Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Research article

Approximation of solutions for nonlinear functional integral equations

  • Received: 28 April 2022 Revised: 11 July 2022 Accepted: 18 July 2022 Published: 28 July 2022
  • MSC : 45G10, 45M99, 47H08, 47H10

  • In this article, we consider a class of nonlinear functional integral equations, motivated by an equation that offers increasing evidence to the extant literature through replication studies. We investigate the existence of solution for nonlinear functional integral equations on Banach space C[0,1]. We use the technique of the generalized Darbo's fixed-point theorem associated with the measure of noncompactness (MNC) to prove our existence result. Also, we have given two examples of the applicability of established existence result in the theory of functional integral equations. Further, we construct an efficient iterative algorithm to compute the solution of the first example, by employing the modified homotopy perturbation (MHP) method associated with Adomian decomposition. Moreover, the condition of convergence and an upper bound of errors are presented.

    Citation: Lakshmi Narayan Mishra, Vijai Kumar Pathak, Dumitru Baleanu. Approximation of solutions for nonlinear functional integral equations[J]. AIMS Mathematics, 2022, 7(9): 17486-17506. doi: 10.3934/math.2022964

    Related Papers:

    [1] Ateq Alsaadi, Manochehr Kazemi, Mohamed M. A. Metwali . On generalization of Petryshyn's fixed point theorem and its application to the product of n-nonlinear integral equations. AIMS Mathematics, 2023, 8(12): 30562-30573. doi: 10.3934/math.20231562
    [2] Mohamed M. A. Metwali, Shami A. M. Alsallami . Discontinuous solutions of delay fractional integral equation via measures of noncompactness. AIMS Mathematics, 2023, 8(9): 21055-21068. doi: 10.3934/math.20231072
    [3] Hawsar Ali Hama Rashid, Mudhafar Fattah Hama . Approximate solutions for a class of nonlinear Volterra-Fredholm integro-differential equations under Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 463-483. doi: 10.3934/math.2023022
    [4] Ateq Alsaadi, Mohamed M. A. Metwali . On existence theorems for coupled systems of quadratic Hammerstein-Urysohn integral equations in Orlicz spaces. AIMS Mathematics, 2022, 7(9): 16278-16295. doi: 10.3934/math.2022889
    [5] R. T. Matoog, M. A. Abdou, M. A. Abdel-Aty . New algorithms for solving nonlinear mixed integral equations. AIMS Mathematics, 2023, 8(11): 27488-27512. doi: 10.3934/math.20231406
    [6] Saud Fahad Aldosary, Mohamed M. A. Metwali, Manochehr Kazemi, Ateq Alsaadi . On integrable and approximate solutions for Hadamard fractional quadratic integral equations. AIMS Mathematics, 2024, 9(3): 5746-5762. doi: 10.3934/math.2024279
    [7] Rahul, Nihar Kumar Mahato, Sumati Kumari Panda, Manar A. Alqudah, Thabet Abdeljawad . An existence result involving both the generalized proportional Riemann-Liouville and Hadamard fractional integral equations through generalized Darbo's fixed point theorem. AIMS Mathematics, 2022, 7(8): 15484-15496. doi: 10.3934/math.2022848
    [8] Hu Li . The modified quadrature method for Laplace equation with nonlinear boundary conditions. AIMS Mathematics, 2020, 5(6): 6211-6220. doi: 10.3934/math.2020399
    [9] Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686
    [10] Mouataz Billah Mesmouli, Nahed Mustafa Dahshan, Wael W. Mohammed . Existence results for IBVP of (p,q)-fractional difference equations in Banach space. AIMS Mathematics, 2024, 9(6): 15748-15760. doi: 10.3934/math.2024760
  • In this article, we consider a class of nonlinear functional integral equations, motivated by an equation that offers increasing evidence to the extant literature through replication studies. We investigate the existence of solution for nonlinear functional integral equations on Banach space C[0,1]. We use the technique of the generalized Darbo's fixed-point theorem associated with the measure of noncompactness (MNC) to prove our existence result. Also, we have given two examples of the applicability of established existence result in the theory of functional integral equations. Further, we construct an efficient iterative algorithm to compute the solution of the first example, by employing the modified homotopy perturbation (MHP) method associated with Adomian decomposition. Moreover, the condition of convergence and an upper bound of errors are presented.



    Integral equations play a notable role in applied mathematics. The practical importance of nonlinear integral equations is increasingly evident from studies that incorporate the same in distinct areas of knowledge that include biology, traffic theory, the theory of optimal control, economics, acoustic scattering, etc. [1,2,9,39]. Precisely, extensive studies on these equations are focused on their solutions by employing the MNC [3,29,36,47]. Besides, other concepts like quasi linearization [35] and pseudo-spectral methods [52] have also been used in similar studies. In such studies, the existence of solutions is proved with the theory of fixed points. Verifying the existence of solutions, their behavioral properties are also extensively studied. For instance, Hu et al. [20] discussed the global attractivity and asymptotic stability of the solutions, whereas Wang et al. [51] discussed the local attractivity and local stability, and Aghajani et al. [4] and Alvarez et al. [5] gave globally and uniformly locally attractive solutions. Notably, Banaś et al. [6,8,10] and Dhage et al. [12,13,16,17] also discussed the attractivity of solutions. Xu et al. [53] renders radially symmetric solutions and their asymptotic estimates. Furthermore, systems of equations have been studied and numerical methods to find solutions have also been proposed [19,22,23,25,38,40,48,49].

    In recent times, the fixed point theory (FPT) is applicable in various scientific fields suggested by Banach [11,21,26,37,50]. Also, FPT can be applied to seeking solutions of functional integral equations. Functional integral equations of variety of forms chair as a extraordinary and prestigious branch of non-linear analysis and seek various invocations in demonstrating numerous real-life together with real-world problems (cf. [14,27,28,30,31,32,33,34,41]).

    Recently, several research articles have been published in connection:

    In 2020, El-Sayeda and Ebeada [18] have studied the solvability of self-reference functional and quadratic functional integral equations:

    x(t)=f(t,t0g(s,x(x(s)))ds),andx(t)=f(t,t0f1(s,x(x(s)))dst0f2(s,x(x(s)))ds),respectively,

    where xC[0,T],t[0,T], and g,f1,f2 satisfy Carathéodory condition. To realize the existence of a solution to those integral equations, they used Schauder's fixed point theorem in the Banach space C[0,T].

    In 2020, Deep et al. [15] established the existence of solutions of some non-linear functional integral equations in Banach algebra with applications:

    y(t)=(f(t,y(t),y(θ(t)))+F(t,t0r(t,s,y(θ(s)))ds,t0u(t,s,y(a(s)))ds,y(d(t))))×L(t,b0p(t,s,y(c(s)))ds,b0q(t,s,y(χ(s)))ds,y(η(t))),

    for t[0,b]. Existence result is obtained through the techniques of MNC and Darbo's fixed point theorem in [0,b].

    In 2021, Rabbani et al. [46] established some generalized non‑linear functional integral equations of two variables via measures of noncompactness and numerical methods to solve it,

    y(ζ)=(f(ζ)+A(ζ,y(ζ),Y(α(ζ)))+P(ζ,y(ζ),ζ0F(ζ),r,y(β(r)))dr,y(γ(ζ)))))×(U(ζ,y(ζ),Y(θ(ζ)))+Q(ζ,y(ζ),b0G(ζ,r,y(δ(r))),y(ϕ(ζ))))),

    where ζ[0,b]. To realize the existence of the solution of those integral equations, they have used the concept of MNC and Petryshyn fixed point theorem for the operators in a Banach algebra C([0,b]×[0,b],IR), for b>0 in the form of two operators. They have also discussed an iterative algorithm which was constructed by modified homotopy perturbation method and Adomian polynomials to compute the solution of the example.

    In 2022, Karmakar et al. [24] have studied the existence of solutions to non-linear quadratic integral equations via measure of noncompactness:

    x(t)=g(t,x(t))+λt0μ1(t,s)ς1(s,x(s))dst0μ2(t,s)ς2(s,x(s))ds,

    for t>0, where g, μ1, μ2, ς1, ς2 are real valued continuous functions defined on IR+×IR and λ is a positive constant.

    In our work, we study an existence result for the solution of the following nonlinear functional integral equation:

    ϖ(ϱ)=f(ϱ,ϖ(ϱ),g(ϱ,ϖ(ϱ))10v(ϱ,η,ϖ(η))dη,ϖ(ϱ)ϱ0u(ϱ,η,ϖ(η))dη), (1.1)

    where ϱI=[0,1]. In this work, our main work aims to obtain the existence result of Eq (1.1) on Banach space C[0,1] by applying the technique of the generalized Darbo's fixed-point theorem associated with the MNC, and also, work to obtain the analytic solution of it by applying the semi-analytic method. Now, we describe the importance of why we study Eq (1.1) and what is the perfection of our findings. The first one is that the conditions estimated in several research articles will be analyzed and the second one is that this manuscript affiliate the relevant work in this area. The third one is the bounded condition implies that the "sublinear condition" that has been identified in various literature works does not have a relevant appearance here. Our findings generalized, extended, and complement several results existing in the literature.

    The estimate of our work is organized as follows: In Section 2, some notations, definitions and auxiliary facts are given. In Section 3, we prove the existence of solution by using the generalized Darbo fixed point theorem associated with the MNC on C[0,1]. Also, we present two examples to illustrate our theorem. In Section 4, we state an algorithm to find the solution by using MHP and Adomian decomposition method. Correspondingly, we apply the algorithm to one of the examples for finding an approximate solution and tabulate the errors. Also, we show the graphs of v(ϱ) and ϖ(ϱ). In Section 5, we analyze the errors and provide an upper bound of the errors. Our conclusion is presented in Section 6.

    In this section, we organize some notations, definitions and auxiliary facts which we need throughout the paper.

    Let A be a nonempty subset of a Banach space X. We use ˉA and Conv A to denote the closure and convex closure of A respectively. Also, we use PX to denote the class of nonempty bounded subsets of X and QX to denote the subclass of relatively compact sets of PX. Let C(I) denotes the set of all continuous real valued functions on [0,1], a classical Banach space.

    Definition 2.1. [7] A function μ:PXIR+ is called a MNC on X if the following conditions are satisfied:

    (i) The kernel of the function, ker μ={APX:μ(A)=0}&kerμQX.

    (ii) ABμ(A)μ(B), A,BPX.

    (iii) μ(ˉA)=μ(Conv A)=μ(A), APX.

    (iv) μ(λA+(1λ)B)λμ(A)+(1λ)μ(B), for λ[0,1].

    (v) If {An}n=1 is a sequence of closed sets in PX such that An+1An,nIN and μ(An)0, then n=1An=A.

    Definition 2.2. Define Ψ={ψ:IR+IR+} such that each ψ satisfies the following:

    (i) ψ is an upper semi-continuous function from the right.

    (ii) ψ(ϱ)<ϱ,ϱ[0,1].

    Definition 2.3. We recall the definition of MNC in C(I) as defined in [8]. Let AC(I) such that A is nonempty, bounded, and let ϖA together with ϵ0, then the modulus of continuity of ϖ in I is defined as

    ω(ϖ,ϵ)=supϱ,ηI{|ϖ(ϱ)ϖ(η)|:|ϱη|ϵ}.
    Letω(A,ϵ)=supϖAω(ϖ,ϵ) and ω0(A)=limϵ0ω(A,ϵ).
    Definei(ϖ)=supϱ,ηI{|ϖ(ϱ)ϖ(η)|[|ϖ(ϱ)ϖ(η)|]:ηϱ}andi(A)=supϖAi(ϖ).

    Now, MNC is defined as

    μ(A)=ω0(A)+i(A).

    Theorem 2.1. [16]Let A be a nonempty, closed, bounded together with convex subset of a Banach space, and let T:AA be a continuous function satisfying

    μ(TB)ψ(μ(B)),BA(B), (2.1)

    for some MNC μ and some ψΨ. Then, there exist at least one fixed point in T.

    This theorem is known as the generalized Darbo fixed point theorem.

    In this section, we prove the nonlinear equation (1.1) has a solution in the Banach space C(I), with the supremum norm.

    The nonlinear equation (1.1) is studied with the following assumptions:

    (A1) The function f:I×IR×IR×IRIR is continuous such that f:I×IR+×IR+×IR+IR+. Also, there exists a function ψ:IR+IR+ such that ψ(0)=0 and ψ(ϱ)<ϱ2together with ψ(ϱ)+ψ(η)ψ(ϱ+η) satisfying

    |f(ϱ,u1,v1,w1)f(ϱ,u2,v2,w2)|ψ(|u1u2|)+|v1v2|+|w1w2|. (3.1)

    For u,v,wIR+, ϱf(ϱ,u,v,w) is increasing on I and for ϱI and uIR+, vf(ϱ,u,v,w) and wf(ϱ,u,v,w) are increasing on I and for some N>0, f(ϱ,0,0,0)N.

    (A2) The function g:I×IRIR is continuous and there exists κ,κ0 such that

    |g(ϱ,0)|κand|g(ϱ,y1)g(ϱ,y2)|κ|y1y2|. (3.2)

    (A3) The functions u:I×I×IRIR and v:I×I×IRIR are continuous such that u:I×I×IR+IR+ and v:I×I×IR+IR+. For arbitrarily fixed ηI (ϖ(η) is also fixed), ϱu(ϱ,η,ϖ(η)) and ϱv(ϱ,η,ϖ(η)) are increasing in I. Also, there exists a constant l[0,14) such that

    10v(ϱ,η,ϖ(η))dηlandϱ0u(ϱ,η,ϖ(η))dηl. (3.3)

    (A4) There exists r0>0 such that

    ψ(r0)+(r0(κ+1)+κ)l+Nr0. (3.4)

    (A5) The constant κl<1/4.

    Theorem 3.1. Under the above assumptions, the nonlinear equation (1.1) has at least one solution in C(I).

    Proof. Let T:C(I)C(I) be an operator defined as

    (Tϖ)(ϱ)=f(ϱ,ϖ(ϱ),g(ϱ,ϖ(ϱ))10v(ϱ,η,ϖ(η))dη,ϖ(ϱ)ϱ0u(ϱ,η,ϖ(η))dη).

    The operator T having a fixed point in C(I) is equivalent to the nonlinear equation (1.1) having a solution in C(I). Hence, we prove T has a fixed point by using Theorem 2.1.

    By applying system of Eq (1.1) and imposed postulates (A1–A5), we estimate for every ϱI such that

    |(Tϖ)(ϱ)||f(ϱ,ϖ(ϱ),g(ϱ,ϖ(ϱ))10v(ϱ,η,ϖ(η))dη,ϖ(ϱ)ϱ0u(ϱ,η,ϖ(η))dη)f(ϱ,0,0,0)|+|f(ϱ,0,0,0)|ψ(|ϖ(ϱ)|)+|g(ϱ,ϖ(ϱ))|10|v(ϱ,η,ϖ(η))dη|+|ϖ(ϱ)|ϱ0|u(ϱ,η,ϖ(η))dη|+|f(ϱ,0,0,0)|ψ(|ϖ(ϱ)|)+(|g(ϱ,ϖ(ϱ))|+|ϖ(ϱ)|)l+|f(ϱ,0,0,0)|ψ(|ϖ(ϱ)|)+(|g(ϱ,ϖ(ϱ))g(ϱ,0)|+|g(ϱ,0)|+|ϖ(ϱ)|)l+|f(ϱ,0,0,0)|ψ(|ϖ(ϱ)|)+(κ|ϖ(ϱ)|+κ+|ϖ(ϱ)|)l+|f(ϱ,0,0,0)|ψ(ϖ)+(ϖ(κ+1)+κ)l+N.

    Therefore,

    Tϖψ(ϖ)+(ϖ(κ+1)+κ)l+N.

    For r0>0 such that ϖr0, by assumption (A4), Tϖr0, i.e. T maps Br0 into itself. Now, we prove T is continuous. Let {ϖn}n=1 be a sequence in Br0 such that ϖnϖ, we obtain

    |(Tϖn)(ϱ)(Tϖ)(ϱ)|=|f(ϱ,ϖn(ϱ),g(ϱ,ϖn(ϱ))10v(ϱ,η,ϖn(η))dη,ϖn(ϱ)ϱ0u(ϱ,η,ϖn(η))dη)f(ϱ,ϖ(ϱ),g(ϱ,ϖ(ϱ))10v(ϱ,η,ϖ(η))dη,ϖ(ϱ)ϱ0u(ϱ,η,ϖ(η))dη)|ψ(|ϖn(ϱ)ϖ(ϱ)|)+|g(ϱ,ϖn(ϱ))10v(ϱ,η,ϖn(η))dηg(ϱ,ϖ(ϱ))10v(ϱ,η,ϖ(η))dη|+|ϖn(ϱ)ϱ0u(ϱ,η,ϖn(η))dηϖ(ϱ)ϱ0u(ϱ,η,ϖ(η))dη|.

    Let us now consider

    |g(ϱ,ϖn(ϱ))10v(ϱ,η,ϖn(η))dηg(ϱ,ϖ(ϱ))10v(ϱ,η,ϖ(η))dη||g(ϱ,ϖn(ϱ))|10|v(ϱ,η,ϖn(η))v(ϱ,η,ϖ(η))|dη+|g(ϱ,ϖn(ϱ))g(ϱ,ϖ(ϱ))|10|v(ϱ,η,ϖ(η))|dη|g(ϱ,ϖn(ϱ))|Vr0(ϵ)+κl|ϖn(ϱ)ϖ(ϱ)|(κϖn+κ)Vr0(ϵ)+κlϖnϖ,

    and

    |ϖn(ϱ)ϱ0u(ϱ,η,ϖn(η))dηϖ(ϱ)ϱ0u(ϱ,η,ϖ(η))dη||ϖn(ϱ)ϱ0u(ϱ,η,ϖn(η))dηϖn(ϱ)ϱ0u(ϱ,η,ϖ(η))dη|+|ϖn(ϱ)ϱ0u(ϱ,η,ϖ(η))dηϖ(ϱ)ϱ0u(ϱ,η,ϖ(η))dη|ϖnUr0(ϵ)+lϖnϖ,

    where

    Vr0(ϵ)=supϱ,ηI{|v(ϱ,η,ϖ(η))v(ϱ,η,y(η))|:ϖ,yBr0&|ϖy|ϵ},

    and

    Ur0(ϵ)=supϱ,ηI{|u(ϱ,η,ϖ(η))u(ϱ,η,y(η))|:ϖ,yBr0&|ϖy|ϵ}.

    As ϵ0, Vr00 and Ur00. We are enabled to obtain

    TϖnTϖψ(ϖnϖ)+l(κ+1)ϖnϖ,

    i.e., TϖnTϖ. Hence, we have proved that T is continuous in Br0. Clearly T(B+r0)B+r0, where B+r0={ϖBr0:ϖ(ϱ)0,ϱI}.

    Further, we suppose ABr0 such that A is nonempty and ϖA. Also, let ϵ>0 and ϱ1,ϱ2I such that |ϱ1ϱ2|ϵ. Without loss of generality, let us also assume that ϱ2ϱ1, we estimate

    |(Tϖ)(ϱ2)(Tϖ)(ϱ1)||f(ϱ2,ϖ(ϱ2),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)f(ϱ2,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)|+|f(ϱ2,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)f(ϱ1,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)|+|f(ϱ1,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,ϑ,ϖ(η))dη)f(ϱ1,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ1,η,ϖ(η))dη,ϖ(ϱ2)ϱ10u(ϱ2,η,ϖ(η))dη)|+|f(ϱ1,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ1,η,ϖ(η))dη,ϖ(ϱ2)ϱ10u(ϱ2,η,ϖ(η))dη)f(ϱ1,ϖ(ϱ1),g(ϱ1,ϖ(ϱ1))10v(ϱ1,η,ϖ(η))dη,ϖ(ϱ1)ϱ10u(ϱ1,η,ϖ(η))dη)|ψ(|ϖ(ϱ2)ϖ(ϱ1)|)+ω(f,ϵ)+|g(ϱ2,ϖ(ϱ2))|10|v(ϱ2,η,ϖ(η))v(ϱ1,η,ϖ(η))|dη+|ϖ(ϱ2)|ϱ2ϱ1|u(ϱ2,η,ϖ(η))|dη+|g(ϱ2,ϖ(ϱ2))g(ϱ1,ϖ(ϱ1))|10|v(ϱ1,η,ϖ(η))|dη+|ϖ(ϱ2)ϱ10u(ϱ2,η,ϖ(η))dηϖ(ϱ1)ϱ10u(ϱ1,η,ϖ(η))dη|ψ(|ϖ(ϱ2)ϖ(ϱ1)|)+ω(f,ϵ)+|g(ϱ2,ϖ(ϱ2))|ω(v,ϵ)+|ϖ(ϱ2)|lϵ+|g(ϱ2,ϖ(ϱ2))g(ϱ1,ϖ(ϱ1))|10|v(ϱ1,η,ϖ(η))dη|+|ϖ(ϱ2)ϱ10u(ϱ2,η,ϖ(η))dηϖ(ϱ1)ϱ10u(ϱ1,η,ϖ(η))dη|,

    wherein,

    |g(ϱ2,ϖ(ϱ2))g(ϱ1,ϖ(ϱ1))|10|v(ϱ1,η,ϖ(η))|dη{|g(ϱ2,ϖ(ϱ2))g(ϱ1,ϖ(ϱ2))|+|g(ϱ1,ϖ(ϱ2))g(ϱ1,ϖ(ϱ1))|}llω(g,ϵ)+κl|ϖ(ϱ2)ϖ(ϱ1)|,

    and

    |ϖ(ϱ2)ϱ10u(ϱ2,η,ϖ(η))dηϖ(ϱ1)ϱ10u(ϱ1,η,ϖ(η))dη||ϖ(ϱ2)ϱ10u(ϱ2,η,ϖ(η))dηϖ(ϱ2)ϱ10u(ϱ1,η,ϖ(η))dη|+|ϖ(ϱ2)ϱ10u(ϱ1,η,ϖ(η))dηϖ(ϱ1)ϱ10u(ϱ1,η,ϖ(η))dη||ϖ(ϱ2)|ϱ10|u(ϱ2,η,ϖ(η))u(ϱ1,η,ϖ(η))|dη+|ϖ(ϱ2)ϖ(ϱ1)|ϱ10|u(ϱ1,η,ϖ(η))dη||ϖ(ϱ2)|ω(u,ϵ)+l|ϖ(ϱ2)ϖ(ϱ1)|,

    together with

    ω(f,ϵ)=supϱ1,ϱ2I{|f(ϱ1,u,v,w)f(ϱ2,u,v,w)|:|ϱ1ϱ2|ϵ},ω(u,ϵ)=supϱ1,ϱ2I{|u(ϱ1,η,ϖ)u(ϱ2,η,ϖ)|:|ϱ1ϱ2|ϵ},ω(v,ϵ)=supϱ1,ϱ2I{|v(ϱ1,η,ϖ)v(ϱ2,η,ϖ)|:|ϱ1ϱ2|ϵ},ω(g,ϵ)=supϱ1,ϱ2I{|g(ϱ2,x)g(ϱ1,x)|:|ϱ2ϱ1|ϵ}.

    Then, we can find

    |(Tϖ)(ϱ2)(Tϖ)(ϱ1)|ψ(|ϖ(ϱ2)ϖ(ϱ1)|)+ω(f,ϵ)+|g(ϱ2,ϖ(ϱ2))|ω(v,ϵ)+lϵ|ϖ(ϱ2)|+lω(g,ϵ)+κl|ϖ(ϱ2)ϖ(ϱ1)|+|ϖ(ϱ2)|ω(u,ϵ)+l|ϖ(ϱ2)ϖ(ϱ1)|ψ(ω(ϖ,ϵ))+ω(f,ϵ)+(κϖ+κ)ω(v,ϵ)+lϵϖ+lω(g,ϵ)+(κl+l)ω(ϖ,ϵ)+ϖω(u,ϵ).

    Now, applying uniform continuity of the function f(ϱ,u,v,w), u(ϱ,η,ϖ), v(ϱ,η,ϖ) and g(ϱ,ϖ) on the set I×[r0,r0]×[r0,r0]×[r0,r0], I×I×[r0,r0], I×I×[r0,r0], I×[r0,r0], respectively. We are enabled to deduce that ω(f,ϵ)0, ω(u,ϵ)0, ω(v,ϵ)0, and ω(g,ϵ)0, when ϵ0. Thus, we can find

    ω0(TA)ψ(ω0(A))+(κl+l)ω0(A)(ψ+(κ+1)l)(ω0(A)). (3.5)

    Suppose ϖA, and ϱ1,ϱ2I, together with ϱ1<ϱ2, we estimate that

    |(Tϖ)(ϱ2)(Tϖ)(ϱ1)|[|(Tϖ)(ϱ2)(Tϖ)(ϱ1)|]=|f(ϱ2,ϖ(ϱ2),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)f(ϱ1,ϖ(ϱ1),g(ϱ1,ϖ(ϱ1))10v(ϱ1,η,ϖ(η))dη,ϖ(ϱ1)ϱ10u(ϱ1,η,ϖ(η))dη)|[|f(ϱ2,ϖ(ϱ2),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)f(ϱ1,ϖ(ϱ1),g(ϱ1,ϖ(ϱ1))10v(ϱ1,η,ϖ(η))dη,ϖ(ϱ1)ϱ10u(ϱ1,η,ϖ(η))dη)|]|f(ϱ2,ϖ(ϱ2),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)f(ϱ2,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)|+|f(ϱ2,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)f(ϱ1,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)|+|f(ϱ1,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)f(ϱ1,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ1,η,ϖ(η))dη,ϖ(ϱ2)ϱ10u(ϱ2,η,ϖ(η))dη)|+|f(ϱ1,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ1,η,ϖ(η))dη,ϖ(ϱ2)ϱ10u(ϱ2,η,ϖ(η))dη)f(ϱ1,ϖ(ϱ1),g(ϱ1,ϖ(ϱ1))10v(ϱ1,η,ϖ(η))dη,ϖ(ϱ1)ϱ10u(ϱ1,η,ϖ(η))dη)|[|f(ϱ2,ϖ(ϱ2),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)f(ϱ2,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)|][|f(ϱ2,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)f(ϱ1,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)|][|f(ϱ1,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ2,η,ϖ(η))dη,ϖ(ϱ2)ϱ20u(ϱ2,η,ϖ(η))dη)f(ϱ1,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ1,η,ϖ(η))dη,ϖ(ϱ2)ϱ10u(ϱ2,η,ϖ(η))dη)|][|f(ϱ1,ϖ(ϱ1),g(ϱ2,ϖ(ϱ2))10v(ϱ1,η,ϖ(η))dη,ϖ(ϱ2)ϱ10u(ϱ2,η,ϖ(η))dη)f(ϱ1,ϖ(ϱ1),g(ϱ1,ϖ(ϱ1))10v(ϱ1,η,ϖ(η))dη,ϖ(ϱ1)ϱ10u(ϱ1,η,ϖ(η))dη)|]ψ(|ϖ(ϱ2)ϖ(ϱ1)|)+κl|ϖ(ϱ2)ϖ(ϱ1)|+l|ϖ(ϱ2)ϖ(ϱ1)|ψ([|ϖ(ϱ2)ϖ(ϱ1)|])κl([|ϖ(ϱ2)ϖ(ϱ1)|])l[|ϖ(ϱ2)ϖ(ϱ1)|](ψ+(κ+1)l)(|ϖ(ϱ2)ϖ(ϱ1)|[|ϖ(ϱ2)ϖ(ϱ1)|]).

    Now, we are enabled to write

    i(Tϖ)(ψ+(κ+1)l)(i(ϖ)).

    Thus, we can find

    i(TA)(ψ+(κ+1)l)(i(A)). (3.6)

    From inequalities (3.5) and (3.6), together with the definition of MNC μ, we can write

    μ(TA)=ω0(TA)+i(TA)ψ(ω0(A)+i(A))ψ(μ(A)),

    where ψ=ψ+(κ+1)l,ψΨ.

    Hence, by the generalized Darbo fixed point theorem, T has a fixed point in C(I), i.e., the nonlinear equation (1.1) has at least one solution in C[0,1].

    Further, we give two examples with a verification of all the five assumptions of our main theorem.

    Example 3.1. In the first example, we consider the following nonlinear integral equation:

    ϖ(ϱ)=ϱ4(1+ϖ(ϱ)2)(1+10ϱη16(1+ϖ(η)2)dη)+ϖ(ϱ)ϱ0ϱη16(1+ϖ(η)2)2dη. (3.7)

    Herein, we have f(ϱ,u,v,w)=ϱ4(1+u2)+v+w and g(ϱ,ϖ(ϱ))=ϱ4(1+ϖ2) satisfying the assumptions (A1) and (A2) respectively such that

    |f(ϱ,u1,v1,w1)f(ϱ,u2,v2,w2)||ϱ4(1+u21)ϱ4(1+u22)|+|v1v2|+|w1w2|ψ(|u1u2|)+|v1v2|+|w1w2|,

    where ψ(ϱ)=ϱ4 and

    g(ϱ,0)=ϱ414=κ,|g(ϱ,y1)g(ϱ,y2)|ϱ4|y1y2|14|y1y2|=κ|y1y2|.

    Also, the functions u(ϱ,η,ϖ)=ϱη16(1+ϖ2) and v(ϱ,η,ϖ)=ϱη16(1+ϖ2)2 satisfy the assumption (A3) such that l=116. Thus κl<14 and for r0=1, the assumption (A4) is fulfilled as

    ψ(r0)+(r0(κ+1)+κ)l+N=r04+(5r04+14)116+14r0.

    Now, we are enabled to observe that the last inequality admit a positive solution, for r0=1. Hence, all assumptions (A1)–(A5) of Theorem 3.1 are fulfilled. Thus, we are enabled to conclude that the nonlinear integral equation (3.7) admits at least one solution in the space C(I).

    Example 3.2. Consider the following nonlinear integral equation:

    ϖ(ϱ)=ϱ1+ϱ2+lnϖ(ϱ)1+ϱ+cos(ϱϖ(ϱ))2(1+ϱ)10ϱ+η16(1+exp(ϖ(η)))dη+ϖ(ϱ)ϱ0arctanϖ(η)4(1+η)dη. (3.8)

    We have f(ϱ,u,v,w)=ϱ1+ϱ2+lnu+v+w and g(ϱ,ϖ(ϱ))=cos(ϱϖ(ϱ))2(1+ϱ) satisfying the assumptions (A1) and (A2) respectively such that ψ(ϱ)=ϱ16, κ=12 and κ=14. Also, the functions u(ϱ,η,ϖ)=ϱ+η16(1+exp(ϖ(η))) and v(ϱ,η,ϖ)=arctanϖ(η)4(1+η) fulfill the assumption (A3) such that l=18. Thus, κl<14 and for r0=1, the assumption (A4) is fulfilled. Thus, our second example also fulfills all the five assumptions (A1)–(A5) of Theorem 3.1 and hence by the same theorem, Eq (3.8) has at least one solution in the space C(I).

    In this section, we rephrase and solve Eq (3.7) by using MHP and Adomian decomposition method. The Homotopy perturbation method is a coupling of the idea of homotopy and perturbation methods to eliminate the limitation of traditional perturbation methods. It is also a powerful concept in perturbations theory and topology. In the proposed method, we alter problems of the nonlinear functional equation to some simpler problems and to be free of non-linearity, we apply a linear combination of Adomian polynomials [42]. Thus, we present an iterative algorithm to solve Eq (3.7).

    Let us consider the general form of Eq (3.7) as follows:

    D(ϱ,ϖ(ϱ))f(ϱ,ϖ(ϱ))=0,ϱ[0,1]. (4.1)

    Here, D is a nonlinear operator and f is some known function. We divide the operator D according to [43,44,45] into operators M and N to some linear or nonlinear operators. We also divide the function f into f1 and f2. Then Eq (4.1) can be rewritten as M(ϱ,ϖ)f1(ϱ,ϖ)+N(ϱ,ϖ)f2(ϱ,ϖ)=0.

    Now, we are enabled to define a MHP as follows:

    H(p,v)=M(ϱ,v)f1(ϱ,v)+p(N(ϱ,v)f2(ϱ,v))=0, (4.2)
    and v(ϱ)=i=0pivi(ϱ) together with limp1v(ϱ)ϖ(ϱ). (4.3)

    Herein, p=[0,1] and is called an embedding parameter. Letting p=0 to p=1, we are enabled to find M(ϱ,v)=f1(ϱ,v) to N(ϱ,v)=f2(ϱ,v). Further, in Eq (3.7), we choose the operators as follows:

    M(ϱ,ϖ(ϱ))=ϖ(ϱ),N(ϱ,ϖ(ϱ))=ϱ4(1+ϖ(ϱ)2)10ϱη16(1+ϖ(η)2)dηϖ(ϱ)ϱ0ϱη16(1+ϖ(η)2)2dη,f1(ϱ,(ϖ(ϱ))=ϱandf2(ϱ,ϖ(ϱ))=ϱ4(1+ϖ(ϱ)2)ϱ.

    For our ease in calculation, we further divide the operator N into N and N and approximate them by using Adomian decomposition as

    N(ϱ,v(ϱ))=ϱ4(1+v(ϱ)2)10ϱη16(1+v(η)2)dη=i=0piAi(ϱ),N(ϱ,v(ϱ))=v(ϱ)ϱ0ϱη16(1+v(η)2)2dη=i=0piAi(ϱ),f2(ϱ,v(ϱ))=i=0piAi(ϱ), (4.4)

    wherein the Adomian polynomials are given as follows:

    Ai(ϱ)=1i![didpi(ϱ4(1+(ij=0pjvj(ϱ))2)ϱ)]p=0,Ai(ϱ)=1i![didpi(ϱ4(1+(ij=0pjvj(ϱ))2)10ϱη16(1+(ij=0pjvj(η))2)dη)]p=0,Ai(ϱ)=1i![didpi((ij=0pjvj(ϱ))ϱ0ϱη16(1+(ij=0pjvj(η))2)2dη)]p=0.

    Putting Eqs (4.3) and (4.4) in Eq (4.2), we get

    M(i=0pivi(ϱ))f1(ϱ)+p(i=0piAi(ϱ)i=0piAi(ϱ)i=0piAi(ϱ))=0.

    Equating the coefficients of powers of p to zero and solving for vi, i=0,1,2,..., we are now enabled to find an iterative algorithm for the numerical solution of Eq (3.7) as follows:

    v0(ϱ)=M1(f1(ϱ)),vj(ϱ)=M1(Aj1(ϱ)+Aj1(ϱ)+Aj1(ϱ))j=1,2,.... (4.5)

    Applying the algorithm to the same example, we get v0(ϱ)=ϱ. For the case j=1, we have

    A0(ϱ)=ϱ4(11+ϱ2)ϱ,A0(ϱ)=ln2128(ϱ21+ϱ2),A0(ϱ)=ϱ432(1+ϱ2),and thusv1(ϱ)=M1(A0(ϱ)+A0(ϱ)+A0(ϱ))=11+ϱ2(ln2128ϱ2+ϱ4+ϱ432)ϱ.

    Now, let us consider the case j=2, we have

    A1(ϱ)=1(1+ϱ2)3(ln2256ϱ4ϱ38ϱ664)+ϱ32(1+ϱ2)2,A1(ϱ)=1(1+ϱ2)3(ln22048ϱ7ln228192ϱ5ln2256ϱ4)+ln264(1+ϱ2)2ϱ4+0.07985190531633895ϱ232(1+ϱ2),

    and

    A1(ϱ)=ϱ432(1+ϱ2)((3ln2+60)ϱ8+(9ln2+180)ϱ6+(9ln2+180)ϱ4+3ln2ϱ2+60ϱ2)arctanϱ24576ϱ6+73728ϱ4+73728ϱ2+24576(1408ϱ8+(3ln2132)ϱ71152ϱ6(8ln2+160)ϱ5(3ln2+60)ϱ3)+24576ϱ6+73728ϱ4+73728ϱ2+24576.

    Thus, we have

    v2(ϱ)=1(1+ϱ2)3(ln22048ϱ7ϱ664ϱ38ln2128ϱ4ln228192)ϱ5)+1(1+ϱ2)2(ln264ϱ4ϱ32)+11+ϱ2(0.03125ϱ4+0.0024953720411ϱ2)((3ln2+60)ϱ8+(9ln2+180)ϱ6+(9ln2+180)ϱ4+3ln2ϱ2+60ϱ2)arctanϱ24576ϱ6+73728ϱ4+73728ϱ2+24576(1408ϱ8+(3ln2132)ϱ71152ϱ6(8ln2+160)ϱ5(3ln2+60)ϱ3)+24576ϱ6+73728ϱ4+73728ϱ2+24576.

    By Eq (4.3), we get an approximated solution,

    ϖ1(ϱ)=11+ϱ2(ln2128ϱ2+ϱ4+ϱ432).ϖ2(ϱ)=1(1+ϱ2)3(ln22048ϱ7ϱ664ln228192ϱ5ln2128ϱ4ϱ38))+1(1+ϱ2)2(ln264ϱ4+ϱ32)+11+ϱ2(ϱ432+ln2128ϱ2+ϱ4+0.03125ϱ4+0.0024953720411ϱ2)((3ln2+60)ϱ8+(9ln2+180)ϱ6+(9ln2+180)ϱ4+3ln2ϱ2+60ϱ2)arctanϱ24576ϱ6+73728ϱ4+73728ϱ2+24576(1408ϱ8+(3ln2132)ϱ71152ϱ6(8ln2+160)ϱ5(3ln2+60)ϱ3)+24576ϱ6+73728ϱ4+73728ϱ2+24576.

    Thus, by putting ϖ1(ϱ) together with ϖ2(ϱ) in Eq (3.7) and equating the both sides, we are enabled to obtain the absolute errors of ϖ1(ϱ) together with ϖ2(ϱ) as shown in Table 1. In this way, we are now enabled to observe that increasing the number of cases in the algorithm (4.5), we get better approximations of ϖ(ϱ). The graphs of v(ϱ) and ϖ(ϱ) are shown in Figure 1.

    Table 1.  Absolute errors.
    ϱ Absolute error of ϖ_1(\varrho) Absolute error of ϖ_2(\varrho)
    0 0 1.61\times 10^{-2}
    0.1 3\times 10^{-4} 1.59\times 10^{-2}
    0.2 1.9\times 10^{-3} 1.42\times 10^{-2}
    0.3 5.9\times 10^{-3} 1.01\times 10^{-2}
    0.4 1.3\times 10^{-2} 3.8\times 10^{-3}
    0.5 2.34\times 10^{-2} 4.2\times 10^{-3}
    0.6 3.68\times 10^{-2} 1.29\times 10^{-2}
    0.7 5.3\times 10^{-2} 2.12\times 10^{-2}
    0.8 7.15\times 10^{-2} 2.82\times 10^{-2}
    0.9 9.18\times 10^{-2} 3.42\times 10^{-2}
    1.0 1.135\times 10^{-1} 3.91\times 10^{-2}

     | Show Table
    DownLoad: CSV
    Figure 1.  Plots of v(\varrho) and \varpi(\varrho) .

    In this section, we give the following two theorems and prove that they also concur with our functional integral equation (1.1).

    Theorem 5.1. Let \varpi_k(\varrho) = \sum_{i = 0}^{k}v_i(\varrho) , k\in {\rm I\!N} and \mathcal{M}^{-1} be a linear operator. Then the following equation is equivalent to the algorithm (4.5) :

    \begin{align} \varpi_{n+1} = \mathcal{M}_1^{-1}(f_1)+\mathcal{M}^{-1}\big( f_2(\varrho, \varpi_n)-\mathcal{N}(\varpi_n)\big). \end{align} (5.1)

    Proof. Given that

    \begin{align*} \varpi_{n+1}(\varrho)& = v_0(\varrho)+v_1(\varrho)+v_2(\varrho)+...v_{n+1}(\varrho). \end{align*}

    By using algorithm (4.5), we are enabled to find

    \begin{align*} \varpi_{n+1}(\varrho)& = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\big(A_0(\varrho)+A_0'(\varrho)+A_0''(\varrho)\big)+\mathcal{M}^{-1}\big(A_1(\varrho)+A_1'(\varrho)+A_1''(\varrho)\big) \\ &\quad+...+\mathcal{M}^{-1}\big(A_{n}(\varrho)+A_{n}'(\varrho)+A_{n}''(\varrho)\big) \\ & = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\bigg(\sum\limits_{i = 0}^{n}\mathcal{A}_i(\varrho)+\sum\limits_{i = 0}^{n}\mathcal{A}_i'(\varrho)+\sum\limits_{i = 0}^{n}\mathcal{A}_i''(\varrho)\bigg) \\ & = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\bigg(f_2\bigg(\varrho, \sum\limits_{i = 0}^{n}v_i(\varrho)\bigg)-\mathcal{N}'\bigg(\varrho, \sum\limits_{i = 0}^{n}v_i(\varrho)\bigg)-\mathcal{N}''\bigg(\varrho, \sum\limits_{i = 0}^{n}v_i(\varrho)\bigg)\bigg) \\ & = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\bigg(f_2\bigg(\varrho, \sum\limits_{i = 0}^{n}v_i(\varrho)\bigg)-\mathcal{N}\bigg(\varrho, \sum\limits_{i = 0}^{n}v_i(\varrho)\bigg)\bigg) \\ & = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\big(f_2\big(\varrho, \varpi_n(\varrho)\big)-\mathcal{N}\big(\varrho, \varpi_n(\varrho)\big)\big). \end{align*}

    Now, we prove the equivalence by using induction. By using assumption, we know that \varpi_0 = v_0 .

    \begin{align*} \varpi_1& = \mathcal{M}^{-1}(f_1)+\mathcal{M}^{-1}\big(-\mathcal{N}(\varpi_0)+f_2(\varpi_0)\big) \\ & = \mathcal{M}^{-1}(f_1)+\mathcal{M}^{-1}\big(-\mathcal{N}(v_0)+f_2(v_0)\big) \\ & = \mathcal{M}^{-1}(f_1)+\mathcal{M}^{-1}\big(-\mathcal{N}'(v_0)-\mathcal{N}''(v_0)+f_2(v_0)\big), \\ \; \text{i.e., }\; \varpi_1(\varrho)& = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\big(A_0'(\varrho)+A_0''(\varrho)+A_0(\varrho)\big) = v_0(\varrho)+v_1(\varrho). \end{align*}

    Therefore,

    \begin{align*} v_1(\varrho) = \mathcal{M}^{-1}(A_0'(\varrho)+A_0''(\varrho)+A_0(\varrho)). \end{align*}

    Hence, the equivalence is satisfied for v_1 . We now verify for v_2 .

    \begin{align*} \varpi_2& = \mathcal{M}^{-1}(f_1)+\mathcal{M}^{-1}\big(-\mathcal{N}(\varpi_1)+f_2(\varpi_1)\big) \\ & = \mathcal{M}^{-1}(f_1)+\mathcal{M}^{-1}\big(-\mathcal{N}'(v_0+v_1)-\mathcal{N}''(v_0+v_1)+f_2(v_0+v_1)\big), \\ \; \text{i.e., }\; \varpi_2(\varrho)& = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\big(A_0'(\varrho)+A_1'(\varrho)+A_0''(\varrho)+A_1''(\varrho)+A_0(\varrho)+A_1(\varrho)\big)\\ & = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\big(A_0'(\varrho)+A_0''(\varrho)+A_0(\varrho)\big)+\mathcal{M}^{-1}\big(A_1'(\varrho)+A_1''(\varrho)+A_1(\varrho)\big) \\ & = v_0(\varrho)+v_1(\varrho)+v_2(\varrho). \end{align*}

    Therefore,

    \begin{align*} v_2(\varrho) = \mathcal{M}^{-1}\big(A_1'(\varrho)+A_1''(\varrho)+A_1(\varrho)\big). \end{align*}

    By using induction hypothesis, let us assume that the statement is true for v_n and we prove that Eq (5.1) gives rise to v_{n+1} as in the algorithm (4.5).

    \begin{align*} \varpi_{n+1}(\varrho)& = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\big(f_2\big(\varrho, \varpi_n(\varrho)\big)-\mathcal{N}\big(\varrho, \varpi_n(\varrho)\big)\big) \\ & = \mathcal{M}^{-1}(f_1(\varrho))+\mathcal{M}^{-1}\bigg(f_2\big(\varrho, \sum\limits_{i = 0}^{n}v_i(\varrho)\big)-\mathcal{N}\big(\varrho, \sum\limits_{i = 0}^{n}v_i(\varrho)\big)\bigg) \\ & = \mathcal{M}^{-1}(f_1(\varrho))+\mathcal{M}^{-1}\bigg(\sum\limits_{i = 0}^{n}\mathcal{A}_i(\varrho)+\sum\limits_{i = 0}^{n}\mathcal{A}_i'(\varrho)+\sum\limits_{i = 0}^{n}\mathcal{A}_i''(\varrho)\bigg) \\ & = \mathcal{M}^{-1}(f_1(\varrho))+\mathcal{M}^{-1}\bigg(\sum\limits_{i = 0}^{n}\mathcal{A}_i(\varrho)+\sum\limits_{i = 0}^{n}\mathcal{A}_i'(\varrho)+\sum\limits_{i = 0}^{n}\mathcal{A}_i''(\varrho)\bigg) \\ & = \mathcal{M}^{-1}(f_1(\varrho))+\sum\limits_{i = 0}^{n}\bigg(\mathcal{M}^{-1}(\mathcal{A}_i(\varrho)+\mathcal{A}_i'(\varrho)+\mathcal{A}_i''(\varrho))\bigg) \\ & = v_0(\varrho)+\sum\limits_{i = 1}^{n}v_i(\varrho)+\mathcal{M}^{-1}\big(A_n(\varrho)+A_n'(\varrho)+A_n''(\varrho)\big) = \sum\limits_{i = 0}^{n+1}v_i(\varrho). \end{align*}

    Therefore,

    \begin{align*} v_{n+1}(\varrho)& = \mathcal{M}^{-1}\big(A_n(\varrho)+A_n'(\varrho)+A_n''(\varrho)\big). \end{align*}

    Hence, the algorithm is proved.

    Theorem 5.2. Let \big(C[0, 1], \lVert{\varpi} \rVert_\infty\big) be a Banach space and let \varpi_n(\varrho) = \sum_{i = 0}^{n}v_i(\varrho) , n\in{\rm I\!N} such that \lVert{v_i} \rVert_\infty \leq \alpha \lVert{v_{i-1}} \rVert_\infty , \forall i \in {\rm I\!N} , where 0\leq \alpha < 1 , then:

    (i) The sequence \{\varpi_n\}_{n = 0}^{\infty} is convergent.

    (ii) The limit of the sequence say \lim_{n\rightarrow \infty}\varpi_n = \varpi^* fulfills the algorithm (4.5) and Eq (4.1).

    Proof. (i) It is enough to show the sequence is Cauchy.

    Let m, n\in {\rm I\!N} with m > n and let \epsilon > 0 . Then, for \varrho\in I , with the above assumptions, we estimate

    \begin{align*} \big|\varpi_m(\varrho)-\varpi_n(\varrho)\big| & = \bigg|\sum\limits_{i = n+1}^{m}v_i(\varrho)\bigg| = |v_{n+1}(\varrho)+v_{n+2}(\varrho)+...+v_m(\varrho)| \\ &\leq \lVert{v_{n+1}} \rVert_\infty + ...+ \lVert{v_{m}} \rVert_\infty \\ & \leq \alpha^{n+1} \lVert{v_0} \rVert_\infty + \alpha^{n+2} \lVert{v_0} \rVert_\infty + ... + \alpha^{m} \lVert{v_0} \rVert_\infty \\ & = \bigg(\dfrac{1-\alpha^{m-n}}{1-\alpha}\bigg)\alpha^{n+1} \lVert{v_0} \rVert_\infty, \\ \; \text{i.e., }\; \lVert{\varpi_m-\varpi_n} \rVert_\infty&\leq \bigg(\dfrac{\alpha^{n+1}}{1-\alpha}\bigg) \lVert{v_0} \rVert_\infty < \epsilon. \end{align*}

    Hence, the sequence \{\varpi_n\}_{n = 0}^{\infty} is Cauchy in (C[0, 1], \lVert{\varpi} \rVert_\infty) , i.e., \lim_{n\rightarrow \infty}\varpi_n(\varrho) = \lim_{n\rightarrow \infty}\sum_{i = 0}^{n}v_i(\varrho) = \sum_{i = 0}^{\infty}v_i(\varrho) = \varpi^*(\varrho).

    (ii) We first prove that the limit of the sequence fulfills the algorithm (4.5). Let \{\varpi_n\}\rightarrow \varpi^* , we estimate

    \lim\limits_{n\rightarrow \infty}\varpi_n(\varrho) = \lim\limits_{n\rightarrow \infty}\bigg(\mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\big(-\mathcal{N}(\varrho, \varpi_{n-1}(\varrho))+f_2(\varrho, \varpi_{n-1}(\varrho))\big)\bigg) \\ = \lim\limits_{n\rightarrow \infty}\bigg(\mathcal{M}^{-1}(f_1(\varrho))+\mathcal{M}^{-1}\bigg(-\mathcal{N}\bigg(\varrho, \sum\limits_{i = 0}^{n-1}v_i(\varrho)\bigg)+f_2\bigg(\varrho, \sum\limits_{i = 0}^{n-1}v_i(\varrho)\bigg)\bigg)\bigg) \\ = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\bigg(-\lim\limits_{n\rightarrow \infty}\mathcal{N}'\bigg(\varrho, \sum\limits_{i = 0}^{n-1}v_i(\varrho)\bigg)-\lim\limits_{n\rightarrow \infty}\mathcal{N}''\bigg(\varrho, \sum\limits_{i = 0}^{n-1}v_i(\varrho)\bigg) \\ \quad+\lim\limits_{n\rightarrow \infty}f_2\bigg(\varrho, \sum\limits_{i = 0}^{n-1}v_i(\varrho)\bigg)\bigg) \\ = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\bigg(\lim\limits_{n\rightarrow \infty}\sum\limits_{i = 0}^{n-1}\mathcal{A}_i'(\varrho)+\lim\limits_{n\rightarrow \infty}\sum\limits_{i = 0}^{n-1}A''_i(\varrho)+\lim\limits_{n\rightarrow \infty}\sum\limits_{i = 0}^{n-1}\mathcal{A}_i(\varrho)\bigg) \\ = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\bigg(\sum\limits_{i = 0}^{\infty}\mathcal{A}_i'(\varrho)+\sum\limits_{i = 0}^{\infty}A''_i(\varrho)+\sum\limits_{i = 0}^{\infty}\mathcal{A}_i(\varrho)\bigg), \\ \text{i.e., }\; \lim\limits_{n\rightarrow \infty}\varpi_n(\varrho) = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\bigg(-\mathcal{N}'\bigg(\varrho, \sum\limits_{i = 0}^{\infty}v_i(\varrho)\bigg)-\mathcal{N}''\bigg(\varrho, \sum\limits_{i = 0}^{\infty}v_i(\varrho)\bigg)\\ +f_2\bigg(\varrho, \sum\limits_{i = 0}^{\infty}v_i(\varrho)\bigg)\bigg) .

    In other words,

    \begin{align} \varpi^*(\varrho)& = \mathcal{M}^{-1}\big(f_1(\varrho)\big)+\mathcal{M}^{-1}\big(-\mathcal{N}\big(\varrho, \varpi^*(\varrho)\big)+f_2\big(\varrho, \varpi^*(\varrho)\big)\big). \end{align} (5.2)

    Hence, the algorithm is proved. Now for proving the Eq (4.1), we apply the operator \mathcal{M} to the above equation as

    \begin{align*} \mathcal{M}(\varpi^*) = f_1(\varrho)-\mathcal{N}(\varpi^*)+f_2(\varpi^*) \Rightarrow \mathcal{M}(\varpi^*)+\mathcal{N}(\varpi^*) = f_1(\varrho)+f_2(\varpi^*) \Rightarrow A(\varpi^*) = f(\varpi^*), \end{align*}

    and the proof is completed.

    The following corollary gives upper bound of the errors.

    Corollary 5.1. Under the assumptions of the above theorem, \lVert{\varpi^*-\varpi_n} \rVert_\infty\leq\bigg(\dfrac{\alpha^{n+1}}{1-\alpha}\bigg) \lVert{f_1} \rVert_\infty , \forall n\in{\rm I\!N} .

    We have thus verified and proved the existence result of the considered nonlinear functional integral equation on the Banach space C[0, 1] . The result is obtained by the applications of the generalized Darbo fixed point theorem associated with the MNC in the Banach space. Our result is demonstrated with the two examples. Also, we have introduced a numerical algorithm by using the MHP approach along with the Adomian decomposition method to find the approximate solution with relevant accuracy. Moreover, an error analysis with the upper bound of errors and the condition of convergence are presented. In this paper, the MATLAB program has been used for computations and programming.

    The authors declare no conflict of interest.



    [1] M. A. Abdou, On the solution of linear and nonlinear integral equation, Appl. Math. Comput., 146 (2003), 857–871. https://doi.org/10.1016/S0096-3003(02)00643-4 doi: 10.1016/S0096-3003(02)00643-4
    [2] I. K. Argyros, Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Aust. Math. Soc., 32 (1985), 275–292. https://doi.org/10.1017/S0004972700009953 doi: 10.1017/S0004972700009953
    [3] A. Aghajani, J. Banaś, Y. Jalilian, Existence of solutions for a class of nonlinear Volterra singular integral equations, Comput. Math. Appl., 62 (2011), 1215–1227. https://doi.org/10.1016/j.camwa.2011.03.049 doi: 10.1016/j.camwa.2011.03.049
    [4] A. Aghajani, Y. Jalilian, Existence and global attractivity of solutions of a nonlinear functional integral equation, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3306–3312. https://doi.org/10.1016/j.cnsns.2009.12.035 doi: 10.1016/j.cnsns.2009.12.035
    [5] E. Alvarez, C. Lizama, Attractivity for functional Volterra integral equations of convolution type, J. Comput. Appl. Math., 301 (2016), 230–240. https://doi.org/10.1016/j.cam.2016.01.048 doi: 10.1016/j.cam.2016.01.048
    [6] J. Banaś, K. Balachandran, D. Julie, Existence and global attractivity of solutions of a nonlinear functional integral equation, Appl. Math. Comput., 216 (2010), 261–268. https://doi.org/10.1016/j.amc.2010.01.049 doi: 10.1016/j.amc.2010.01.049
    [7] J. Banaś, K. Goebel, Measure of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60, New York: Dekker, 1980.
    [8] J. Banaś, L. Olszowy, Measures of noncompactness related to monotonicity, In: Annales Societatis Mathematicae Polonae. Seria 1: Commentationes Mathematicae, 2001, 13–23.
    [9] J. Banaś, B. Rzepka, On existence and asymptotic stability of solutions of a nonlinear integral equation, J. Math. Anal. Appl., 284 (2003), 165–173. https://doi.org/10.1016/S0022-247X(03)00300-7 doi: 10.1016/S0022-247X(03)00300-7
    [10] J. Banaś, B. Rzepka, On local attractivity and asymptotic stability of solutions of a quadratic Volterra integral equation, Appl. Math. Comput., 213 (2009), 102–111. https://doi.org/10.1016/j.amc.2009.02.048 doi: 10.1016/j.amc.2009.02.048
    [11] D. Chalishajar, C. Ravichandran, S. Dhanalakshmi, R. Murugesu, Existence of fractional impulsive functional integro-differential equations in Banach spaces, Appl. Syst. Innov., 2 (2019), 1–17. https://doi.org/10.3390/asi2020018 doi: 10.3390/asi2020018
    [12] B. C. Dhage, Global attractivity results for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem, Nonlinear Anal., 70 (2009), 2485–2493. https://doi.org/10.1016/j.na.2008.03.033 doi: 10.1016/j.na.2008.03.033
    [13] B. C. Dhage, Local asymptotic attractivity for nonlinear quadratic functional integral equations, Nonlinear Anal., 70 (2009), 1912–1922. https://doi.org/10.1016/j.na.2008.02.109 doi: 10.1016/j.na.2008.02.109
    [14] A. Deep, Deepmala, J. R. Roshan, Solvability for generalized nonlinear functional integral equations in Banach spaces with applications, J. Integral Equ. Appl., 33 (2021), 19–30. https://doi.org/10.1216/jie.2021.33.19 doi: 10.1216/jie.2021.33.19
    [15] A. Deep, Deepmala, C. Tunç, On the existence of solutions of some non-linear functional integral equations in Banach algebra with applications, Arab J. Basic Appl. Sci., 27 (2020), 279–286. https://doi.org/10.1080/25765299.2020.1796199 doi: 10.1080/25765299.2020.1796199
    [16] B. C. Dhage, S. B. Dhage, H. K. Pathak, A generalization of Darbo's fixed point theorem and local attractivity of generalized nonlinear functional integral equations, Differ. Equ. Appl., 7 (2015), 57–77. https://doi.org/10.7153/dea-07-05 doi: 10.7153/dea-07-05
    [17] B. C. Dhage, V. Lakshmikantham, On global existence and attractivity results for nonlinear functional integral equations, Nonlinear Anal., 72 (2010), 2219–2227. https://doi.org/10.1016/j.na.2009.10.021 doi: 10.1016/j.na.2009.10.021
    [18] A. M. A. El-Sayed, H. R. Ebead, On the solvability of a self-reference functional and quadratic functional integral equations, Filomat, 34 (2020), 129–141. https://doi.org/10.2298/FIL2001129E doi: 10.2298/FIL2001129E
    [19] R. C. Guerra, On the solution of a class of integral equations using new weighted convolutions, J. Integral Equ. Appl., 34 (2022), 39–58. https://doi.org/10.1216/jie.2022.34.39 doi: 10.1216/jie.2022.34.39
    [20] X. L. Hu, J. R. Yan, The global attractivity and asymptotic stability of solution of a nonlinear integral equation, J. Math. Anal. Appl., 321 (2006), 147–156. https://doi.org/10.1016/j.jmaa.2005.08.010 doi: 10.1016/j.jmaa.2005.08.010
    [21] K. Jothimani, K. Kaliraj, S. K. Panda, K. S. Nisar, C. Ravichandran, Results on controllability of non-densely characterized neutral fractional delay differential system, Evol. Equ. Control Theory, 10 (2021), 619–631. https://doi.org/10.3934/eect.2020083 doi: 10.3934/eect.2020083
    [22] K. Jangid, S. D. Purohit, R. Agarwal, On Gruss type inequality involving a fractional integral operator with a multi-index Mittag-Leffler function as a kernel, Appl. Math. Inf. Sci., 16 (2022), 269–276. https://doi.org/10.18576/amis/160214 doi: 10.18576/amis/160214
    [23] A. Karimi, K. Maleknejad, R. Ezzati, Numerical solutions of system of two-dimensional Volterra integral equations via Legendre wavelets and convergence, Appl. Numer. Math., 156 (2020), 228–241. https://doi.org/10.1016/j.apnum.2020.05.003 doi: 10.1016/j.apnum.2020.05.003
    [24] S. Karmakar, H. Garai, L. K. Dey, A. Chanda, Existence of solutions to non-linear quadratic integral equations via measure of non-compactness, Filomat, 36 (2022), 73–87. https://doi.org/10.2298/FIL2201073K doi: 10.2298/FIL2201073K
    [25] A. Karoui, A. Jawahdou, Existence and approximate L^{p} and continuous solutions of nonlinear integral equations of the Hammerstein and Volterra types, Appl. Math. Comput., 216 (2010), 2077–2091. https://doi.org/10.1016/j.amc.2010.03.042 doi: 10.1016/j.amc.2010.03.042
    [26] K. Logeswari, C. Ravichandran, K. S. Nisar, Mathematical model for spreading of COVID-19 virus with the Mittag–Leffler kernel, Numer. Methods Partial Differ. Equ., 2020, 1–16. https://doi.org/10.1002/num.22652
    [27] L. N. Mishra, R. P. Agarwal, On existence theorems for some nonlinear functional-integral equations, Dyn. Syst. Appl., 25 (2016), 303–320.
    [28] L. N. Mishra, R. P. Agarwal, M. Sen, Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erd\acute{ e }lyi-Kober fractional integrals on the unbounded interval, Progr. Fract. Differ. Appl., 2 (2016), 153–168. https://doi.org/10.18576/pfda/020301 doi: 10.18576/pfda/020301
    [29] K. Maleknejad, K. Nouri, R. Mollapourasl, Investigation on the existence of solutions for some nonlinear functional-integral equations, Nonlinear Anal., 71 (2009), e1575–e1578. https://doi.org/10.1016/j.na.2009.01.207 doi: 10.1016/j.na.2009.01.207
    [30] B. Matani, J. R. Roshan, Multivariate generalized Meir-Keeler condensing operators and their applications to systems of integral equations, J. Fixed Point Theory Appl., 22 (2020), 1–28. https://doi.org/10.1007/s11784-020-00820-6 doi: 10.1007/s11784-020-00820-6
    [31] B. Matani, J. R. Roshan, N. Hussain, An extension of Darbo's theorem via measure of non-compactness with its application in the solvability of a system of integral equations, Filomat, 33 (2019), 6315–6334. https://doi.org/10.2298/FIL1919315M doi: 10.2298/FIL1919315M
    [32] L. N. Mishra, M. Sen, On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order, Appl. Math. Comput., 285 (2016), 174–183. https://doi.org/10.1016/j.amc.2016.03.002 doi: 10.1016/j.amc.2016.03.002
    [33] L. N. Mishra, M. Sen, R. N. Mohapatra, On existence theorems for some generalized nonlinear functional-integral equations with applications, Filomat, 31 (2017), 2081–2091. https://doi.org/10.2298/FIL1707081N doi: 10.2298/FIL1707081N
    [34] L. N. Mishra, H. M. Srivastava, M. Sen, Existence results for some nonlinear functional-integral equations in Banach algebra with applications, Int. J. Anal. Appl., 11 (2016), 1–10.
    [35] E. Najafi, Nyström-quasilinearization method and smoothing transformation for the numerical solution of nonlinear weakly singular Fredholm integral equations, J. Comput. Appl. Math., 368 (2020), 112538. https://doi.org/10.1016/j.cam.2019.112538 doi: 10.1016/j.cam.2019.112538
    [36] H. Nasiri, J. R. Roshan, M. Mursaleen, Solvability of system of Volterra integral equations via measure of noncompactness, Comput. Appl. Math., 40 (2021), 1–25. https://doi.org/10.1007/s40314-021-01552-0 doi: 10.1007/s40314-021-01552-0
    [37] K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Solitons Fract., 146 (2021), 110915. https://doi.org/10.1016/j.chaos.2021.110915 doi: 10.1016/j.chaos.2021.110915
    [38] S. Noeiaghdam, M. A. F. Araghi, D. Sidorov, Dynamical strategy on homotopy perturbation method for solving second kind integral equations using the CESTAC method, J. Comput. Appl. Math., 411 (2022), 114226. https://doi.org/10.1016/j.cam.2022.114226 doi: 10.1016/j.cam.2022.114226
    [39] D. O'Regan, Existence results for nonlinear integral equations, J. Math. Anal. Appl., 192 (1995), 705–726. https://doi.org/10.1006/jmaa.1995.1199 doi: 10.1006/jmaa.1995.1199
    [40] Y. B. Pan, J. Huang, Extrapolation method for solving two-dimensional Volterral integral equations of the second kind, Appl. Math. Comput., 367 (2020), 124784. https://doi.org/10.1016/j.amc.2019.124784 doi: 10.1016/j.amc.2019.124784
    [41] V. K. Pathak, L. N. Mishra, Application of fixed point theorem to solvability for non-linear fractional Hadamard functional integral equations, Mathematics, 10 (2022), 1–16. https://doi.org/10.3390/math10142400 doi: 10.3390/math10142400
    [42] M. Rabbani, B. Zarali, Solution of Fredholm integro-differential equations system by modified decomposition method, J. Math. Comput. Sci., 5 (2012), 258–264.
    [43] M. Rabbani, New homotopy perturbation method to solve non-linear problems, J. Math. Comput. Sci., 7 (2013), 272–275.
    [44] M. Rabbani, Modified homotopy method to solve non-linear integral equations, Int. J. Nonlinear Anal. Appl., 6 (2015), 133–136. https://doi.org/10.22075/IJNAA.2015.262 doi: 10.22075/IJNAA.2015.262
    [45] M. Rabbani, R. Arab, Extension of some theorems to find solution of nonlinear integral equation and homotopy perturbation method to solve it, Math. Sci., 11 (2017), 87–94. https://doi.org/10.1007/s40096-017-0206-4 doi: 10.1007/s40096-017-0206-4
    [46] M. Rabbani, A. Deep, Deepmala, On some generalized non‑linear functional integral equations of two variables via measures of noncompactness and numerical method to solve it, Math. Sci., 15 (2021), 317–324. https://doi.org/10.1007/s40096-020-00367-0 doi: 10.1007/s40096-020-00367-0
    [47] J. R. Roshan, Existence of solutions for a class of system of functional integral equation via measure of noncompactness, J. Comput. Appl. Math., 313 (2017), 129–141. https://doi.org/10.1016/j.cam.2016.09.011 doi: 10.1016/j.cam.2016.09.011
    [48] S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator, Fractal Fract., 6 (2022), 1–17. https://doi.org/10.3390/fractalfract6030171 doi: 10.3390/fractalfract6030171
    [49] H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, Y. S. Hamed, New Riemann-Liouville fractional-order inclusions for convex functions via integral-valued setting associated with pseudo-order relations, Fractal Fract., 6 (2022), 1–17. https://doi.org/10.3390/fractalfract6040212 doi: 10.3390/fractalfract6040212
    [50] N. Valliammal, C. Ravichandran, Results on fractional neutral integro-differential systems with state-dependent delay in Banach spaces, Nonlinear Stud., 25 (2018), 159–171.
    [51] J. R. Wang, X. W. Dong, Y. Zhou, Existence, attractiveness and stability of solutions for quadratic Urysohn fractional integral equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 545–554. https://doi.org/10.1016/j.cnsns.2011.05.034 doi: 10.1016/j.cnsns.2011.05.034
    [52] X. Y. Zhang, A new strategy for the numerical solution of nonlinear Volterra integral equations with vanishing delays, Appl. Math. Comput., 365 (2020), 124608. https://doi.org/10.1016/j.amc.2019.124608 doi: 10.1016/j.amc.2019.124608
    [53] J. K. Xu, H. X. Wu, Z. Tan, Radial symmetry and asymptotic behaviors of positive solutions for certain nonlinear integral equations, J. Math. Anal. Appl., 427 (2015), 307–319. https://doi.org/10.1016/j.jmaa.2015.02.043 doi: 10.1016/j.jmaa.2015.02.043
  • This article has been cited by:

    1. Vijai Kumar Pathak, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, Dumitru Baleanu, On the Solvability of Mixed-Type Fractional-Order Non-Linear Functional Integral Equations in the Banach Space C(I), 2022, 6, 2504-3110, 744, 10.3390/fractalfract6120744
    2. Imtiyaz Ahmad Bhat, Lakshmi Narayan Mishra, Numerical Solutions of Volterra Integral Equations of Third Kind and Its Convergence Analysis, 2022, 14, 2073-8994, 2600, 10.3390/sym14122600
    3. H. Tamimi, S. Saiedinezhad, M. B. Ghaemi, Study on the integro-differential equations on {C^1}({\mathbb {R}}_{+}), 2023, 42, 2238-3603, 10.1007/s40314-023-02239-4
    4. Jihan Alahmadi, Mohamed A. Abdou, Mohamed A. Abdel-Aty, Analytical and Numerical Approaches via Quadratic Integral Equations, 2024, 13, 2075-1680, 621, 10.3390/axioms13090621
    5. Imtiyaz Ahmad Bhat, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, Mahmoud Abdel-Aty, Montasir Qasymeh, A comprehensive analysis for weakly singular nonlinear functional Volterra integral equations using discretization techniques, 2024, 104, 11100168, 564, 10.1016/j.aej.2024.08.017
    6. Supriya Kumar Paul, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, Dumitru Baleanu, An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator, 2023, 8, 2473-6988, 17448, 10.3934/math.2023891
    7. Imtiyaz Ahmad Bhat, Lakshmi Narayan Mishra, A comparative study of discretization techniques for augmented Urysohn type nonlinear functional Volterra integral equations and their convergence analysis, 2024, 470, 00963003, 128555, 10.1016/j.amc.2024.128555
    8. Reza Chaharpashlou, Ehsan Lotfali Ghasab, António M. Lopes, On extended, and extended rectangular, Menger probabilistic b-metric spaces: applications to the existence of solutions of integral, and fractional differential, equations, 2023, 42, 2238-3603, 10.1007/s40314-023-02431-6
    9. Solomon Regasa Badeye, Mesfin Mekuria Woldaregay, Tekle Gemechu Dinka, Solving singularly perturbed fredholm integro-differential equation using exact finite difference method, 2023, 16, 1756-0500, 10.1186/s13104-023-06488-8
    10. Vijai Kumar Pathak, Lakshmi Narayan Mishra, ON SOLVABILITY AND APPROXIMATING THE SOLUTIONS FOR NONLINEAR INFINITE SYSTEM OF FRACTIONAL FUNCTIONAL INTEGRAL EQUATIONS IN THE SEQUENCE SPACE ℓp, p>1, 2023, 35, 0897-3962, 10.1216/jie.2023.35.443
    11. Imtiyaz Ahmad Bhat, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, Cemil Tunç, Osman Tunç, Precision and efficiency of an interpolation approach to weakly singular integral equations, 2024, 34, 0961-5539, 1479, 10.1108/HFF-09-2023-0553
    12. Naol Tufa Negero, Uniformly convergent extended cubic B-spline collocation method for two parameters singularly perturbed time-delayed convection-diffusion problems, 2023, 16, 1756-0500, 10.1186/s13104-023-06457-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1831) PDF downloads(117) Cited by(12)

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog