJEBR-07-2017-0223. doi: 10.1108/IJEBR-07-2017-0223
    [7] Marinakis V, Papadopoulou AG, Psarras J (2015) Local communities towards a sustainable energy future: needs and priorities. Int J Sustain Energy 36: 296–312. http://dx.doi.org/10.1080/14786451.2015.1018264. doi: 10.1080/14786451.2015.1018264
    [8] Abreu I, Nunes JM, Mesias FJ (2019) Can Rural Development Be Measured? Design and Application of a Synthetic Index to Portuguese Municipalities. Soc Indic Res 145: 1107–1123. https://doi.org/10.1007/s11205-019-02124-w. doi: 10.1007/s11205-019-02124-w
    [9] Dammers E, Keiner M (2006) Rural Development In Europe. disP - Plan Rev 42: 5– https://doi.org/15.10.1080/02513625.2006.10556958. doi: 10.1080/02513625.2006.10556958
    [10] Okkonen L, Lehtonen O (2016) Socio-economic impacts of community wind power projects in Northern Scotland. Renew Energy 85: 826–833. http://dx.doi.org/10.1016/j.renene.2015.07.047. doi: 10.1016/j.renene.2015.07.047
    [11] Liu L, Cao C, Song W (2023) Bibliometric Analysis in the Field of Rural Revitalization: Current Status, Progress, and Prospects. Int J Environ Res Public Health 20. http://dx.doi.org/10.3390/ijerph20010823.
    [12] de Los Ríos-Carmenado I, Ortuño M, Rivera M (2016) Private-Public Partnership as a tool to promote entrepreneurship for sustainable development: WWP torrearte experience. Sustainability 8. http://dx.doi.org/10.3390/su8030199.
    [13] Díaz-Cuevas P, Domínguez-Bravo J, Prieto-Campos A (2019) Integrating MCDM and GIS for renewable energy spatial models: assessing the individual and combined potential for wind, solar and biomass energy in Southern Spain. Clean Technol Environ Policy 21: 1855–1869. https://doi.org/10.1007/s10098-019-01754-5. doi: 10.1007/s10098-019-01754-5
    [14] Marinakis V, Papadopoulou AG, Psarras J (2017) Local communities towards a sustainable energy future: needs and priorities. Int J Sustain Energy 36: 296–312. http://dx.doi.org/10.1080/14786451.2015.1018264. doi: 10.1080/14786451.2015.1018264
    [15] Streimikiene D, Baležentis T, Volkov A, et al. (2021) Barriers and drivers of renewable energy penetration in rural areas. Energies 14. http://dx.doi.org/10.3390/en14206452.
    [16] Reddy AKN (2002) A generic Southern perspective on renewable energy. Energy Sustain Dev 6: 74–83. http://dx.doi.org/10.1016/S0973-0826(08)60327-0. doi: 10.1016/S0973-0826(08)60327-0
    [17] Kitchen L, Marsden T (2009) Creating sustainable rural development through stimulating the eco-economy: Beyond the eco-economic paradox? Sociol Ruralis 49: 273–294. http://dx.doi.org/10.1111/j.1467-9523.2009.00489.x. doi: 10.1111/j.1467-9523.2009.00489.x
    [18] Graziano M, Billing SL, Kenter JO, et al. (2017) A transformational paradigm for marine renewable energy development. Energy Res Soc Sci 23: 136–147. http://dx.doi.org/10.1016/j.erss.2016.10.008. doi: 10.1016/j.erss.2016.10.008
    [19] Poggi F, Firmino A, Amado M (2018) Planning renewable energy in rural areas: Impacts on occupation and land use. Energy 155: 630–640. https://doi.org/10.1016/j.energy.2018.05.009. doi: 10.1016/j.energy.2018.05.009
    [20] Streimikiene D, Baležentis T, Kriščiukaitiene I (2012) Promoting interactions between local climate change mitigation, sustainable energy development, and rural development policies in Lithuania. Energy Policy 50: 699–710. https://doi.org/10.1016/j.enpol.2012.08.015. doi: 10.1016/j.enpol.2012.08.015
    [21] Brummer V (2018) Community energy – benefits and barriers: A comparative literature review of Community Energy in the UK, Germany and the USA, the benefits it provides for society and the barriers it faces. Renew Sustain Energy Rev 94: 187–196. https://doi.org/10.1016/j.rser.2018.06.013. doi: 10.1016/j.rser.2018.06.013
    [22] García-Martínez J, Reyes-Patiño JL, López-Sosa LB, et al. (2022) Anticipating alliances of stakeholders in the optimal design of community energy systems. Sustain Energy Technol Assessments 54: 102880. https://doi.org/10.1016/j.seta.2022.102880. doi: 10.1016/j.seta.2022.102880
    [23] Paredes-Sánchez JP, López-Ochoa LM, López-González LM, et al. (2018) Energy utilization for distributed thermal production in rural areas: A case study of a self-sustaining system in Spain. Energy Convers Manag 174: 1014–1023. https://doi.org/10.1016/j.enconman.2018.08.080. doi: 10.1016/j.enconman.2018.08.080
    [24] Van Hoesen J, Letendre S (2010) Evaluating potential renewable energy resources in Poultney, Vermont: A GIS-based approach to supporting rural community energy planning. Renew Energy 35: 2114–2122. http://dx.doi.org/10.1016/j.renene.2010.01.018. doi: 10.1016/j.renene.2010.01.018
    [25] Hain JJ, Ault GW, Galloway SJ, et al. (2005) Additional renewable energy growth through small-scale community orientated energy policies. Energy Policy 33: 1199–1212. http://dx.doi.org/10.1016/j.enpol.2003.11.017. doi: 10.1016/j.enpol.2003.11.017
    [26] Martire S, Tuomasjukka D, Lindner M, et al. (2015) Sustainability impact assessment for local energy supplies' development - The case of the alpine area of Lake Como, Italy. Biomass and Bioenergy 83: 60–76. http://dx.doi.org/10.1016/j.biombioe.2015.08.020. doi: 10.1016/j.biombioe.2015.08.020
    [27] Zabaniotou A, Rovas D, Delivand MK, et al. (2017) Conceptual vision of bioenergy sector development in Mediterranean regions based on decentralized thermochemical systems. Sustain Energy Technol Assessments 23: 33–47. http://dx.doi.org/10.1016/j.seta.2017.09.006. doi: 10.1016/j.seta.2017.09.006
    [28] von Bock und Polach C, Kunze C, Maaß O, et al. (2015) Bioenergy as a socio-technical system: The nexus of rules, social capital and cooperation in the development of bioenergy villages in Germany. Energy Res Soc Sci 6: 128–135. http://dx.doi.org/10.1016/j.erss.2015.02.003. doi: 10.1016/j.erss.2015.02.003
    [29] Klepacki B, Kusto B, Bórawski P, et al. (2021) Investments in renewable energy sources in basic units of local government in rural areas. Energies 14: 1–17. http://dx.doi.org/10.3390/en14113170. doi: 10.3390/en14113170
    [30] Wang Y, Cai C, Liu C, et al. (2022) Planning research on rural integrated energy system based on coupled utilization of biomass-solar energy resources. Sustain Energy Technol Assessments 53: 102416. https://doi.org/10.1016/j.seta.2022.102416. doi: 10.1016/j.seta.2022.102416
    [31] Poggi F, Firmino A, Amado M (2020) Shaping energy transition at municipal scale: A net-zero energy scenario-based approach. Land use policy 99: 104955. https://doi.org/10.1016/j.landusepol.2020.104955. doi: 10.1016/j.landusepol.2020.104955
    [32] Markantoni M, Woolvin M (2013) The role of rural communities in the transition to a low-carbon Scotland: A review. Local Environ 20: 202–219. http://dx.doi.org/10.1080/13549839.2013.834880. doi: 10.1080/13549839.2013.834880
    [33] OECD (2012) Linking Renewable Energy to Rural Development.
    [34] ECA (2018) Special Report No. 05. Renewable energy for sustainable rural development: significant potential synergies, but mostly unrealized., Luxembourg.
    [35] Clausen LT, Rudolph D (2020) Renewable energy for sustainable rural development: Synergies and mismatches. Energy Policy 138: 111289. https://doi.org/10.1016/j.enpol.2020.111289. doi: 10.1016/j.enpol.2020.111289
    [36] Katsaprakakis D Al, Christakis DG (2016) The exploitation of electricity production projects from Renewable Energy Sources for the social and economic development of remote communities. the case of Greece: An example to avoid. Renew Sustain Energy Rev 54: 341–349. http://dx.doi.org/10.1016/j.rser.2015.10.029. doi: 10.1016/j.rser.2015.10.029
    [37] O'Sullivan K, Golubchikov O, Mehmood A (2020) Uneven energy transitions: Understanding continued energy peripheralization in rural communities. Energy Policy 138: 111288. https://doi.org/10.1016/j.enpol.2020.111288. doi: 10.1016/j.enpol.2020.111288
    [38] Dütschke E, Wesche JP (2018) The energy transformation as a disruptive development at community level. Energy Res Soc Sci 37: 251–254. https://doi.org/10.1016/j.erss.2017.10.030. doi: 10.1016/j.erss.2017.10.030
    [39] Rommel J, Radtke J, von Jorck G, et al. (2018) Community renewable energy at a crossroads: A think piece on degrowth, technology, and the democratization of the German energy system. J Clean Prod 197: 1746–1753. https://doi.org/10.1016/j.jclepro.2016.11.114. doi: 10.1016/j.jclepro.2016.11.114
    [40] Sliz-Szkliniarz B (2013) Assessment of the renewable energy-mix and land use trade-off at a regional level: A case study for the Kujawsko-Pomorskie Voivodship. Land use policy 35: 257–270. http://dx.doi.org/10.1016/j.landusepol.2013.05.018. doi: 10.1016/j.landusepol.2013.05.018
    [41] Kumar N, Namrata K, Samadhiya A (2023) Techno socio-economic analysis and stratified assessment of hybrid renewable energy systems for electrification of rural community. Sustain Energy Technol Assessments 55: 102950. https://doi.org/10.1016/j.seta.2022.102950. doi: 10.1016/j.seta.2022.102950
    [42] Ma W, Xue X, Liu G (2018) Techno-economic evaluation for hybrid renewable energy system: Application and merits. Energy 159: 385–409. https://doi.org/10.1016/j.energy.2018.06.101. doi: 10.1016/j.energy.2018.06.101
    [43] He J, Wu Y, Wu J, et al. (2021) Towards cleaner heating production in rural areas: Identifying optimal regional renewable systems with a case in Ningxia, China. Sustain Cities Soc 75: 103288. https://doi.org/10.1016/j.scs.2021.103288. doi: 10.1016/j.scs.2021.103288
    [44] Li S, Zhang L, Wang X, et al. (2022) A decision-making and planning optimization framework for multi-regional rural hybrid renewable energy system. Energy Convers Manag 273: 116402. https://doi.org/10.1016/j.enconman.2022.116402. doi: 10.1016/j.enconman.2022.116402
    [45] Hori K, Matsui T, Hasuike T, et al. (2016) Development and application of the renewable energy regional optimization utility tool for environmental sustainability: REROUTES. Renew Energy 93: 548–561. http://dx.doi.org/10.1016/j.renene.2016.02.051. doi: 10.1016/j.renene.2016.02.051
    [46] Woch F, Hernik J, Linke HJ, et al. (2017) Renewable energy and rural autonomy: A case study with generalizations. Polish J Environ Stud 26: 2823–2832. http://dx.doi.org/10.15244/pjoes/74129. doi: 10.15244/pjoes/74129
    [47] Romero-Castro N, Miramontes-Viña V, López-Cabarcos MÁ (2022) Understanding the Antecedents of Entrepreneurship and Renewable Energies to Promote the Development of Community Renewable Energy in Rural Areas. Sustain 14: 1–25. http://dx.doi.org/10.3390/su14031234. doi: 10.3390/su14031234
    [48] Romero-Castro N, Ángeles López-Cabarcos M, Miramontes-Viña V, et al. (2023) Sustainable energy transition and circular economy: The heterogeneity of potential investors in rural community renewable energy projects. Environ Dev Sustain. https://doi.org/10.1007/s10668-022-02898-z.
    [49] D'Souza C, Yiridoe EK (2014) Social acceptance of wind energy development and planning in rural communities of Australia: A consumer analysis. Energy Policy 74: 262–270. http://dx.doi.org/10.1016/j.enpol.2014.08.035. doi: 10.1016/j.enpol.2014.08.035
    [50] Süsser D, Kannen A (2017) Renewables? Yes, please!': perceptions and assessment of community transition induced by renewable-energy projects in North Frisia. Sustain Sci 12: 563–578. http://dx.doi.org/10.1007/s11625-017-0433-5. doi: 10.1007/s11625-017-0433-5
    [51] Monteleone M, Cammerino ARB, Libutti A (2018) Agricultural "greening" and cropland diversification trends: Potential contribution of agroenergy crops in Capitanata (South Italy). Land use policy 70: 591–600. https://doi.org/10.1016/j.landusepol.2017.10.038. doi: 10.1016/j.landusepol.2017.10.038
    [52] Sæ tórsdóttir AD, Hall CM (2019) Contested development paths and rural communities: Sustainable energy or sustainable tourism in Iceland? Sustain 11. https://doi.org/10.3390/su11133642.
    [53] Yildiz Ö (2014) Financing renewable energy infrastructures via financial citizen participation - The case of Germany. Renew Energy 68: 677–685. http://dx.doi.org/10.1016/j.renene.2014.02.038. doi: 10.1016/j.renene.2014.02.038
    [54] Lowitzsch J, Hanke F (2019) Energy transition: Financing consumer co-ownership in renewables. Energy Transit Financ Consum Co-ownersh Renewables 139–162. http://dx.doi.org/10.1007/978-3-319-93518-8.
    [55] Schreuer A, Weismeier-Sammer D (2010) Energy cooperatives and local Ownership in the field of renewable energy technologies: A literature review.
    [56] McKenna R (2018) The double-edged sword of decentralized energy autonomy. Energy Policy 113: 747–750. https://doi.org/10.1016/j.enpol.2017.11.033. doi: 10.1016/j.enpol.2017.11.033
    [57] Lam PTI, Law AOK (2016) Crowdfunding for renewable and sustainable energy projects: An exploratory case study approach. Renew Sustain Energy Rev 60: 11–20. http://dx.doi.org/10.1016/j.rser.2016.01.046. doi: 10.1016/j.rser.2016.01.046
    [58] Martínez-Alonso P, Hewitt R, Pacheco JD, et al. (2016) Losing the roadmap: Renewable energy paralysis in Spain and its implications for the EU low carbon economy. Renew Energy 89: 680–694. http://dx.doi.org/10.1016/j.renene.2015.12.004. doi: 10.1016/j.renene.2015.12.004
    [59] Ryberg DS, Robinius M, Stolten D (2018) Evaluating land eligibility constraints of renewable energy sources in Europe. Energies 11: 1–19. http://dx.doi.org/10.3390/en11051246. doi: 10.3390/en11051246
    [60] Medina-Santana AA, Flores-Tlacuahuac A, Cárdenas-Barrón LE, et al. (2020) Optimal design of the water-energy-food nexus for rural communities. Comput Chem Eng 143: 107120. https://doi.org/10.1016/j.compchemeng.2020.107120. doi: 10.1016/j.compchemeng.2020.107120
    [61] Singh A, Yadav A, Sinha S (2022) Hybrid Power Systems: Solution to Rural Electrification. Curr Sustain Energy Reports 9: 77–93. https://doi.org/10.1007/s40518-022-00206-x. doi: 10.1007/s40518-022-00206-x
    [62] Zhang G, Shi Y, Maleki A, et al. (2020) Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach. Renew Energy 156: 1203–1214. https://doi.org/10.1016/j.renene.2020.04.010. doi: 10.1016/j.renene.2020.04.010
    [63] Elkadeem MR, Younes A, Sharshir SW, et al. (2021) Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis. Appl Energy 295: 117071. https://doi.org/10.1016/j.apenergy.2021.117071. doi: 10.1016/j.apenergy.2021.117071
    [64] Izadyar N, Ong HC, Chong WT, et al. (2016) Investigation of potential hybrid renewable energy at various rural areas in Malaysia. J Clean Prod 139: 61–73. http://dx.doi.org/10.1016/j.jclepro.2016.07.167. doi: 10.1016/j.jclepro.2016.07.167
    [65] Angelis-Dimakis A, Biberacher M, Dominguez J, et al. (2011) Methods and tools to evaluate the availability of renewable energy sources. Renew Sustain Energy Rev 15: 1182– http://dx.doi.org/1200.10.1016/j.rser.2010.09.049. doi: 10.1016/j.rser.2010.09.049
    [66] Šúri M, Huld TA, Dunlop ED, et al. (2007) Potential of solar electricity generation in the European Union member states and candidate countries. Sol Energy 81: 1295– http://dx.doi.org/1305.10.1016/j.solener.2006.12.007. doi: 10.1016/j.solener.2006.12.007
    [67] Barragán-Escandón E, Zalamea-León E, Terrados-Cepeda J, et al. (2019) Factores que influyen en la selección de energías renovables en la ciudad. Eure 45: 259–277. http://dx.doi.org/10.4067/S0250-71612019000100259. doi: 10.4067/S0250-71612019000100259
    [68] Potrč S, Čuček L, Martin M, et al. (2021) Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050. Renew Sustain Energy Rev 146. http://dx.doi.org/10.1016/j.rser.2021.111186.
    [69] Roberts JJ, Cassula AM, Osvaldo Prado P, et al. (2015) Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina. Renew Sustain Energy Rev 41: 568–583. https://doi.org/10.1016/j.rser.2014.08.066. doi: 10.1016/j.rser.2014.08.066
    [70] Fridleifsson IB (2001) Geothermal energy for the benefit of the people. Renew Sustain Energy Rev 5: 299–312. https://doi.org/10.1016/S1364-0321(01)00002-8. doi: 10.1016/S1364-0321(01)00002-8
    [71] Hurter S, Schellschmidt R (2003) Atlas of geothermal resources in Europe. Geothermics 32: 779–787. https://doi.org/10.1016/S0375-6505(03)00070-1. doi: 10.1016/S0375-6505(03)00070-1
    [72] EUROPEAN SMALL HYDROPOWER ASSOCIATION (2006) Guía para el desarrollo de una pequeña central hidroeléctrica, Bruselas.
    [73] Espejo Marín C, García Marín R, Aparicio Guerrero AE (2016) La energía minihidráulica en los planes de fomento de las energías renovables en España, Paisaje, cultura territorial y vivencia de la geografía: Libro homenaje al profesor Alfredo Morales Gil, 507–533.
    [74] IDAE (2006) Minicentrales Hidroeléctricas, Madrid.
    [75] Espejo Marín C, García Marín R, Aparicio Guerrero AE (2017) El resurgimiento de la energía minihidráulica en España y su situación actual 1. Rev Geogr Norte Gd 67: 115–143.
    [76] Palla A, Gnecco I, La Barbera P, et al. (2016) An Integrated GIS Approach to Assess the Mini Hydropower Potential. Water Resour Manag 30: 2979–2996. https://doi.org/10.1007/s11269-016-1318-6. doi: 10.1007/s11269-016-1318-6
    [77] Bergmann A, Colombo S, Hanley N (2008) Rural versus urban preferences for renewable energy developments. Ecol Econ 65: 616–625. https://doi.org/10.1016/j.ecolecon.2007.08.011. doi: 10.1016/j.ecolecon.2007.08.011
    [78] Kalkbrenner BJ, Roosen J (2016) Citizens' willingness to participate in local renewable energy projects: The role of community and trust in Germany. Energy Res Soc Sci 13: 60–70. http://dx.doi.org/10.1016/j.erss.2015.12.006. doi: 10.1016/j.erss.2015.12.006
    [79] Wang J-J, Jing Y-Y, Zhang C-F, et al. (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew Sustain Energy Rev 13: 2263–2278. http://doi.org/10.1016/j.enpol.2013.09.059. doi: 10.1016/j.enpol.2013.09.059
    [80] Boon FP, Dieperink C (2014) Local civil society based renewable energy organisations in the Netherlands: Exploring the factors that stimulate their emergence and development. Energy Policy 69: 297–307. http://doi.org/10.1016/j.enpol.2014.01.046. doi: 10.1016/j.enpol.2014.01.046
    [81] Loomis DG, Hayden J, Noll S, et al. (2016) Economic Impact of Wind Energy in Illinois. J Bus Valuat Econ Loss Anal 11: 3–23. http://doi.org/10.1515/jbvela-2015-0008. doi: 10.1515/jbvela-2015-0008
    [82] Bere J, Jones C, Jones S, et al. (2017) Energy and development in the periphery: A regional perspective on small hydropower projects. Environ Plan C Polit Sp 35: 355–375. http://journals.sagepub.com/doi/10.1177/0263774X16662029.
    [83] Bauwens T (2016) Explaining the diversity of motivations behind community renewable energy. Energy Policy 93: 278–290. http://dx.doi.org/10.1016/j.enpol.2016.03.017. doi: 10.1016/j.enpol.2016.03.017
    [84] Dóci G, Vasileiadou E (2015) 'Let's do it ourselves' Individual motivations for investing in renewables at community level. Renew Sustain Energy Rev 49: 41–50. http://doi.org/10.1016/j.rser.2015.04.051. doi: 10.1016/j.rser.2015.04.051
    [85] Helming K, Pérez-Soba M (2011) Landscape Scenarios and Multifunctionality : Making Land Use Impact. Ecol Soc 16 http://www.ecologyandsociety.org/vol16/iss1/art50/ES-2011-4042.pdf.
    [86] Wiggering H, Dalchow C, Glemnitz M, et al. (2006) Indicators for multifunctional land use - Linking socio-economic requirements with landscape potentials. Ecol Indic 6: 238–249. https://doi.org/10.1016/j.ecolind.2005.08.014. doi: 10.1016/j.ecolind.2005.08.014
    [87] Krewitt W, Nitsch J (2003) The potential for electricity generation from on-shore wind energy under the constraints of nature conservation: A case study for two regions in Germany. Renew Energy 28: 1645–1655. https://doi.org/10.1016/S0960-1481(03)00008-9. doi: 10.1016/S0960-1481(03)00008-9
    [88] Chiabrando R, Fabrizio E, Garnero G (2009) The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk. Renew Sustain Energy Rev 13: 2441–2451. https://doi.org/10.1016/j.rser.2009.06.008. doi: 10.1016/j.rser.2009.06.008
    [89] Tsoutsos T, Frantzeskaki N, Gekas V (2005) Environmental impacts from the solar energy technologies. Energy Policy 33: 289–296. https://doi.org/10.1016/S0301-4215(03)00241-6. doi: 10.1016/S0301-4215(03)00241-6
    [90] Dijkman TJ, Benders RMJ (2010) Comparison of renewable fuels based on their land use using energy densities. Renew Sustain Energy Rev 14: 3148–3155. http://dx.doi.org/10.1016/j.rser.2010.07.029. doi: 10.1016/j.rser.2010.07.029
    [91] Russi D (2008) An integrated assessment of a large-scale biodiesel production in Italy: Killing several birds with one stone? Energy Policy 36: 1169–1180. https://doi.org/10.1016/j.enpol.2007.11.016. doi: 10.1016/j.enpol.2007.11.016
    [92] Huston MA, Marland G (2003) Carbon management and biodiversity. J Environ Manage 67: 77–86. https://doi.org/10.1016/S0301-4797(02)00190-1. doi: 10.1016/S0301-4797(02)00190-1
    [93] Robertson GP, Dale VH, Doering OC, et al. (2008) Agriculture: Sustainable biofuels redux. Science (80-) 322: 49–50. https://doi.org/10.1126/science.1161525. doi: 10.1126/science.1161525
    [94] Janhunen S, Hujala M, Pätäri S (2014) Owners of second homes, locals and their attitudes towards future rural wind farm. Energy Policy 73: 450–460. http://dx.doi.org/10.1016/j.enpol.2014.05.050. doi: 10.1016/j.enpol.2014.05.050
    [95] Paz Espinosa M, Pizarro-Irizar C (2018) Is renewable energy a cost-effective mitigation resource? An application to the Spanish electricity market. Renew Sustain Energy Rev 94: 902–914. https://doi.org/10.1016/j.rser.2018.06.065. doi: 10.1016/j.rser.2018.06.065
    [96] Capellán-Pérez I, Campos-Celador Á, Terés-Zubiaga J (2018) Renewable Energy Cooperatives as an instrument towards the energy transition in Spain. Energy Policy 123: 215–229. https://doi.org/10.1016/j.enpol.2018.08.064. doi: 10.1016/j.enpol.2018.08.064
    [97] Campos I, Pontes Luz G, Marín González E, et al. (2020) Regulatory challenges and opportunities for collective renewable energy prosumers in the EU. Energy Policy 138. https://doi.org/10.1016/j.enpol.2019.111212.
    [98] Frieden D, Roberts J, Gubina AF (2019) Overview of emerging regulatory frameworks on collective self-consumption and energy communities in Europe. Int Conf Eur Energy Mark EEM 2019-Septe: 1–6. https://doi.org/10.1109/EEM.2019.8916222.
    [99] Cuesta-Fernandez I, Belda-Miquel S, Calabuig Tormo C (2020) Challengers in energy transitions beyond renewable energy cooperatives: community-owned electricity distribution cooperatives in Spain. Innov Eur J Soc Sci Res 0: 1–20. https://doi.org/10.1080/13511610.2020.1732197. doi: 10.1080/13511610.2020.1732197
    [100] Heras-Saizarbitoria I, Sáez L, Allur E, et al. (2018) The emergence of renewable energy cooperatives in Spain: A review. Renew Sustain Energy Rev 94: 1036–1043. https://doi.org/10.1016/j.rser.2018.06.049- doi: 10.1016/j.rser.2018.06.049-
    [101] Romero-Rubio C, de Andrés Díaz JR (2015) Sustainable energy communities: A study contrasting Spain and Germany. Energy Policy 85: 397–409. http://dx.doi.org/10.1016/j.enpol.2015.06.012. doi: 10.1016/j.enpol.2015.06.012
    [102] Burgueño J, Lladós MG (2014) The municipal map of Spain: A geographical description. Bol la Asoc Geogr Esp 407–414.
    [103] Delgado Viñas C (2019) Depopulation processes in European Rural Areas: A case study of Cantabria (Spain). Eur Countrys 11: 341–369. http://dx.doi.org/10.2478/euco-2019-0021. doi: 10.2478/euco-2019-0021
    [104] Martínez-Filgueira X, Peón D, López-Iglesias E (2017) Intra-rural divides and regional planning: an analysis of a traditional emigration region (Galicia, Spain). Eur Plan Stud 25: 1237–1255. http://dx.doi.org/10.1080/09654313.2017.1319465 doi: 10.1080/09654313.2017.1319465
    [105] López-Iglesias E, Peón D, Rodríguez-Álvarez J (2018) Mobility innovations for sustainability and cohesion of rural areas: A transport model and public investment analysis for Valdeorras (Galicia, Spain). J Clean Prod 172: 3520–3534. https://doi.org/10.1016/j.jclepro.2017.05.149. doi: 10.1016/j.jclepro.2017.05.149
    [106] Pose DP, Martínez-Filgueira XM, López-Iglesias E (2020) Productive vs. Residential economy: Factors behind the recovery of rural areas in socioeconomic decline. Rev Galega Econ 29: 1–30. https://doi.org/10.15304/rge.29.2.6744. doi: 10.15304/rge.29.2.6744
    [107] Copena D, Simón X (2018) Wind farms and payments to landowners: Opportunities for rural development for the case of Galicia. Renew Sustain Energy Rev 95: 38–47. https://doi.org/10.1016/j.rser.2018.06.043. doi: 10.1016/j.rser.2018.06.043
    [108] Simón X, Copena D, Montero M (2019) Strong wind development with no community participation. The case of Galicia (1995–2009). Energy Policy 133: 110930. https://doi.org/10.1016/j.enpol.2019.110930. doi: 10.1016/j.enpol.2019.110930
    [109] Montoya FG, Aguilera MJ, Manzano-Agugliaro F (2014) Renewable energy production in Spain: A review. Renew Sustain Energy Rev 33: 509–531. https://doi.org/10.1016/j.rser.2014.01.091. doi: 10.1016/j.rser.2014.01.091
    [110] Instituto Enerxético de Galicia (2020) Avance do Balance Enerxético de Galicia 2018.
    [111] Copena Rodríguez D, Simón Fernández X (2018) Enerxía eólica e desenvolvemento local en galicia: os parques eólicos singulares municipais. Rev Galega Econ 27: 31–48.
    [112] Maimó-Far A, Tantet A, Homar V, et al. (2020) Predictable and unpredictable climate variability impacts on optimal renewable energy mixes: The example of Spain. Energies 13. https://doi.org/10.3390/en13195132.
    [113] Gregorio M De (2020) Biomasa en España. Generación de valor añadido y análisis prospectivo.
    [114] Benedek J, Sebestyén TT, Bartók B (2018) Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development. Renew Sustain Energy Rev 90: 516–535. https://doi.org/10.1016/j.rser.2018.03.020. doi: 10.1016/j.rser.2018.03.020
    [115] Igliński B, Buczkowski R, Cichosz M (2015) Biogas production in Poland - Current state, potential and perspectives. Renew Sustain Energy Rev 50: 686–695. https://doi.org/10.1016/j.rser.2015.05.013. doi: 10.1016/j.rser.2015.05.013
    [116] Corcoran; L, Coughlan; P, McNabola A (2013) Energy recovery potential using micro hydropower in water supply networks in the UK and Ireland. Water Supply 13: 552–560. https://doi.org/10.2166/ws.2013.050. doi: 10.2166/ws.2013.050
    [117] Langer K, Decker T, Roosen J, et al. (2018) Factors influencing citizens' acceptance and non-acceptance of wind energy in Germany. J Clean Prod 175: 133–144. https://doi.org/10.1016/j.jclepro.2017.11.221. doi: 10.1016/j.jclepro.2017.11.221
    [118] Colmenar-Santos A, Folch-Calvo M, Rosales-Asensio E, et al. (2016) The geothermal potential in Spain. Renew Sustain Energy Rev 56: 865–886. http://dx.doi.org/10.1016/j.rser.2015.11.070. doi: 10.1016/j.rser.2015.11.070
    [119] Østergaard PA, Mathiesen BV, Möller B, et al. (2010) A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass. Energy 35: 4892–4901. http://dx.doi.org/10.1016/j.energy.2010.08.041. doi: 10.1016/j.energy.2010.08.041
    [120] Gan X, Fernandez IC, Guo J, et al. (2017) When to use what: Methods for weighting and aggregating sustainability indicators. Ecol Indic 81: 491–502. http://dx.doi.org/10.1016/j.ecolind.2017.05.068. doi: 10.1016/j.ecolind.2017.05.068
    [121] Li T, Zhang H, Yuan C, et al. (2012) A PCA-based method for construction of composite sustainability indicators. Int J Life Cycle Assess 17: 593–603. http://dx.doi.org/10.1007/s11367-012-0394-y. doi: 10.1007/s11367-012-0394-y
    [122] Salvati L, Carlucci M (2014) A composite index of sustainable development at the local scale: Italy as a case study. Ecol Indic 43: 162–171. http://dx.doi.org/10.1016/j.ecolind.2014.02.021. doi: 10.1016/j.ecolind.2014.02.021
    [123] Kotzee I, Reyers B (2016) Piloting a social-ecological index for measuring flood resilience: A composite index approach. Ecol Indic 60: 45–53. http://dx.doi.org/10.1016/j.ecolind.2015.06.018. doi: 10.1016/j.ecolind.2015.06.018
    [124] Schlossarek M, Syrovátka M, Vencálek O (2019) The Importance of Variables in Composite Indices: A Contribution to the Methodology and Application to Development Indices, Springer Netherlands.
    [125] OECD (2008) Handbook on constructing composite indicators: methodology and user guide.
    [126] Greco S, Ishizaka A, Tasiou M, et al. (2019) On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Soc Indic Res 141: 61–94. https://doi.org/10.1007/s11205-017-1832-9. doi: 10.1007/s11205-017-1832-9
    [127] Pearson K (1901) LⅢ. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos Mag J Sci 2: 559–572.
    [128] Jolliffe IT (1986) Principal component analysis., New York, Springer.
    [129] Jollife IT (2002) Principal Component Analysis, New York, Springer - Verlang.
    [130] Li Y, Shi X, Yao L (2016) Evaluating energy security of resource-poor economies: A modified principle component analysis approach. Energy Econ 58: 211–221. http://dx.doi.org/10.1016/j.eneco.2016.07.001. doi: 10.1016/j.eneco.2016.07.001
    [131] de Freitas DS, de Oliveira TE, de Oliveira JM (2019) Sustainability in the Brazilian pampa biome: A composite index to integrate beef production, social equity, and ecosystem conservation. Ecol Indic 98: 317–326. https://doi.org/10.1016/j.ecolind.2018.10.012. doi: 10.1016/j.ecolind.2018.10.012
    [132] González-García S, Rama M, Cortés A, et al. (2019) Embedding environmental, economic and social indicators in the evaluation of the sustainability of the municipalities of Galicia (northwest of Spain). J Clean Prod 234: 27–42. https://doi.org/10.1016/j.jclepro.2019.06.158. doi: 10.1016/j.jclepro.2019.06.158
    [133] Nogués S, González-González E, Cordera R (2019) Planning regional sustainability: An index-based framework to assess spatial plans. Application to the region of Cantabria (Spain). J Clean Prod 225: 510–523.https://doi.org/10.1016/j.jclepro.2019.03.328. doi: 10.1016/j.jclepro.2019.03.328
    [134] Pontarollo N, Serpieri C (2018) A composite policy tool to measure territorial resilience capacity. Socioecon Plann Sci 100669. https://doi.org/10.1016/j.seps.2018.11.006.
    [135] Tapia C, Abajo B, Feliu E, et al. (2017) Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for European cities. Ecol Indic 78: 142–155. https://doi.org/10.1016/j.ecolind.2017.02.040. doi: 10.1016/j.ecolind.2017.02.040
    [136] Lévy Mangin JP, Varela Mallou J (2003) Análisis Multivariante para las Ciencias Sociales, España.
    [137] López-Roldán P, Fachelli S (2016) Parte Ⅲ. Análisis. Capítulo Ⅲ. 11. Análisis Factorial. Metodol la Investig Soc cuantitativa 140.
    [138] Nardo M, Saisana M, Tarantola A, et al. (2005) Tools for Composite Indicators Building. 1–134. http://collection.europarchive.org/dnb/20070702132253/http://farmweb.jrc.ec.europa.eu/ci/Document/EUR 21682 EN.pdf.
    [139] Stockdale A (2006) Migration: Pre-requisite for rural economic regeneration? J Rural Stud 22: 354–366. https://doi.org/10.1016/j.jrurstud.2005.11.001. doi: 10.1016/j.jrurstud.2005.11.001
    [140] Borch J, Odd A, Førde L, et al. (2008) Resource Configuration and Creative Practices of Community Entrepreneurs. J Enterprising Communities People Places Glob Econ 2. https://doi.org/10.1108/17506200810879943.
    [141] Baumgartner D, Schulz T, Seidl I (2013) Quantifying entrepreneurship and its impact on local economic performance: A spatial assessment in rural Switzerland. Entrep Reg Dev 25: 222–250. https://doi.org/10.1080/08985626.2012.710266. doi: 10.1080/08985626.2012.710266
    [142] Hussain A, Arif SM, Aslam M (2017) Emerging renewable and sustainable energy technologies: State of the art. Renew Sustain Energy Rev 71: 12–28. https://doi.org/10.1016/j.rser.2016.12.033 doi: 10.1016/j.rser.2016.12.033
    [143] Gormally AM, Whyatt JD, Timmis RJ, et al. (2012) A regional-scale assessment of local renewable energy resources in Cumbria, UK. Energy Policy 50: 283–293. http://dx.doi.org/10.1016/j.enpol.2012.07.015. doi: 10.1016/j.enpol.2012.07.015
    [144] Mainali B, Silveira S (2015) Using a sustainability index to assess energy technologies for rural electrification. Renew Sustain Energy Rev 41: 1351–1365. http://dx.doi.org/10.1016/j.rser.2014.09.018. doi: 10.1016/j.rser.2014.09.018
    [145] Slee B (2015) Is there a case for community-based equity participation in Scottish on-shore wind energy production? Gaps in evidence and research needs. Renew Sustain Energy Rev 41: 540–549. http://dx.doi.org/10.1016/j.rser.2014.08.064. doi: 10.1016/j.rser.2014.08.064
    [146] Berka AL, Creamer E (2018) Taking stock of the local impacts of community owned renewable energy: A review and research agenda. Renew Sustain Energy Rev 82: 3400–3419. https://doi.org/10.1016/j.rser.2017.10.050. doi: 10.1016/j.rser.2017.10.050
  • Environ-10-02-017-s001.pdf
  • This article has been cited by:

    1. Kaihong Zhao, Existence, Stability and Simulation of a Class of Nonlinear Fractional Langevin Equations Involving Nonsingular Mittag–Leffler Kernel, 2022, 6, 2504-3110, 469, 10.3390/fractalfract6090469
    2. Saeed M. Ali, Mohammed S. Abdo, Abdellatif Ben Makhlouf, Qualitative Analysis for Multiterm Langevin Systems with Generalized Caputo Fractional Operators of Different Orders, 2022, 2022, 1563-5147, 1, 10.1155/2022/1879152
    3. Choukri Derbazi, Hadda Hammouche, Abdelkrim Salim, Mouffak Benchohra, Weak solutions for fractional Langevin equations involving two fractional orders in banach spaces, 2023, 34, 1012-9405, 10.1007/s13370-022-01035-3
    4. Songkran Pleumpreedaporn, Weerawat Sudsutad, Chatthai Thaiprayoon, Juan E. Nápoles, Jutarat Kongson, A Study of ψ-Hilfer Fractional Boundary Value Problem via Nonlinear Integral Conditions Describing Navier Model, 2021, 9, 2227-7390, 3292, 10.3390/math9243292
    5. Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Calogero Vetro, Multipoint BVP for the Langevin Equation under φ -Hilfer Fractional Operator, 2022, 2022, 2314-8888, 1, 10.1155/2022/2798514
    6. Kanoktip Kotsamran, Weerawat Sudsutad, Chatthai Thaiprayoon, Jutarat Kongson, Jehad Alzabut, Analysis of a Nonlinear ψ-Hilfer Fractional Integro-Differential Equation Describing Cantilever Beam Model with Nonlinear Boundary Conditions, 2021, 5, 2504-3110, 177, 10.3390/fractalfract5040177
    7. Abdulkafi M. Saeed, Mohammed A. Almalahi, Mohammed S. Abdo, Explicit iteration and unique solution for \phi -Hilfer type fractional Langevin equations, 2021, 7, 2473-6988, 3456, 10.3934/math.2022192
    8. Houas MOHAMED, Sequential fractional pantograph differential equations with nonlocal boundary conditions: Uniqueness and Ulam-Hyers-Rassias stability, 2022, 5, 2636-7556, 29, 10.53006/rna.928654
    9. Naoufel Hatime, Ali El Mfadel, M.’hamed Elomari, Said Melliani, EXISTENCE AND STABILITY OF SOLUTIONS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING THE GRÖNWALL-FREDHOLM-TYPE INEQUALITY, 2024, 1072-3374, 10.1007/s10958-024-07202-0
    10. Ricardo Almeida, Euler–Lagrange-Type Equations for Functionals Involving Fractional Operators and Antiderivatives, 2023, 11, 2227-7390, 3208, 10.3390/math11143208
    11. Hamid Baghani, Juan J. Nieto, Some New Properties of the Mittag-Leffler Functions and Their Applications to Solvability and Stability of a Class of Fractional Langevin Differential Equations, 2024, 23, 1575-5460, 10.1007/s12346-023-00870-4
    12. Hacen Serrai, Brahim Tellab, Sina Etemad, İbrahim Avcı, Shahram Rezapour, Ψ-Bielecki-type norm inequalities for a generalized Sturm–Liouville–Langevin differential equation involving Ψ-Caputo fractional derivative, 2024, 2024, 1687-2770, 10.1186/s13661-024-01863-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3513) PDF downloads(123) Cited by(3)

Figures and Tables

Figures(1)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog