In this paper, we define the Lorentzian approximations of a 3-dimensional Lorentzian α-Sasakian manifold. Moreover, we define the notions of the intrinsic curvature for regular curves, the intrinsic geodesic curvature of regular curves on Lorentzian surfaces and spacelike surfaces and the intrinsic Gaussian curvature of Lorentzian surfaces and spacelike surfaces away from characteristic points. Furthermore, we derive the expressions of those curvatures and prove Gauss-Bonnet theorems for the Lorentzian surfaces and spacelike surfaces in the Lorentzian α-Sasakian manifold.
Citation: Haiming Liu, Xiawei Chen, Jianyun Guan, Peifu Zu. Lorentzian approximations for a Lorentzian α-Sasakian manifold and Gauss-Bonnet theorems[J]. AIMS Mathematics, 2023, 8(1): 501-528. doi: 10.3934/math.2023024
[1] | Haiming Liu, Jiajing Miao . Gauss-Bonnet theorem in Lorentzian Sasakian space forms. AIMS Mathematics, 2021, 6(8): 8772-8791. doi: 10.3934/math.2021509 |
[2] | Muslum Aykut Akgun . Frenet curves in 3-dimensional $ \delta $-Lorentzian trans Sasakian manifolds. AIMS Mathematics, 2022, 7(1): 199-211. doi: 10.3934/math.2022012 |
[3] | Mehmet Gülbahar . Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds. AIMS Mathematics, 2021, 6(2): 1366-1376. doi: 10.3934/math.2021085 |
[4] | B. B. Chaturvedi, Kunj Bihari Kaushik, Prabhawati Bhagat, Mohammad Nazrul Islam Khan . Characterization of solitons in a pseudo-quasi-conformally flat and pseudo- $ W_8 $ flat Lorentzian Kähler space-time manifolds. AIMS Mathematics, 2024, 9(7): 19515-19528. doi: 10.3934/math.2024951 |
[5] | Fatemah Mofarreh, Rashad A. Abdel-Baky . Spacelike ruled surfaces with stationary Disteli-axis. AIMS Mathematics, 2023, 8(4): 7840-7855. doi: 10.3934/math.2023394 |
[6] | Awatif Al-Jedani, Rashad A. Abdel-Baky . One-parameter Lorentzian spatial kinematics and Disteli's formulae. AIMS Mathematics, 2023, 8(9): 20187-20200. doi: 10.3934/math.20231029 |
[7] | Özgür Boyacıoğlu Kalkan . On normal curves and their characterizations in Lorentzian n-space. AIMS Mathematics, 2020, 5(4): 3510-3524. doi: 10.3934/math.2020228 |
[8] | Tong Wu, Yong Wang . Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces. AIMS Mathematics, 2021, 6(11): 11655-11685. doi: 10.3934/math.2021678 |
[9] | Melek Erdoğdu, Ayșe Yavuz . On differential analysis of spacelike flows on normal congruence of surfaces. AIMS Mathematics, 2022, 7(8): 13664-13680. doi: 10.3934/math.2022753 |
[10] | Tanumoy Pal, Ibrahim Al-Dayel, Meraj Ali Khan, Biswabismita Bag, Shyamal Kumar Hui, Foued Aloui . Generalized warped product submanifolds of Lorentzian concircular structure manifolds. AIMS Mathematics, 2024, 9(7): 17997-18012. doi: 10.3934/math.2024877 |
In this paper, we define the Lorentzian approximations of a 3-dimensional Lorentzian α-Sasakian manifold. Moreover, we define the notions of the intrinsic curvature for regular curves, the intrinsic geodesic curvature of regular curves on Lorentzian surfaces and spacelike surfaces and the intrinsic Gaussian curvature of Lorentzian surfaces and spacelike surfaces away from characteristic points. Furthermore, we derive the expressions of those curvatures and prove Gauss-Bonnet theorems for the Lorentzian surfaces and spacelike surfaces in the Lorentzian α-Sasakian manifold.
Lorentzian α-Sasakian manifolds were introduced by Yildiz and Murathan in [1]. Then, many researchers began to study properties of α-Sasakian manifolds, such as second order parallel tensors [2], pseudosymmetric Lorentzian α-Sasakian manifolds [3], some special classes of Lorentzian α-Sasakian manifolds [4,5,6], certain derivations [7], Ricci solitons [8,9], Lorentzian α-Sasakian manifolds admitting a quarter-symmetric metric connection [10], semi-symmetry type α-Sasakian manifolds [11] and M-projectively semi-symmetric Lorentzian α-Sasakian manifolds [12]. Recently, Wang studied Gauss-Bonnet theorems in the BCV spaces and the twisted Heisenberg group [13], the affine group and the group of rigid motions of the Minkowski plane [14] by using the method of Riemannian approximations which first took by Balogh, Tyson and Vecchi to prove a Heisenberg version of the Gauss-Bonnet theorem[15,16]. Riemannian approximations can be extended to the case for any Lie group equipped with left-invariant Lorentzian metric g, named Lorentzian approximations. Some typical works of Lorentzian approximations in a Lorentzian Heisenberg group are obtained in [17,18]. Inspired by the above work, we proved Gauss-Bonnet theorems in the rototranslation group [19,20], Lorentzian Sasakian space forms [21] and the group of rigid motions of the Minkowski plane with the general left-invariant metric [22]. However, very little is known about the Gauss-Bonnet theorem in 3-dimensional Lorentzian α-Sasakian manifolds. This paper attempts to solve this question by employing the method of the Lorentzian approximation scheme.
We restrict our attention to Lorentzian α-Sasakian manifolds. As we know, in [8], a differentiable manifold of dimension (2n+1) is called a Lorentzian α-Sasakian manifold if it admits a (1,1) tensor field ϕ, a vector field ξ, 1-form η and Lorentzian metric g which satisfy on M, respectively, that
ϕ2=I+η⊗ξ,η(ξ)=−1,η∘ϕ=0,ϕξ=0, |
g(ϕX,ϕY)=g(X,Y)+η(X)η(Y),g(X,ξ)=η(X), |
∇Xξ=αϕX,(∇Xη)Y=αg(ϕX,Y), |
where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g on M. Meanwhile, a Lorentzian α-Sasakian model of 3-dimensional Lorentzian α-Sasakian manifolds was constructed in [8]. In this paper, we focus on Gauss-Bonnet theorems for the Lorentzian surfaces and spacelike surfaces in the Lorentzian α-Sasakian model. We define the notions of the intrinsic curvature for regular curves, the intrinsic geodesic curvature of regular curves on Lorentzian surfaces and spacelike surfaces and the intrinsic Gaussian curvature of Lorentzian surfaces and spacelike surfaces away from characteristic points. Furthermore, we derive the expressions of those curvatures and prove Gauss-Bonnet theorems for the Lorentzian surfaces and spacelike surfaces in the 3-dimensional Lorentzian α-Sasakian manifold.
The paper is organized in the following way. Basic notions on (Sα,g) and the Lorentzian approximants (Sα,gL) of the α-Sasakian manifold are given in Section 2. The sub-Lorentzian limit of curvature of curves in (Sα,gL) will be computed. In Sections 3 and 4, we compute sub-Lorentzian limits of geodesic curvature of curves on Lorentzian surfaces and the intrinsic Gaussian curvature of Lorentzian surfaces in (Sα,gL). In Section 5, we prove the Gauss-Bonnet theorem for Lorentzian surfaces. In Section 6, we prove the Gauss-Bonnet theorem for spacelike surfaces. Finally, we summarize the conclusions and add an appendix section on length measure and surface measure.
In this section, some basic notions on a Lorentzian α-Sasakian manifold will be introduced. First, we recall the Lorentzian α-Sasakian model of 3-dimensional Lorentzian α-Sasakian manifolds constructed in [8]. Let α be some constant, and set Sα={(x,y,z)∈R3|z>0} equipped with a Lorentzian metric
g=e2zdx2+e2z(−dx+dy)2−1α2dz2. |
Then, (Sα,g) was called the Lorentzian α-Sasakian model of 3-dimensional Lorentzian α-Sasakian manifold, where (x,y,z) are the standard coordinates of R3. Let E1,E2 and E3 be the vector fields on Sα given by
E1=α∂∂z, E2=e−z(∂∂x+∂∂y), E3=e−z∂∂y, | (2.1) |
which are linearly independent at each point p of Sα. Then,
∂∂x=ez(E2−E3), ∂∂y=ezE3, ∂∂z=1αE1, | (2.2) |
and span{E1,E2,E3}=T(Sα). One can check the following brackets
[E1,E2]=−αE2, [E2,E3]=0, [E1,E3]=−αE3. | (2.3) |
Let H=span{E1,E2} be the horizontal distribution on Sα. If we let
θ1=1αdz,θ2=ezdx,θ=ez(−dx+dy), |
then H=kerθ. To describe the Lorentzian approximants of Sα, let L>0 and define a metric
gL=−θ1⊗θ1+θ2⊗θ2+Lθ⊗θ, |
so that E1,E2,~E3:=L−12E3 are a pseudo orthonormal basis on T(Sα) with respect to gL. Hereafter, we denote the Lorentzian approximants to Sα by (Sα,gL) and write SLα instead of (Sα,gL). Note that g=g1 is the Lorentzian metric on Sα. A non-zero vector x∈SLα is called spacelike, null or timelike if ⟨x,x⟩>0, ⟨x,x⟩=0 or ⟨x,x⟩<0, respectively. We define the norm of the vector x∈SLα by ∥x∥=√∣⟨x,x⟩∣. We assume that ∇L is the Levi-civita connection on SLα with respect to gL. Using the Koszul formula and (2.3), we have
Proposition 2.1. The Levi-civita connection on SLα relative to the coordinate frame E1,E2,~E3 is given by
∇LE1E1=0, ∇LE1E2=0, ∇LE1E3=0,∇LE2E1=αE2, ∇LE2E2=αE1, ∇LE2E3=0,∇LE3E1=αE3, ∇LE3E2=0, ∇LE3E3=αLE1. | (2.4) |
Proof. It follows from a direct application of the Koszul identity, which here simplifies
2⟨∇LEiEj,Ek⟩L=⟨[Ei,Ej],Ek⟩L−⟨[Ej,Ek],Ei⟩L+⟨[Ek,Ei],Ej⟩L, | (2.5) |
where i,j,k=1,2,3.
For a Lorentzian α-Sasakian manifold M, one can compute the curvature tensor of the connection ∇L by the formula RL(X,Y)Z=∇LX∇LYZ−∇LY∇LXZ−∇L[X,Y]Z or RL(X,Y)Z=α2[g(Y,Z)X−g(X,Z)Y]. Then, we get the following proposition.
Proposition 2.2. The curvature tensor of SLα is given by
RL(E1,E2)E1=α2E2, RL(E1,E2)E2=α2E1, RL(E1,E2)E3=0,RL(E1,E3)E1=α2E3, RL(E1,E3)E2=0, RL(E1,E3)E3=α2LE1,RL(E2,E3)E1=0, RL(E2,E3)E2=−α2E3, RL(E2,E3)E3=α2LE2. | (2.6) |
Proof. We take RL(X,Y)Z=α2[g(Y,Z)X−g(X,Z)Y] to compute curvature tensor of SLα. Taking
RL(E1,E2)E1=α2[g(E2,E1)E1−g(E1,E1)E2], |
for example, we compute
g(E2,E1)E1=0,g(E1,E1)E2=−E2, |
and hence
RL(E1,E2)E1=α2E2. |
In this section, we will compute the sub-Lorentzian limit of curvature for curves in SLα. Our approach is to define sub-Lorentzian objects as limits of horizontal objects in SLα, where a family of metrics gL is essentially obtained as an anisotropic blow-up of the Lorentzian metric g. At the heart of this approach is the fact that the intrinsic horizontal geometry does not change with L. Let β:I→SLα be a regular curve, where I is an open interval in R. The regular curve β is called a spacelike curve, timelike curve or null curve if ˙β(t) is a spacelike vector, timelike vector or null vector at any t∈I, respectively.
Definition 3.1. Let β:I→SLα be a C1 smooth curve, and we say that β is regular if ˙β≠0 for every t∈I. Moreover we say that β(t) is a horizontal point of β if
θ(˙β(t))=eβ3(˙β2(t)−˙β1(t))=0, |
where β(t)=(β1(t),β2(t),β3(t)).
As is well known, if β is a curve with arc length parametrization, then the standard definition of curvature for β in Riemannian geometry is κLβ:=‖∇L˙β˙β‖L. If β is a curve with an arbitrary parametrization, then we give the definitions as follows:
Definition 3.2. Let β:I→SLα be a C2-smooth regular curve.
(1) If ∇L˙β˙β is a spacelike vector, we define the curvature κLβ of β at β(t) by
κLβ:=√‖∇L˙β˙β‖2L‖˙β‖4L−⟨∇L˙β˙β,˙β⟩2L⟨˙β,˙β⟩3L. | (3.1) |
(2) If ∇L˙β˙β is a timelike vector, we define the curvature κLβ of β at β(t) by
κLβ:=√‖∇L˙β˙β‖2L‖˙β‖4L+⟨∇L˙β˙β,˙β⟩2L⟨˙β,˙β⟩3L. | (3.2) |
Proposition 3.3. Suppose that β:I→SLα is a C2-smooth regular curve.
(1) If ∇L˙β˙β is a spacelike vector, then
κLβ={{−[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]2+[2˙β3˙β1eβ3+eβ3¨β1]2+L[˙β3θ(˙β(t))+ddt(θ(˙β(t)))]2}×[−1α2˙β32+e2β3˙β21+L(θ(˙β(t)))2]−2−{−1α˙β3[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]+eβ3˙β1[2˙β3˙β1eβ3+eβ3¨β1]+Lθ(˙β(t))[˙β3θ(˙β(t))+ddt(θ(˙β(t)))]}2×[−1α2˙β32+e2β3˙β21+L(θ(˙β(t)))2]−3}12. | (3.3) |
In particular, if β(t) is a horizontal point of β,
κLβ={{−[1α¨β3+αe2β3˙β21]2+[2˙β3˙β1eβ3+eβ3¨β1]2+L[ddt(θ(˙β(t)))]2}×[−1α2˙β32+e2β3˙β21]−2−{−1α˙β3[1α¨β3+αe2β3˙β21]+eβ3˙β1[2˙β3˙β1eβ3+eβ3¨β1]}2×[−1α2˙β32+e2β3˙β21]−3}12. | (3.4) |
(2) If ∇L˙β˙β is a timelike vector, then
κLβ={−{−[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]2+[2˙β3˙β1eβ3+eβ3¨β1]2+L[(˙β3θ(˙β(t)))+ddt(θ(˙β(t)))]2}×[−1α2˙β32+e2β3˙β21+L(θ(˙β(t)))2]−2+{−1α˙β3[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]+eβ3˙β1[2˙β3˙β1eβ3+eβ3¨β1]+Lθ(˙β(t))[˙β3θ(˙β(t))+ddt(θ(˙β(t)))]}2×[−1α2˙β32+e2β3˙β21+L(θ(˙β(t)))2]−3}12. | (3.5) |
In particular, if β(t) is a horizontal point of β,
κLβ={−{−[1α¨β3+αe2β3˙β21]2+[2˙β3˙β1eβ3+eβ3¨β1]2+L[ddt(θ(˙β(t)))]2}×[−1α2˙β32+e2β3˙β21]−2+{−1α˙β3[1α¨β3+αe2β3˙β21]+eβ3˙β1[2˙β3˙β1eβ3+eβ3¨β1]}2×[−1α2˙β32+e2β3˙β21]−3}12. | (3.6) |
Proof. By (2.2), we have
˙β(t)=1α˙β3E1+eβ3˙β1E2+θ (˙β(t))E3. | (3.7) |
By Proposition 2.1 and (3.7), we obtain
∇L˙βE1=αeβ3˙β1E2+αθ(˙β(t))E3, |
∇L˙βE2=αeβ3˙β1E1, |
∇L˙βE3=αLθ(˙β(t))E1. | (3.8) |
Coming by (3.7), we have
∇L˙β˙β=[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]E1+[2˙β3˙β1eβ3+eβ3¨β1]E2+[˙β3θ(˙β(t))+ddt(θ(˙β(t)))]E3. | (3.9) |
By (3.7), (3.9), and the definition of κLβ, we get Proposition 3.3.
Definition 3.4. Let β:I→SLα be a C2-smooth regular curve. We define the intrinsic curvature κ∞β of β at β(t) to be
κ∞β:=limL→∞κLβ, |
if the limit exists.
We introduce the following notation : For continuous functions f1,f2:(0,+∞)→R,
f1(L)∼f2(L), as L→+∞⇔limL→∞f1(L)f2(L)=1. |
Proposition 3.5. Suppose that β:I→SLα is a C2-smooth regular curve in the Lorentzian α-Sasakian manifold.
(1) If ∇L˙β˙β is a spacelike vector, then κ∞β does not exist, if θ(˙β(t))≠0.
κ∞β={{−[1α¨β3+αe2β3˙β21]2+[2˙β3˙β1eβ3+eβ3¨β1]2}×[−1α2˙β32+e2β3˙β21]−2−{−1α˙β3[1α¨β3+αe2β3˙β21]+eβ3˙β1[2˙β3˙β1eβ3+eβ3¨β1]}2×[−1α2˙β32+e2β3˙β21]−3}12, | (3.10) |
if θ(˙β(t))=0 and ddt(θ(˙β(t)))=0.
limL→∞κLβ√L=|ddt(θ(˙β(t)))||−1α2˙β32+e2β3˙β21|,if θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0. | (3.11) |
(2) If ∇L˙β˙β is a timelike vector, then
κ∞β=∣α∣,if θ(˙β(t))≠0. | (3.12) |
κ∞β={−{−[1α¨β3+αe2β3˙β21]2+[2˙β3˙β1eβ3+eβ3¨β1]2}×[−1α2˙β32+e2β3˙β21]−2+{−1α˙β3[1α¨β3+αe2β3˙β21]+eβ3˙β1[2˙β3˙β1eβ3+eβ3¨β1]}2×[−1α2˙β32+e2β3˙β21]−3}12, | (3.13) |
if θ(˙β(t))=0 and ddt(θ(˙β(t)))=0.
limL→∞κLβ√L=√−[ddt(θ(˙β(t)))]2|−1α2˙β32+e2β3˙β21|,if θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0. | (3.14) |
Therefore, this situation does not exist.
Proof. (1) If ∇L˙β˙β is a spacelike vector, we have
⟨∇L˙ββ,∇L˙ββ⟩L∼−α2L2(θ(˙β(t)))4 as L→+∞, |
⟨˙β,˙β⟩L∼L[θ(˙β(t))]2, ⟨∇L˙β˙β,˙β⟩2L∼O(L2) as L→+∞. |
Thus,
⟨∇L˙ββ,∇L˙ββ⟩L‖˙β‖4L→−α2 as L→+∞, |
⟨∇L˙β˙β,˙β⟩2L⟨˙β,˙β⟩3L→0 as L→+∞, |
κ∞β=√−α2. |
So, using (3.1), we know κ∞β does not exist, if θ(˙β(t))≠0. If θ(˙β(t))=0 and ddt(θ(˙β(t)))=0, we get (3.10). If θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0, then
⟨∇L˙ββ,∇L˙ββ⟩L∼L[ddt(θ(˙β(t)))]2 as L→+∞, |
⟨˙β,˙β⟩L=−1α2˙β32+e2β3˙β12, |
⟨∇L˙β˙β,˙β⟩2L∼O(1) as L→+∞. |
By (3.1), we get (3.11).
(2) If ∇L˙β˙β is a timelike vector, we have
⟨∇L˙ββ,∇L˙ββ⟩L∼α2L2(θ(˙β(t)))4 as L→+∞, |
⟨˙β,˙β⟩L∼L[θ(˙β(t))]2, ⟨∇L˙β˙β,˙β⟩2L∼O(L2) as L→+∞, |
κ∞β=√α2=∣α∣. |
We get (3.12). If θ(˙β(t))=0 and ddt(θ(˙β(t)))=0, we get (3.13). If θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0,
limL→∞κLβ√L=√−[ddt(θ(˙β(t)))]2|−1α2˙β32+e2β3˙β21|, |
and then, the situation does not exist.
In this section, we will compute the expressions of intrinsic geodesic curvatures of curves on Lorentzian surfaces in SLα. We will say that a surface SLα is regular if S is a C2-smooth compact and oriented surface. In particular we will assume that there exists a C2-smooth function h:SLα→R such that
S={(x1,x2,x3)∈SLα:h(x1,x2,x3)=0}, |
and ∇SLαh=hx1∂x1+hx2∂x2+hx3∂x3≠0. Let ∇Hh=E1(h)E1+E2(h)E2. A point x∈S is called characteristic if ∇Hh(x)=(0,0). Our computations will be local and away from characteristic points of S. Let us define first p:=E1h,q:=E2h, and r:=~E3h. Since −p2+q2>0, we say S⊂SLα is a horizontal spacelike surface. When L→+∞, −p2+q2+r2>0. Then, we define
l:=√−p2+q2,lL:=√−p2+q2+r2,ˉp:=pl,ˉq:=ql,¯pL:=plL,¯qL:=qlL,¯rL:=rlL. | (4.1) |
In particular, −ˉp2+ˉq2=1. These functions are well defined at every non-characteristic point. Let
NL=−¯pLE1+¯qLE2+¯rL~E3,F1=ˉqE1−ˉpE2,F2=¯rLˉpE1−¯rLˉqE2+llL~E3. | (4.2) |
Then, NL is the unit spacelike normal vector to S, and F1 is a unit timelike vector, while F2 is a unit spacelike vector of S. {F1,F2} is the orthonormal basis of S. Let ˙β=aF1+bF2. We define JL(˙β)=aF2+bF1 if β is a C2-smooth spacelike curve, and we define JL(˙β)=−aF2−bF1 if β is a C2-smooth timelike curve. Then, gL(˙β,JL(˙β))=0 and (˙β,JL(˙β)) have the same orientation with {F1,F2}.
For every U,V∈TS, we define ∇S,LUV=π∇LUV where π:TSLα→TS is the projection. Then, ∇S,L is the Levi-Civita connection on S with respect to the metric gL. By (3.9), (4.2) and
∇S,L˙β˙β=−⟨∇L˙β˙β,F1⟩LF1+⟨∇L˙β˙β,F2⟩LF2, | (4.3) |
we have
∇S,L˙β˙β=−{−ˉq[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}F1+{−¯rLˉp[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]−¯rLˉq[2˙β3˙β1eβ3+eβ3¨β1]+llLL12[˙β3θ(˙β(t))+ddt(θ(˙β(t)))]}F2. | (4.4) |
Therefore, when θ(˙β(t))=0, we have
∇S,L˙β˙β={ˉq[1α¨β3+αe2β3˙β21]+ˉp[2˙β3˙β1eβ3+eβ3¨β1]}F1+{−¯rLˉp[1α¨β3+αe2β3˙β21]−¯rLˉq[2˙β3˙β1eβ3+eβ3¨β1]+llLL12ddt(θ(˙β(t)))}F2. | (4.5) |
Definition 4.1. Let S⊂SLα be a Lorentzian regular surface, β:I→S be a C2-smooth regular curve.
(1) If ∇S,L˙β˙β is a spacelike vector, the geodesic curvature κLβ,S of β at β(t) is defined as
κLβ,S:=√‖∇S,L˙β˙β‖2S,L‖˙β‖4S,L−⟨∇S,L˙β˙β,˙β⟩2S,L⟨˙β,˙β⟩3S,L. | (4.6) |
(2) If ∇S,L˙β˙β is a timelike vector, the geodesic curvature κLβ,S of β at β(t) is defined as
κLβ,S:=√‖∇S,L˙β˙β‖2S,L‖˙β‖4S,L+⟨∇S,L˙β˙β,˙β⟩2S,L⟨˙β,˙β⟩3S,L. | (4.7) |
Definition 4.2. Let S⊂SLα be a Lorentzian regular surface, β:I→S be a C2-smooth regular curve. We define the intrinsic geodesic curvature κ∞β,S of β at β(t) to be
κ∞β,S:=limL→+∞κLβ,S, |
if the limit exists.
Proposition 4.3. Let S⊂SLα be a Lorentzian regular surface, β:I→S be a C2-smooth regular curve.
(1) If ∇S,L˙β˙β is a spacelike vector, then κ∞β,S does not exist, if θ(˙β(t))≠0.
κ∞β,S=0, if θ(˙β(t))=0 and ddt(θ(˙β(t)))=0, |
limL→+∞κLβ,S√L=|ddt(θ(˙β(t)))|(1αˉq˙β3+eβ3ˉp˙β1)2, if θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0. | (4.8) |
(2) If ∇S,L˙β˙β is a timelike vector, then
κ∞β,S=∣αˉq∣, if θ(˙β(t))≠0, | (4.9) |
κ∞β,S=0, if θ(˙β(t))=0 and ddt(θ(˙β(t)))=0, |
limL→+∞κLβ,S√L does not exist, if θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0.
Proof. (1) If ∇S,L˙β˙β is a spacelike vector, by (3.7) and ˙β∈TS, we have
˙β(t)=aF1+bF2=(aˉq+b¯rLˉp)E1+(−aˉp−b¯rLˉq)E2+bllLL−12E3. |
Thus,
{aˉq+b¯rLˉp=1α˙β3,−aˉp−b¯rLˉq=eβ3˙β1,bllLL−12=θ(˙β(t)), |
and we have
{a=1α˙β3ˉq+eβ3˙β1ˉp,b=lLlL12θ(˙β(t)). |
Thus,
˙β(t)=(1α˙β3ˉq+eβ3˙β1ˉp)F1+lLlL12θ(˙β(t))F2. | (4.10) |
By (4.4), we have
⟨∇S,L˙β˙β,∇S,L˙β˙β⟩S,L=−{−ˉq[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}2+{−¯rLˉp[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]−¯rLˉq[2˙β3˙β1eβ3+eβ3¨β1]+llLL12[˙β3θ(˙β(t))+ddt(θ(˙β(t)))]}2. | (4.11) |
Similarly, we have that when θ(˙β(t))≠0,
⟨˙β,˙β⟩S,L=−(1α˙β3ˉq+eβ3˙β1ˉp)2+(lLl)2L(θ(˙β(t)))2∼L(θ(˙β(t)))2 as L→+∞. | (4.12) |
By (4.4) and (4.9), we have
⟨∇S,L˙β˙β,˙β⟩S,L∼M0L, | (4.13) |
where M0 does not depend on L. By Definition 4.1, (4.11)–(4.13), κ∞β,S does not exist, if θ(˙β(t))≠0. When θ(˙β(t))=0 and ddt(θ(˙β(t)))=0, then
⟨∇S,L˙β˙β,∇S,L˙β˙β⟩S,L=−{−ˉq[1α¨β3+αe2β3˙β21]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}2+{−¯rLˉp[1α¨β3+αe2β3˙β21]−¯rLˉq[2˙β3˙β1eβ3+eβ3¨β1]}2∼−{−ˉq[1α¨β3+αe2β3˙β21]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}2 as L→+∞, | (4.14) |
and
⟨˙β,˙β⟩S,L=−(1α˙β3ˉq+eβ3˙β1ˉp)2 as L→+∞, | (4.15) |
⟨∇S,L˙β˙β,˙β⟩S,L=(1α˙β3ˉq+eβ3˙β1ˉp){−ˉq[1α¨β3+αe2β3˙β21]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}, | (4.16) |
where ˉA=−ˉq[1α¨β3+αe2β3˙β21]−ˉp[2˙β3˙β1eβ3+eβ3¨β1] and ˉB=1α˙β3ˉq+eβ3˙β1ˉp. By (4.14)–(4.16) and (4.6), we get
κ∞β,S=√−ˉA2ˉB4+ˉA2ˉB2ˉB6=0. |
When θ(˙β(t))=0, and ddt(θ(˙β(t)))≠0, we have
⟨∇S,L˙β˙β,∇S,L˙β˙β⟩S,L∼L[ddt(θ(˙β(t)))]2, |
⟨∇S,L˙β˙β,˙β⟩S,L∼O(1). |
Therefore, (4.8) holds.
(2) If ∇S,L˙β˙β is a timelike vector, by similar calculation, we get (2).
Definition 4.4. Let S⊂SLα be a Lorentzian regular surface, β:I→S be a C2-smooth regular curve. The signed geodesic curvature κL,cβ,S of β at β(t) is defined as
κL,cβ,S:=⟨∇S,L˙β˙β,JL(˙β)⟩S,L‖˙β‖3S,L. |
Definition 4.5. Let S⊂SLα be a Lorentzian regular surface, β:I→S be a C2-smooth regular curve. We define the intrinsic geodesic curvature κ∞β,S of β at the non-characteristic point β(t) to be
κ∞,cβ,S:=limL→+∞κL,cβ,S, |
if the limit exists.
Proposition 4.6. Let S⊂SLα be a Lorentzian regular surface.
(1) If β:I→S is a C2-smooth regular spacelike curve, then
κ∞,cβ,S=−αˉq, if θ(˙β(t))≠0, | (4.17) |
κ∞,cβ,S=0, if θ(˙β(t))=0 and ddt(θ(˙β(t)))=0, |
limL→+∞kL,cβ,S√L=ddt(θ(˙β(t)))−(1αˉq˙β3+eβ3ˉp˙β1)2, if θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0. | (4.18) |
(2) If β:I→S is a C2-smooth regular timelike curve, then
κ∞,cβ,S=αˉq, if θ(˙β(t))≠0, | (4.19) |
κ∞,cβ,S=0, if θ(˙β(t))=0 and ddt(θ(˙β(t)))=0, |
limL→+∞kL,cβ,S√L=ddt(θ(˙β(t)))(1αˉq˙β3+eβ3ˉp˙β1)2, if θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0. | (4.20) |
Proof. For (4.1), by (4.10), we have
JL(˙β)=lLlL12θ(˙β(t))F1+(1α˙β3ˉq+eβ3˙β1ˉp)F2. | (4.21) |
By (4.4) and (4.21), we have
⟨∇S,L˙β˙β,JL(˙β)⟩S,L=lLlL12θ(˙β(t)){−ˉq[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}+(1α˙β3ˉq+eβ3˙β1ˉp){−¯rLˉp[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]−¯rLˉq[2˙β3˙β1eβ3+eβ3¨β1]+llLL12[˙β3θ(˙β(t))+ddt(θ(˙β(t)))]}∼−αL32(θ(˙β(t)))3ˉq as L→+∞, |
∥˙β∥2S,L=−(1α˙β3ˉq+eβ3˙β1ˉp)2+[lLlL12θ(˙β(t))]2∼L(θ(˙β(t)))2 as L→+∞. |
Thus, if θ(˙β(t))≠0, (4.17) holds. When θ(˙β(t))=0 and ddt(θ(˙β(t)))=0, we get
⟨∇S,L˙β˙β,JL(˙β)⟩L,S=(1α˙β3ˉq+eβ3˙β1ˉp){−¯rLˉp[1α¨β3+αe2β3˙β1]−¯rLˉq[2˙β3˙β1eβ3+eβ3¨β1]}∼O(L−12) as L→+∞. |
So, κ∞,cβ,S=0. When θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0, we have
⟨∇S,L˙β˙β,JL(˙β)⟩L,S∼L12(1α˙β3ˉq+eβ3˙β1ˉp)ddt(θ(˙β(t))) as L→+∞. |
We get
limL→+∞kL,cβ,S√L=ddt(θ(˙β(t)))−(1αˉq˙β3+eβ3ˉp˙β1)2. |
(2) If β:I→S is a C2-smooth regular timelike curve, by similar calculation, we get (2).
In this section, we will compute the expression of the sub-Lorentzian limit of the Gaussian curvature of Lorentzian surfaces in SLα. Then, we will prove a Gauss-Bonnet theorem for Lorentzian surfaces in SLα. To do this, we define the second fundamental form IIL of the embedding of S into SLα by
IIL=(⟨∇LF1NL,F1⟩L⟨∇LF1NL,F2⟩L⟨∇LF2NL,F1⟩L⟨∇LF2NL,F2⟩L). |
We have the following theorem.
Theorem 5.1. For the embedding of S into SLα, the second fundamental form IIL of the embedding of S is given by
IIL=(h11h12h21h22), |
where
h11=llL[E1(ˉp)−E2(ˉq)]+αˉpL, |
h12=lLl⟨F1,∇H¯rL⟩L, |
h21=lLl⟨F1,∇H¯rL⟩L+¯rL2√L, |
h22=l2l2L⟨F2,∇H(rl)⟩L−llL¯rL~E3(llL)+(llL)2~E3(¯rL)−α¯pL. |
Proof. Since ⟨F1,NL⟩L=0,⟨F2,NL⟩L=0, we have
⟨∇LF1NL,F1⟩L=−⟨∇LF1F1,NL⟩L,⟨∇LF2NL,F2⟩L=−⟨∇LF2F2,NL⟩L. |
Using the definition of the connection, the identities in (2.4) and grouping terms, we have
∇LF1F1=∇LˉqE1−ˉpE2ˉqE1−ˉpE2=[ˉqE1(ˉq)−ˉpE2(ˉq)+αˉp2]E1−[ˉqE1(ˉp)−ˉpE2(ˉp)+αˉpˉq]E2. |
Since −ˉp2+ˉq2=1, we have −ˉpEiˉp+ˉqEiˉq=0,i=1,2,3. Thus, ˉqE1ˉq=ˉpE1ˉp, ˉqE2ˉq=ˉpE2ˉp. Next, we compute the inner product of this with NL, and we have
⟨∇LF1F1,NL⟩=−llL[E1(ˉp)−E2(ˉq)]−α¯pL. |
We get
h11=−⟨∇LF1F1,NL⟩L=llL[E1(ˉp)−E2(ˉq)]+α¯pL. |
To compute h12, using the definition of the connection, we obtain
∇LF1F2=∇LˉqE1−ˉpE2¯rLˉpE1−¯rLˉqE2+llL~E3=[ˉqE1(¯rLˉp)−ˉpE2(¯rLˉp)+α¯rLˉpˉq]E1−[ˉqE1(¯rLˉq)−ˉpE2(¯rLˉq)+α¯rLˉp2]E2+[ˉqE1(llL)−ˉpE2(llL)]~E3. |
We get
⟨∇LF1F2,NL⟩L=−lLl⟨F1,∇LH¯rL⟩L, |
and therefore
h12=−⟨∇LF1F2,NL⟩L=lLl⟨F1,∇LH¯rL⟩L. |
To compute h21, using the definition of the connection, we obtain
∇LF2F1=∇L¯rLˉpE1−¯rLˉqE2+llL~E3ˉqE1−ˉpE2. |
We get
⟨∇LF2F1,NL⟩L=−lLl⟨F1,∇H¯rL⟩L−¯rL2√L. |
Therefore,
h21=lLl⟨F1,∇H¯rL⟩L+¯rL2√L. |
Since ⟨∇F2NL,F2⟩L=−⟨∇F2F2,NL⟩L, we use the definition of connection, the identities in (2.4) and grouping terms. Taking the inner product with NL and under some simplifications similar to Theorem 4.3 in [23], we have
⟨∇LF2F2,NL⟩L=−l2l2L⟨F2,∇H(rl)⟩L+llL¯rL~E3(llL)−(llL)2~E3(¯rL)+α¯pL, |
and then we get
h22=−⟨∇F2F2,NL⟩L=l2l2L⟨F2,∇H(rl)⟩L−llL¯rL~E3(llL)+(llL)2~E3(¯rL)−α¯pL. |
We define the mean curvature HL of S by
HL:=tr(IIL)=h11+h22. |
Let
KS,L(F1,F2)=−⟨RS,L(F1,F2)F1,F2⟩S,L, KL(F1,F2)=−⟨RL(F1,F2)F1,F2⟩L. |
By the Gauss equation, we have
KS,L(F1,F2)=KL(F1,F2)+det(IIL). | (5.1) |
Proposition 5.2. The horizontal mean curvature H∞ of S⊂Sα away from characteristic point is given in the following form:
H∞=limL→+∞HL=E1(ˉp)−E2(ˉq). | (5.2) |
Proof. By
lLl⟨F2,∇H¯rL⟩=¯rLˉpE1(¯rL)−¯rLˉqE2(¯rL)=ˉprlE1(¯rL)−ˉqrlE2(¯rL)∼O(L−12), |
~E3(¯rL)→0,¯pL→ˉp, |
llL[E1(ˉp)−E2(ˉq)]→E1(ˉp)−E2(ˉq), |
we get (5.2).
Proposition 5.3. Away from characteristic points, we have
KS,L(F1,F2)⟶A+O(L−1) as L→+∞, | (5.3) |
where
A:=−α2(llL)2−llLα¯pL[E1(ˉp)−E2(ˉq)]−α2¯pL2. | (5.4) |
Proof. We compute
RL(F1,F2)F1=α2¯rLˉpE1−α2¯rLˉqE2+α2llL~E3, |
and then
⟨RL(F1,F2)F1,F2⟩L=−α2¯rL2ˉp2+α2¯rL2ˉq2+α2(llL)2. | (5.5) |
By Proposition 2.2, we find
KL(F1,F2)=α2¯rL2ˉp2−α2¯rL2ˉq2−α2(llL)2=−α2(llL)2 as L→∞. | (5.6) |
By the second fundamental form and ∇H(ˉrL)=L−12∇H(E3h|∇Hh|)+O(L−1) as L→+∞, we get
det(IIL)=h11h22−h12h21={llL[E1(ˉp)−E2(ˉq)]+α¯pL}{l2l2L⟨F2,∇H(rl)⟩L−llL~E3(llL)+(llL)2~E3(¯rL)−α¯pL}−lLl⟨F1,∇H¯rL⟩L{lLl⟨F1,∇H¯rL⟩L+¯rL2√L}∼−llLα¯pL[E1(ˉp)−E2(ˉq)]−α2¯pL2 as L→+∞. | (5.7) |
By (5.1), (5.6) and (5.7), we get the desired equation.
We get a Gauss-Bonnet theorem for Lorentzian surface in SLα as follows.
Theorem 5.4. Let S⊂SLα be a regular Lorentzian surface with finitely many boundary components (∂S)i,i∈{1,⋯,n}, given by Euclidean C2-smooth regular and closed spacelike curves βi:[0,2π]→(∂S)i. Let A be Gaussian curvature of Σ in Proposition 5.3 and κ∞,cβi,S the sub-Lorentzian signed geodesic curvature of βi relative to Σ in Proposition 4.6. Supposing that the characteristic set C(S) be the empty set, dσS is defined by (8.5), and ds is defined by (8.1) in Appendix A. Then,
∫SAdσS+n∑i=1∫βiκ∞,cβi,Sds=0. |
Proof. By the discussions in [15], suppose that all points satisfy θ(˙β(t))≠0 on βi. Therefore, using Proposition 4.6, we obtain
κL,cβi,S=κ∞,cβi,S+O(L−1). | (5.8) |
According to the Gauss-Bonnet theorem (see [4], page 90 Theorem 1.4), we get
∫SKS,L1√LdσS,L+n∑i=1∫βiκL,cβi,S1√LdsL=0. | (5.9) |
Therefore, by (5.8), (5.9), (8.6), (5.3) and (8.4), we get
(∫SAdσS+n∑i=1∫βiκ∞,cβi,Sds)+O(L−12)=0. | (5.10) |
Let L go to infinity and use the dominated convergence theorem, and we get the desired result.
In this section, we will prove a Gauss-Bonet theorem for spacelike surface in SLα. Let
p:=E1h,q:=E2h, and r:=~E3h. |
Let p2−q2>0,when L→+∞, and we have p2−q2−r2>0. We define
l:=√p2−q2,lL:=√p2−q2−r2,ˉp:=pl,ˉq:=ql,¯pL:=plL,¯qL:=qlL,¯rL:=rlL. | (6.1) |
In particular, ˉp2−ˉq2=1. These functions are well defined at every non-characteristic point. Let
NL=−¯pLE1+¯qLE2+¯rL~E3,F1=ˉqE1−ˉpE2,F2=¯rLˉpE1−¯rLˉqE2+llL~E3, | (6.2) |
and then NL is the unit timelike normal vector to S, F1 and F2 are the unit spacelike vector of S. {F1,F2} is the orthonormal basis of S. We call S a spacelike surface in Lorentzian α-Sasakian space. We define a linear transformation on TS by JL:TS→TS, and the transformation is well defined:
JL(F1)=F2,JL(F2)=−F1. | (6.3) |
For every U,V∈TS, we define ∇S,LUV=π∇LUV where π:TSLα→TS is the projection. Then, ∇S,L is the Levi-Civita connection on S with respect to the metric gL. By (3.9), (6.2) and
∇S,L˙β˙β=⟨∇L˙β˙β,F1⟩LF1+⟨∇L˙β˙β,F2⟩LF2, | (6.4) |
we have
∇S,L˙β˙β={−ˉq[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}F1+{−¯rLˉp[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]−¯rLˉq[2˙β3˙β1eβ3+eβ3¨β1]+llLL12[˙β3θ(˙β(t))+ddt(θ(˙β(t)))]}F2. | (6.5) |
Therefore, when θ(˙β(t))=0, we have
∇S,L˙β˙β={−ˉq[1α¨β3+αe2β3˙β21]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}F1+{−¯rLˉp[1α¨β3+αe2β3˙β21]−¯rLˉq[2˙β3˙β1eβ3+eβ3¨β1]+llLL12ddt(θ(˙β(t)))}F2. | (6.6) |
Definition 6.1. Let S⊂SLα be a regular spacelike surface, β:I→S be a C2-smooth regular curve. We define the geodesic curvature κLβ,S of β at β(t) by
κLβ,S:=√‖∇S,L˙β˙β‖2S,L‖˙β‖4S,L−⟨∇S,L˙β˙β,˙β⟩2S,L⟨˙β,˙β⟩3S,L. | (6.7) |
Definition 6.2. Let S⊂SLα be a regular spacelike surface, β:I→S be a C2-smooth regular curve. The intrinsic geodesic curvature κ∞β,S of β at β(t) is defined as
κ∞β,S:=limL→+∞κLβ,S, |
if the limit exists.
Proposition 6.3. Let S⊂SLα be a regular spacelike surface, β:I→S be a C2-smooth spacelike curve, and then we have the following assertions:
κ∞β,S=∣αˉq∣, if θ(˙β(t))≠0, | (6.8) |
κ∞β,S=0, if θ(˙β(t))=0 and ddt(θ(˙β(t)))=0, |
limL→+∞κLβ,S√L=|ddt(θ(˙β(t)))|(1αˉq˙β3+eβ3ˉp˙β1)2, if θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0. | (6.9) |
Proof. By (3.7) and ˙β∈TS, we have
˙β(t)=−(1α˙β3ˉq+eβ3˙β1ˉp)F1+lLlL12θ(˙β(t))F2. | (6.10) |
By (6.5), we have
⟨∇S,L˙β˙β,∇S,L˙β˙β⟩S,L={−ˉq[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}2+{−¯rLˉp[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]−¯rLˉq[2˙β3˙β1eβ3+eβ3¨β1]+llLL12[˙β3θ(˙β(t))+ddt(θ(˙β(t)))]}2. | (6.11) |
Similarly, if θ(˙β(t))≠0,
⟨˙β,˙β⟩S,L=(1α˙β3ˉq+eβ3˙β1ˉp)2+(lLl)2L(θ(˙β(t)))2∼L(θ(˙β(t)))2 as L→+∞. | (6.12) |
By (6.5) and (6.10), we have
⟨∇S,L˙β˙β,˙β⟩S,L∼M0L, | (6.13) |
where M0 does not depend on L. By (6.7) and (6.11)-(6.13), (6.8) holds. When θ(˙β(t))=0 and ddt(θ(˙β(t)))=0,
⟨∇S,L˙β˙β,∇S,L˙β˙β⟩S,L={−ˉq[1α¨β3+αe2β3˙β21]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}2+{−¯rLˉp[1α¨β3+αe2β3˙β21]−¯rLˉq[2˙β3˙β1eβ3+eβ3¨β1]}2∼{−ˉq[1α¨β3+αe2β3˙β21]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}2 as L→+∞ | (6.14) |
and
⟨˙β,˙β⟩S,L=(1α˙β3ˉq+eβ3˙β1ˉp)2 as L→+∞. | (6.15) |
⟨∇S,L˙β˙β,˙β⟩S,L=−(1α˙β3ˉq+eβ3˙β1ˉp){−ˉq[1α¨β3+αe2β3˙β21]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}. | (6.16) |
By (6.14)-(6.16) and (6.7), we get
κ∞β,S=0. |
When θ(˙β(t))=0, and ddt(θ(˙β(t)))≠0, we have
⟨∇S,L˙β˙β,∇S,L˙β˙β⟩S,L∼L[ddt(θ(˙β(t)))]2, |
⟨∇S,L˙β˙β,˙β⟩S,L∼O(1). |
Therefore, (6.9) holds.
Proposition 6.4. Let S⊂SLα be a regular spacelike surface. β:I→S is a C2-smooth regular spacelike curve, and then
κ∞,cβ,S=αˉq, if θ(˙β(t))=0; | (6.17) |
κ∞,cβ,S=0, if θ(˙β(t))=0 and ddt(θ(˙β(t)))=0; |
limL→+∞kL,cβ,S√L=−ddt(θ(˙β(t)))(1αˉq˙β3+eβ3ˉp˙β1)2, if θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0. | (6.18) |
Proof. By (6.3) and (6.10), we have
JL(˙β)=−lLlL12θ(˙β(t))F1−(1α˙β3ˉq+eβ3˙β1ˉp)F2. | (6.19) |
By (6.5) and (6.19), we have
⟨∇S,L˙β˙β,JL(˙β)⟩S,L=−lLlL12θ(˙β(t)){−ˉq[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]−ˉp[2˙β3˙β1eβ3+eβ3¨β1]}−(1α˙β3ˉq+eβ3˙β1ˉp){−¯rLˉp[1α¨β3+αe2β3˙β21+αL(θ(˙β(t)))2]−¯rLˉq[2˙β3˙β1eβ3+eβ3¨β1]+llLL12[˙β3θ(˙β(t))+ddt(θ(˙β(t)))]}∼αL32(θ(˙β(t)))3ˉq as L→+∞, |
∥˙β∥2S,L=(1α˙β3ˉq+eβ3˙β1ˉp)2+[lLlL12θ(˙β(t))]2∼L(θ(˙β(t)))2 as L→+∞. |
Therefore, if θ(˙β(t))≠0, (6.17) holds. When θ(˙β(t))=0 and ddt(θ(˙β(t)))=0, we get
⟨∇S,L˙β˙β,JL(˙β)⟩L,S=−(1α˙β3ˉq+eβ3˙β1ˉp){−¯rLˉp[1α¨β3+αe2β3˙β1]−¯rLˉq[2˙β3˙β1eβ3+eβ3¨β1]}∼O(L−12) as L→+∞. |
So, κ∞,cβ,S=0. When θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0, we have
⟨∇S,L˙β˙β,JL(˙β)⟩L,S∼−L12(1α˙β3ˉq+eβ3˙β1ˉp)ddt(θ(˙β(t))) as L→+∞. |
We get
limL→+∞kL,cβ,S√L=−ddt(θ(˙β(t)))(1αˉq˙β3+eβ3ˉp˙β1)2. |
In the following, we investigate the sub-Lorentzian limit of the Gaussian curvature of spacelike surfaces in SLα. The second fundamental form IIL of the embedding of S into SLα is defined as
IIL=(⟨∇LF1NL,F1⟩L⟨∇LF1NL,F2⟩L⟨∇LF2NL,F1⟩L⟨∇LF2NL,F2⟩L). |
Similar to Theorem 4.3 in [23], we have the following.
Theorem 6.5. For the embedding of S into SLα, the second fundamental form IIL of the embedding of S is given by
IIL=(h11h12h21h22), |
where
h11=−llL[E1(ˉp)−E2(ˉq)]−αˉpL, |
h12=(lLl−2llL)⟨F1,∇H¯rL⟩L, |
h21=(2llL−lLl)⟨F1,∇H¯rL⟩L−¯rL2√L−2α¯rL¯qL, |
h22=(lLl−2llL)⟨F2,∇H¯rL⟩L−(llL)2~E3(rl)−2llL¯rL~E3(llL)+α¯pL. |
Proof. We combine
NL=−¯pLE1+¯qLE2+¯rL~E3,F1=ˉqE1−ˉpE2,F2=¯rLˉpE1−¯rLˉqE2+llL~E3, | (6.20) |
and ⟨∇LFiNL,Fj⟩L=−⟨∇LFiFj,NL⟩L,i,j=1,2. By direct calculation, we obtain
∇LF1F1=[ˉqE1(ˉq)−ˉpE2(ˉq)−αˉp2]E1−[ˉqE1(ˉp)−ˉpE2(ˉp)+αˉpˉq]E2. |
Since ˉp2−ˉq2=1, we have ˉpEiˉp−ˉqEiˉq=0,i=1,2. Then, ˉqE1ˉq=ˉpE1ˉp, ˉqE2ˉq=ˉpE2ˉp. Next, we compute the inner product of this with NL, and we have
⟨∇LF1F1,NL⟩=llL[E1(ˉp)−E2(ˉq)]+αˉpL. |
We obtain
h11=−⟨∇LF1F1,NL⟩L=−llL[E1(ˉp)−E2(ˉq)]−αˉpL. |
Similarly, we have
h12=−⟨∇LF1F2,NL⟩L=(lLl−2llL)⟨F1,∇H¯rL⟩L, |
h21=−⟨∇LF2F1,NL⟩L=(2llL−lLl)⟨F1,∇H¯rL⟩L−¯rL2√L−2α¯rL¯qL, |
h22=−⟨∇LF2F2,NL⟩L=(lLl−2llL)⟨F2,∇LH¯rL⟩L−(llL)2~E3(rl)−2llL¯rL~E3(llL)+α¯pL. |
Thus, Theorem 6.5 holds.
By the Gauss equation, we have
KS,L(F1,F2)=KL(F1,F2)−det(IIL). | (6.21) |
Proposition 6.6. The horizontal mean curvature H∞ of S⊂Sα away from characteristic point is given in the following form:
H∞=limL→+∞HL=−E1(ˉp)+E2(ˉq). | (6.22) |
Proof. By
(lLl−2llL)⟨F2,∇H¯rL⟩=¯rLˉpE1(¯rL)−¯rLˉqE2(¯rL)=ˉprlE1(¯rL)−ˉqrlE2(¯rL)∼O(L−12), |
~E3(¯rL)→0,¯pL→ˉp, |
llL[E1(ˉp)−E2(ˉq)]→E1(ˉp)−E2(ˉq), |
we get (6.22).
Proposition 6.7. Away from characteristic points, we have
KS,L(F1,F2)⟶C+O(L−1) as L→+∞, | (6.23) |
where
C:=α2(llL)2+llLα¯pL[E1(ˉp)−E2(ˉq)]+α2¯pL2. | (6.24) |
Proof. We compute
RL(F1,F2)F1=−α2¯rLˉpE1+α2¯rLˉqE2−α2llL~E3, |
and then
⟨RL(F1,F2)F1,F2⟩L=α2¯rL2ˉp2−α2¯rL2ˉq2−α2(llL)2. | (6.25) |
So,
KL(F1,F2)=−⟨RL(F1,F2)F1,F2⟩L=−α2¯rL2ˉp2+α2¯rL2ˉq2+α2(llL)2 as L→+∞. | (6.26) |
By the second fundamental form and ∇H(ˉrL)=L−12∇H(E3h|∇Hh|)+O(L−1) as L→+∞, we get
det(IIL)=h11h22−h12h21∼−llLα¯pL[E1(ˉp)−E2(ˉq)]−α2¯pL2 as L→+∞. | (6.27) |
By (6.21), (6.26) and (6.27), we get the desired equation.
Theorem 6.8. Let S⊂SLα be a regular spacelike surface with finitely many boundary components (∂S)i,i∈{1,⋯,n}, given by Euclidean C2-smooth regular and closed spacelike curves βi:[0,2π]→(∂S)i. Suppose that C is defined by (6.24), dσS is defined by (8.8) and κ∞,cβi,S is the sub-Lorentzian signed geodesic curvature of βi relative to S. If the characteristic set C(S) is the empty set, then
∫SCdσS+n∑i=1∫βiκ∞,cβi,Sds=0. |
Proof. By the discussions in [15], we may assume that there are no points satisfying θ(˙β(t))=0 and ddt(θ(˙β(t)))≠0 on βi. Therefore, using Proposition 6.3, we obtain
κL,cβi,S=κ∞,cβi,S+O(L−1). | (6.28) |
According to the Gauss-Bonnet theorem, we get
∫SKS,L1√LdσS,L+n∑i=1∫βiκL,cβi,S1√LdsL=2πX(S)√L. | (6.29) |
Therefore, by (6.28), (6.29), (8.9), (6.23), (8.3) and (8.4), we get
(∫SCdσS+n∑i=1∫βiκ∞,cβi,Sdˉs)+O(L−12)=2πX(S)√L. | (6.30) |
Let L go to infinity and use the dominated convergence theorem, and we get the desired result.
This paper proved two Gauss-Bonnet theorems for the Lorentzian surfaces and spacelike surfaces in a Lorentzian α-Sasakian manifold by using the method of the Lorentzian approximation scheme. For Lorentzian surfaces, we derive the expressions of the intrinsic curvature for regular curves, the intrinsic geodesic curvature of regular curves on Lorentzian surfaces and the intrinsic Gaussian curvature of Lorentzian surfaces away from characteristic points in the Lorentzian α-Sasakian manifold. Similarly, we get the corresponding results for the spacelike surface.
To prove Gauss-Bonnet theorems, we need to define the Lorentzian length measure and the Lorentzian surface measure. Let us first consider the case of a regular spacelike curve β:I→SLα, and we define the length measure dsL=‖˙β‖Ldt.
Lemma 7.1. Let β:I→SLα be a C2-smooth spacelike curve. Let
ds:=|θ(˙β(t))|dt, dˉs:=121|θ(˙β(t))|(−1α2˙β23+e2β3˙β21)dt. | (7.1) |
Then,
limL→+∞1√L∫βdsL=∫bads. | (7.2) |
When θ(˙β(t))≠0, we have
1√LdsL=ds+dˉsL−1+O(L−2) as L→+∞. | (7.3) |
With the situation of θ(˙β(t))=0, we have
1√LdsL=1√L√−1α2˙β23+e2β3˙β21dt. | (7.4) |
Proof. We know that
‖˙β(t)‖L=√−1α2˙β23+e2β3˙β21+L(θ(˙β(t))), |
and similar to the proof of Lemma 6.1 in [15], we can prove
limL→+∞1√L∫βdsL=∫balimL→+∞1√L‖˙β(t)‖Ldt=∫balimL→+∞1√L√−1α2˙β23+e2β3˙β21+L(θ(˙β(t)))dt=∫bads, |
so we get (8.2). When θ(˙β(t))≠0, we have
1√LdsL=√L−1(−1α2˙β23+e2β3˙β21)+θ(˙β(t))dt. |
Using the Taylor expansion, we can prove
1√LdsL=ds+dˉsL−1+O(L−2) as L→+∞. |
From the definition of dsL and θ(˙β(t))=0, we get
1√LdsL=1√L√−1α2˙β23+e2β3˙β21dt. |
Proposition 7.2. Let S⊂SLα be a regular Lorentzian C2-smooth surface. Let dσS,L denote the surface measure on S with respect to the Lorentzian metric gL. Let
dσS:=−(ˉpθ2−ˉqθ1)∧θ, dˉσS:=−E3hlθ1∧θ2+(E3h)22l2(ˉpθ2−ˉqθ1)∧θ. | (7.5) |
Then,
1√LdσS,L=dσS+dˉσSL−1+O(L−2), as L→+∞. | (7.6) |
If S=f(D) with f=f(h1,h2)=(f1,f2,f3):D⊂R2→SLα, then
limL→+∞1√L∫SdσS,L=∫D{−e4z[(f1)h1(f2)h2−(f1)h1(f1)h2−(f1)h2(f2)h1+(f1)h2(f1)h2]2−1α2e2z[(f3)h1(f2)h2−(f3)h1(f1)h2−(f3)h2(f2)h1+(f3)h2(f1)h1]2}12dh1dh2. |
Proof. It is well known that
gL(E1,⋅)=−θ1, gL(E2,⋅)=θ2, gL(E3,⋅)=Lθ. |
We define F1∗:=gL(F1,⋅), F2∗:=gL(F2,⋅), and then
F∗1=−ˉqθ1−ˉpθ2, F∗2=−ˉrLˉpθ1−ˉrLˉqθ2+llLL12θ. |
Therefore,
1√LdσS,L=1√LF∗1∧F∗2=−llL(ˉpθ2+ˉqθ1)∧θ+1√LˉrLθ1∧θ2. |
Recall
ˉrL=(E3h)L−12√−p2+q2+L−1(E3h)2 |
and the Taylor expansion
1lL=1l−12l3(E3h)2L−1+O(L−2) as L→+∞, |
and we get (8.6). By (2.2), we have
fh1=(f1)h1∂x+(f2)h1∂y+(f3)h1∂z=(f1)h1[ez(E2−E3)]+(f2)h1ezE3+1α(f3)h1E1=1α(f3)h1E1+ez(f1)h1E2+√Lez(−(f1)h1+(f2)h1)~E3, |
and
fh2=(f1)h2∂x+(f2)h2∂y+(f3)h2∂z=1α(f3)h2E1+ez(f1)h2E2+√Lez(−(f1)h2+(f2)h2)~E3. |
Let
ˉNL=|−E1E2~E31α(f3)h1ez(f1)h1√Lez(−(f1)h1+(f2)h1)1α(f3)h2ez(f1)h2√Lez(−(f1)h1+(f2)h1)|=−√Le2z[(f1)h1(f2)h2−(f1)h1(f1)h2−(f1)h2(f2)h1+(f1)h2(f1)h1]E1−√Lαez[(f3)h1(f2)h2−(f3)h1(f1)h2−(f3)h2(f2)h1+(f3)h2(f1)h1]E2+1αez[(f3)h1(f1)h2−(f1)h1(f3)h2]~E3. | (7.7) |
We know that dσS,L=√det(gij)dh1dh2, gij=gL(fhi,fhj), and
det(gij)=⟨ˉNL,ˉNL⟩L=−Le4z[(f1)h1(f2)h2−(f1)h1(f1)h2−(f1)h2(f2)h1+(f1)h2(f1)h1]2+Lα2e2z[(f3)h1(f2)h2−(f3)h1(f1)h2−(f3)h2(f2)h1+(f3)h2(f1)h1)]2+1α2e2z[(f3)h1(f1)h2−(f1)h1(f3)h2]2, |
so by the dominated convergence theorem, we get
limL→+∞1√L∫SdσS,L=∫D{−e4z[(f1)h1(f2)h2−(f1)h1(f1)h2)−(f1)h2(f2)h1+(f1)h2(f1)h2)]2+1α2e2z[(f3)h1(f2)h2−(f3)h1(f1)h2)−(f3)h2(f2)h1+(f3)h2(f1)h1]2}12dh1dh2. |
Proposition 7.3. Let S⊂SLα be a spacelike C2-smooth surface. Let dσS,L denote the surface measure on S with respect to the metric gL. Suppose that
dσS:=(ˉpθ2−ˉqθ1)∧θ, dˉσS:=E3hlθ1∧θ2+(E3h)22l2(ˉpθ2−ˉqθ1)∧θ. | (7.8) |
Then,
1√LdσS,L=dσS+dˉσSL−1+O(L−2), as L→+∞. | (7.9) |
Proof. It is well known that
gL(E1,⋅)=−θ1, gL(E2,⋅)=θ2, gL(E3,⋅)=Lθ. |
Then,
F∗1=−ˉqθ1−ˉpθ2, F∗2=−ˉrLˉpθ1−ˉrLˉqθ2+llLL12θ. |
Therefore,
1√LdσS,L=1√LF∗1∧F∗2=−llL(ˉpθ2+ˉqθ1)∧θ−1√LˉrLθ1∧θ2. |
Recall
ˉrL=(E3h)L−12√p2−q2−L−1(E3h)2 |
and the Taylor expansion
1lL=1l+12l3(E3h)2L−1+O(L−2) as L→+∞, |
and we get (8.9).
This research was funded by the Project of Science and Technology of Heilongjiang Provincial Education Department (Grant No. 1354ZD008), the Reform and Development Foundation for Local Colleges and Universities of the Central Government (Excellent Young Talents project of Heilongjiang Province, Grant No. ZYQN2019071) and the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2021A020).
The authors declare that there are no conflicts of interests in this work.
[1] | A. Yildiz, C. Murathan, On Lorentzian α-Sasakian manifolds, Kyungpook Math. J., 45 (2005), 95–103. |
[2] | L. S. Das, Second order parallel tensors on α-Sasakian manifold, Acta Math. Acad. Paedagog. Nyiregyhaziensis, 2007 (2007), 65–69. |
[3] | D. G. Prakasha, C. S. Bagewadi, N. S. Basavarajappa, On pseudosymmetric Lorentzian α-Sasakian manifolds, Int. J. Pure Appl. Math., 48 (2008), 57–65. |
[4] |
A. Yildiz, M. Turan, C. Murathan, A class of Lorentzian α-Sasakian manifolds, Kyungpook Math. J., 49 (2009), 789–799. https://doi.org/10.5666/KMJ.2009.49.4.789 doi: 10.5666/KMJ.2009.49.4.789
![]() |
[5] | A. Yildiz, M. Turan, B. E. Acet, On three-dimensional Lorentzian α-Sasakian manifolds, Bull. Math. Anal. Appl., 1 (2009), 90–98. |
[6] |
D. G. Prakasha, A. Yildiz, Generalized ϕ-recurrent Lorentzian α-Sasakian manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1., 59 (2010), 53–65. https://doi.org/10.1501/COMMUA1-0000000656 doi: 10.1501/COMMUA1-0000000656
![]() |
[7] | S. Yadav, D. L. Suthar, Certain derivation on Lorentzian α-Sasakian manifold, Math. Decision Sci., 12 (2012), 1–6. |
[8] |
C. S. Bagewadi, G. Ingalahalli, Ricci solitons in Lorentzian α-Sasakian manifolds, Acta Math. Acad. Paedagog. Nyiregyhaziensis, 2012 (2012), 59–68. https://doi.org/10.5402/2012/421384 doi: 10.5402/2012/421384
![]() |
[9] | T. Dutta, N. Basu, B. Arindam, Conformal ricci soliton in Lorentzian α-Sasakian manifolds, Acta Univ. Palacki. Olomuc. Math., 55 (2016), 57–70. |
[10] |
S. Dey, P. Buddhadev, B. Arindam, Some classes of Lorentzian α-Sasakian manifolds admitting a Quarter-symmetric metric connection, Acta. Univ. Palacki. Olomuc. Math., 10 (2017), 1–16. https://doi.org/10.1515/tmj-2017-0041 doi: 10.1515/tmj-2017-0041
![]() |
[11] | K. K. Baishya, P. R. Chowdhury, Semi-symmetry type α-Sasakian manifolds, Acta Math. Univ. Comen., 86 (2017), 91–100. |
[12] |
D. G. Prakasha, F. O. Zengin, V. Chavan, On M-projectively semisymmetric Lorentzian α-Sasakian manifolds, Afr. Math., 28 (2017), 899–908. https://doi.org/10.1007/s13370-017-0493-9 doi: 10.1007/s13370-017-0493-9
![]() |
[13] | Y. Wang, S. Wei, Gauss-Bonnet theorems in the affine group and the group of rigid motions of the Minkowski plane, Results Math., 75 (2021), 1843–1860. |
[14] |
Y. Wang, S. Wei, Gauss-Bonnet theorems in the BCV spaces and the twisted Heisenberg group, Results Math., 75 (2020), 1–21. https://doi.org/10.1007/s00025-020-01254-9 doi: 10.1007/s00025-020-01254-9
![]() |
[15] |
Z. M. Balogh, J. T. Tyson, E. Vecchi, Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group, Math. Z., 287 (2017), 1–38. https://doi.org/10.1007/s00209-016-1815-6 doi: 10.1007/s00209-016-1815-6
![]() |
[16] |
Z. Balogh, J. Tyson, E. Vecchi, Correction to: Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group, Math. Z., 296 (2020), 875–876. https://doi.org/10.1007/s00209-016-1815-6 doi: 10.1007/s00209-016-1815-6
![]() |
[17] |
S. Wei, Y. Wang, Gauss-Bonnet theorems in the Lorentzian Heisenberg group and the Lorentzian group of rigid motions of the Minkowski plane, Symmetry, 13 (2021), 173. https://doi.org/10.3390/sym13020173 doi: 10.3390/sym13020173
![]() |
[18] |
T. Wu, S. Wei, Y. Wang, Gauss-Bonnet theorems and the Lorentzian Heisenberg group, Turk. J. Math., 45 (2021), 718–741. https://doi.org/10.3906/mat-2011-19 doi: 10.3906/mat-2011-19
![]() |
[19] |
H. Liu, J. Miao, W. Li, J. Guan, The sub-Riemannian limit of curvatures for curves and surfaces and a Gauss-Bonnet theorem in the rototranslation group, J. Math., 2021 (2021), 1–22. https://doi.org/10.1155/2021/9981442 doi: 10.1155/2021/9981442
![]() |
[20] |
W. Li, H. Liu, Gauss-Bonnet theorem in the universal covering group of euclidean motion group E(2) with the general left-invariant metric J. Nonlinear Math. Phy., 29 (2022), 626–657. https://doi.org/10.1007/s44198-022-00052-x doi: 10.1007/s44198-022-00052-x
![]() |
[21] |
H. Liu, J. Miao, Gauss-Bonnet theorem in Lorentzian Sasakian space forms, AIMS. Math., 6 (2021), 8772–8791. https://doi.org/10.3934/math.2021509 doi: 10.3934/math.2021509
![]() |
[22] |
J. Guan, H. Liu, The sub-Riemannian Limit of curvatures for curves and curfaces and a Gauss-Bonnet theorem in the group of rigid motions of Minkowski plane with general left-invariant metric, J. Funct. Spaces, 2021 (2021), 1–14. https://doi.org/10.1155/2021/1431082 doi: 10.1155/2021/1431082
![]() |
[23] | L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Birkhäuser, 2007. https://doi.org/10.1007/978-3-7643-8133-2 |
1. | Han Zhang, Haiming Liu, Xiawei Chen, Killing vectors and magnetic curves in Lorentzian α-Sasakian 3-manifolds, 2024, 0217-7323, 10.1142/S0217732324501633 | |
2. | Xiawei Chen, Haiming Liu, Two Special Types of Curves in Lorentzian α-Sasakian 3-Manifolds, 2023, 15, 2073-8994, 1077, 10.3390/sym15051077 | |
3. | Haiming Liu, Song Peng, Gauss–Bonnet Theorem Related to the Semi-Symmetric Metric Connection in the Heisenberg Group, 2024, 16, 2073-8994, 762, 10.3390/sym16060762 |