A resilient, diversified, and efficient energy system, comprising multiple energy carriers and high-efficiency infrastructure, is the way to decarbonise the European economy in line with the Paris Agreement, the UN 2030 Agenda for Sustainable Development, and the various recovery plans after the COVID-19 pandemic period. To achieve these goals, a key role is played by the private construction sector, which can reduce economic and environmental impacts and accelerate the green transition. Nevertheless, while traditionally decision-making problems in large urban transformations were supported by economic assessment based on Life Cycle Thinking and Cost-Benefit Analysis (CBA) approaches, these are now obsolete. Indeed, the sustainable neighbourhood paradigm requires the assessment of different aspects, considering both economic and extra-economic criteria, as well as different points of view, involving all stakeholders. In this context, the paper proposes a multi-stage assessment procedure that first investigates the energy performance, through a dynamic simulation model, and then the socio-economic performance of regeneration operations at the neighbourhood scale, through a Multi-Criteria Decision Analysis (MCDA). The model based on the proposed Preference Ranking Organisation Method for Enrichment Evaluations II (PROMETHEE II) aims to support local decision makers (DMs) in choosing which retrofit operations to implement and finance. The methodology was applied to a real-world case study in Turin (Italy), where various sustainable measures were ranked using multiple criteria to determine the best transformation scenario.
Citation: Martina Bertoncini, Adele Boggio, Federico Dell'Anna, Cristina Becchio, Marta Bottero. An application of the PROMETHEE II method for the comparison of energy requalification strategies to design Post-Carbon Cities[J]. AIMS Energy, 2022, 10(4): 553-581. doi: 10.3934/energy.2022028
[1] | Artion Kashuri, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Eman Al-Sarairah, Nejmeddine Chorfi . Novel inequalities for subadditive functions via tempered fractional integrals and their numerical investigations. AIMS Mathematics, 2024, 9(5): 13195-13210. doi: 10.3934/math.2024643 |
[2] | Muhammad Umar, Saad Ihsan Butt, Youngsoo Seol . Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus. AIMS Mathematics, 2024, 9(12): 34090-34108. doi: 10.3934/math.20241625 |
[3] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[4] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[5] | Serap Özcan . Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Mathematics, 2020, 5(2): 1505-1518. doi: 10.3934/math.2020103 |
[6] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[7] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[8] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[9] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[10] | Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098 |
A resilient, diversified, and efficient energy system, comprising multiple energy carriers and high-efficiency infrastructure, is the way to decarbonise the European economy in line with the Paris Agreement, the UN 2030 Agenda for Sustainable Development, and the various recovery plans after the COVID-19 pandemic period. To achieve these goals, a key role is played by the private construction sector, which can reduce economic and environmental impacts and accelerate the green transition. Nevertheless, while traditionally decision-making problems in large urban transformations were supported by economic assessment based on Life Cycle Thinking and Cost-Benefit Analysis (CBA) approaches, these are now obsolete. Indeed, the sustainable neighbourhood paradigm requires the assessment of different aspects, considering both economic and extra-economic criteria, as well as different points of view, involving all stakeholders. In this context, the paper proposes a multi-stage assessment procedure that first investigates the energy performance, through a dynamic simulation model, and then the socio-economic performance of regeneration operations at the neighbourhood scale, through a Multi-Criteria Decision Analysis (MCDA). The model based on the proposed Preference Ranking Organisation Method for Enrichment Evaluations II (PROMETHEE II) aims to support local decision makers (DMs) in choosing which retrofit operations to implement and finance. The methodology was applied to a real-world case study in Turin (Italy), where various sustainable measures were ranked using multiple criteria to determine the best transformation scenario.
The convexity of functions is a powerful tool to deal with many kinds of issues of pure and applied science. In recent decades, many authors have devoted themselves to studying the properties and inequalities related to convexity in different directions, see [13,21,23,34,52] and the references cited therein. One of the most important mathematical inequalities concerning convex mapping is Hermite–Hadamard inequality, which is also utilized widely in many other disciplines of applied mathematics. Let's review it as follows:
Let f:K⊆R→R be a convex mapping defined on the interval K of real numbers and τ1,τ2∈K with τ1<τ2. The subsequent inequalities are called Hermite–Hadamard inequalities:
f(τ1+τ22)≤1τ2−τ1∫τ2τ1f(t)dt≤f(τ1)+f(τ2)2. | (1.1) |
Many inequalities have been established in terms of inequalities (1.1) via functions of different classes, such as convex functions [28], s-convex functions [33], (α,m)-convex functions [47], harmonically convex functions [16], h-convex functions [18], strongly exponentially generalized preinvex functions [29], h-preinvex functions [37], p-quasiconvex functions [27], N-quasiconvex functions [3], etc. For more recent results about this topic, the readers may refer to [13,22,25,26,30,32,36] and the references cited therein.
The multiplicatively convex function is one of the most significant functions, which can be defined as follows.
Definition 1. A mapping f: I⊆R→[0,∞) is said to be multiplicatively convex or log-convex, if log f is convex or equivalently for all τ1, τ2 ∈I and t ∈[0,1], one has the following inequality:
f(tτ1+(1−t)τ2)≤[f(τ1)]t[f(τ2)]1−t. |
From Definition 1, it follows that
f(tτ1+(1−t)τ2)≤[f(τ1)]t[f(τ2)]1−t≤tf(τ1)+(1−t)f(τ2), |
which reveals that every multiplicatively convex function is a convex mapping, but the converse is not true.
Many properties and inequalities associated with log-convex mappings have been studied by plenty of researchers. For example, Bai and Qi [9] gave several integral inequalities of the Hermite–Hadamard type for log-convex mappings. Dragomir [20] provided some unweighted and weighted inequalities of Hermite–Hadamard type related to log-convex mappings on real intervals. Set and Ardiç [46] established certain Hermite–Hadamard-like type integral inequalities involving log-convex mappings and p-functions. Zhang and Jiang [53] researched some properties for log-convex mapping. For more results on the basis of log-convex mappings, one can see, for example, [10,39,40,49,50] and the references cited therein.
In 2008, Bashirov [11] proposed a class of the multiplicative operators called ∗integral, which is denoted by ∫ba(f(x))dx and the ordinary integral is denoted by ∫baf(x)dx. Recall that the function f is multiplicatively integrable on [a,b], if f is positive and Riemann integrable on [a,b] and
∫ba(f(x))dx=e∫baln(f(x))dx. |
Definition 2. [11] Let f:R→R+ be a positive function. The multiplicative derivative of function f is given by
d∗fdt(t)=f∗(t)=limh→0(f(t+h)f(h))1h. |
If f has positive values and is differentiable at t, then f∗ exists and the relation between f∗ and ordinary derivative f′ is as follows:
f∗(t)=e[lnf(t)]′=ef′(t)f(t). |
The following properties of ∗differentiable exist:
Theorem 1. [11] Let f and g be ∗differentiable functions. If c is an arbitrary constant, then functions cf, fg, f+g, f/g and fg are ∗differentiable and
(i)(cf)∗(t)=f∗(t),(ii)(fg)∗(t)=f∗(t)g∗(t),(iii)(f+g)∗(t)=f∗(t)f(t)f(t)+g(t)g∗(t)g(t)f(t)+g(t),(iv)(fg)∗(t)=f∗(t)g∗(t),(v)(fg)∗(t)=f∗(t)g(t)f(t)g′(t). |
Moreover, Bashirov et al. show that the multiplicative integral has the following properties:
Proposition 1. [11] If f is positive and Riemann integrable on [a,b], then f is ∗integrable on [a,b] and
(i)∫ba((f(x))p)dx=∫ba((f(x))dx)p,(ii)∫ba(f(x)g(x))dx=∫ba(f(x))dx.∫ba(g(x))dx,(iii)∫ba(f(x)g(x))dx=∫ba(f(x))dx∫ba(g(x))dx,(iv)∫ba(f(x))dx=∫ca(f(x))dx.∫bc(f(x))dx,a≤c≤b,(v)∫aa(f(x))dx=1and∫ba(f(x))dx=(∫ab(f(x))dx)−1. |
The interesting geometric mean type inequalities, known as the Hermite–Hadamard inequality for the multiplicatively convex functions, are shown by the following theorem in [7].
Theorem 2. Let f be a positive and multiplicatively convex function on interval [a,b], then the following inequalities hold
f(a+b2)≤(∫ba(f(x))dx)1b−a≤√f(a)f(b). | (1.2) |
Fractional calculus, as an advantageous tool, reveals its significance to implement differentiation and integration of real or complex number orders. Furthermore, it recently emerged rapidly due to its applications in modelling a number of problems especially in dealing with the dynamics of the complex systems, decision making in structural engineering and probabilistic problems, etc., see, for instance, [6,31]. The research of mathematical inequalities including many different types of fractional integral operators, especially the Hermite–Hadamard type inequalities, is a current research focus. For example, refer to [8,19,22] for Riemann–Liouville integrals, to k-Riemann–Liouville integrals [41], to Hadamard fractional integrals [4,48], to conformable fractional integrals [2,14], to Katugampola fractional integrals [17,51], and to exponential kernel integrals [5], etc.
An imperative generalization of Riemann–Liouville fractional integrals was considered by Abdeljawad and Grossman in [1], which is named the multiplicative Riemann–Liouville fractional integrals.
Definition 3. [1] The multiplicative left-sided Riemann–Liouville fractional integral aIα∗f(x) of order α ∈C, Re(α)>0 is defined by
aIα∗f(x)=e(Iαa+(ln∘f))(x), |
and the multiplicative right-sided one ∗Iαbf(x) is defined by
∗Iαbf(x)=e(Iαb−(ln∘f))(x), |
where the symbols Iαa+f(x) and Iαb−f(x) denote respectively the left-sided and right-sided Riemann–Liouville fractional integrals, which are defined by
Iαa+f(x)=1Γ(α)∫xa(x−t)α−1f(t)dt,x>a, |
and
Iαb−f(x)=1Γ(α)∫bx(t−x)α−1f(t)dt,x<b, |
respectively.
On the other hand, Sarikaya et al. proved the following noteworthy inequalities which are the Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals.
Theorem 3. [44] Let f:[a,b]→R be a positive function with 0≤a<b and f∈L1([a,b]). If f is a convex function on [a,b], then the following inequalities for fractional integrals hold:
f(a+b2)≤Γ(α+1)2(b−a)α[Iαa+f(b)+Iαb−f(a)]≤f(a)+f(b)2, | (1.3) |
with α>0.
Also, Sarikaya and Yildirim built another form relevant to Riemann–Liouville fractional Hermite–Hadamard type inequalities as follows.
Theorem 4. [45] Under the same assumptions of Theorem 3, we have
f(a+b2)≤2α−1Γ(α+1)(b−a)α[Iα(a+b2)+f(b)+Iα(a+b2)−f(a)]≤f(a)+f(b)2. | (1.4) |
Sabzikar et al. provided the following tempered fractional operators.
Definition 4. [35] Let [a,b] be a real interval and λ≥0, α>0. Then for a function f ∈L1([a,b]), the left-sided and right-sided tempered fractional integrals are, respectively, defined by
Iα,λa+f(x)=1Γ(α)∫xa(x−t)α−1e−λ(x−t)f(t)dt,x>a, |
and
Iα,λb−f(x)=1Γ(α)∫bx(t−x)α−1e−λ(t−x)f(t)dt,x<b. |
For several recent related results involving the tempered fractional integrals, see [24,38,42,43] and the references included there.
Motivated by the results in the papers above, especially these developed in [12,38], this work aims to investigate some inequalities of Hermite–Hadamard type, which involve the tempered fractional integrals and the notion of the λ-incomplete gamma function for the multiplicatively convex functions. For this purpose, we establish two Hermite–Hadamard type inequalities for the multiplicative tempered fractional integrals, then we present an integral identity for ∗differentiable mappings, from which we provide certain estimates of the upper bounds for trapezoid inequalities via the multiplicative tempered fractional integral operators.
As one can see, the definitions of the tempered fractional integrals and the multiplicative fractional integrals have similar configurations. This observation leads us to present the following definition of fractional integral operators, to be referred to as the multiplicative tempered fractional integrals.
Definition 5. The multiplicative left-sided tempered fractional integral aIα,λ∗f(x) of order α∈C, Re(α)>0, is defined by
aIα,λ∗f(x)=e(Iα,λa+(ln∘f))(x),λ≥0, |
and the multiplicative right-sided one ∗Iα,λbf(x) is defined by
∗Iα,λbf(x)=e(Iα,λb−(ln∘f))(x),λ≥0, |
where the symbols Iα,λa+f(x) and Iα,λb−f(x) denote the left-sided and right-sided tempered fractional integrals, respectively.
Observe that, for λ=0, the multiplicative tempered fractional integrals become to the multiplicative Riemann–Liouville fractional integrals.
The following facts will be required in establishing our main results.
Remark 1. For the real numbers α>0 and x,λ≥0, the following identities hold:
(i) γλ(b−a)(α,1)=γλ(α,b−a)(b−a)α, | (2.1) |
(ii)∫10γλ(b−a)(α,x)dx=γλ(α,b−a)(b−a)α−γλ(α+1,b−a)(b−a)α+1, | (2.2) |
where γλ(⋅,⋅) is the λ-incomplete gamma function [38], which is defined as follows:
γλ(α,x)=∫x0tα−1e−λtdt. |
If λ=1, the λ-incomplete gamma function reduces to the incomplete gamma function [15]:
γ(α,x)=∫x0tα−1e−tdt. |
Proof. (i) By using the changed variable u=(b−a)t in the (2.1), we get
γλ(b−a)(α,1)=∫10tα−1e−λ(b−a)tdt=∫b−a0(ub−a)α−1e−λu(1b−a)du=γλ(α,b−a)(b−a)α, |
which ends the identity (2.1).
(ii) From the definition of λ-incomplete gamma function, we have
∫10γλ(b−a)(α,x)dx=∫10∫x0yα−1e−λ(b−a)ydydx. |
By changing the order of the integration, we get
∫10γλ(b−a)(α,x)dx=∫10∫1yyα−1e−λ(b−a)ydxdy=∫10(1−y)yα−1e−λ(b−a)ydy=∫10yα−1e−λ(b−a)ydy−∫10yαe−λ(b−a)ydy. |
Applying the Remark 1 (i), we get the identity (2.2).
Our first main result is presented by the following theorem.
Theorem 5. Let f be a positive and multiplicatively convex function on interval [a,b], then we have the following Hermite–Hadamard inequalities for the multiplicative tempered fractional integrals:
f(a+b2)≤[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)≤√f(a)f(b), | (2.3) |
where γλ(⋅,⋅) is the λ-incomplete gamma function.
Proof. On account of the multiplicative convexity of f on interval [a,b], we have
f(a+b2)=f(at+(1−t)b+(1−t)a+tb2)≤[f(at+(1−t)b)]12[f((1−t)a+tb)]12, |
i.e.
lnf(a+b2)≤12[lnf(at+(1−t)b)+lnf((1−t)a+tb)]. | (2.4) |
Multiplying both sides of (2.4) by tα−1e−λ(b−a)t then integrating the resulting inequality with respect to t over [0, 1], we obtain
lnf(a+b2)∫10tα−1e−λ(b−a)tdt≤12[∫10tα−1e−λ(b−a)tlnf(at+(1−t)b)dt+∫10tα−1e−λ(b−a)tlnf((1−t)a+tb)dt]. |
Utilizing the changed variable, we have
1(b−a)αlnf(a+b2)∫b−a0xα−1e−λxdx≤12(b−a)α[∫ba(b−x)α−1e−λ(b−x)lnf(x)dx+∫ba(x−a)α−1e−λ(x−a)lnf(x)dx]. |
That is,
γλ(α,b−a)(b−a)αlnf(a+b2)≤12(b−a)α[∫ba(b−x)α−1e−λ(b−x)lnf(x)dx+∫ba(x−a)α−1e−λ(x−a)lnf(x)dx],lnf(a+b2)≤Γ(α)2γλ(α,b−a)[Iα,λa+lnf(b)+Iα,λb−lnf(a)]. |
Thus we get,
f(a+b2)≤eΓ(α)2γλ(α,b−a)[Iα,λa+lnf(b)+Iα,λb−lnf(a)]=[eIα,λa+lnf(b)eIα,λb−lnf(a)]Γ(α)2γλ(α,b−a)=[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a), |
which completes the proof of the first inequality in (2.3).
On the other hand, as f is multiplicatively convex on interval [a,b], we have
f(at+(1−t)b)≤[f(a)]t[f(b)]1−t, |
and
f((1−t)a+tb)≤[f(a)]1−t[f(b)]t. |
Thus,
lnf(at+(1−t)b)+lnf((1−t)a+tb)≤tlnf(a)+(1−t)lnf(b)+(1−t)lnf(a)+tlnf(b)=lnf(a)+lnf(b). | (2.5) |
Multiplying both sides of (2.5) by tα−1e−λ(b−a)t then integrating the resulting inequality with respect to t over [0,1], we obtain
∫10tα−1e−λ(b−a)tlnf(at+(1−t)b)dt+∫10tα−1e−λ(b−a)tlnf((1−t)a+tb)dt≤[lnf(a)+lnf(b)]∫10tα−1e−λ(b−a)tdt. |
Hence,
Γ(α)2γλ(α,b−a)[Iα,λa+lnf(b)+Iα,λb−lnf(a)]≤12[lnf(a)+lnf(b)]. |
Consequently, we have the following inequality
e[Iα,λa+lnf(b)+Iα,λb−lnf(a)]Γ(α)2γλ(α,b−a)≤√f(a)f(b), |
i.e.
[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)≤√f(a)f(b). |
This ends the proof.
Remark 2. Considering Theorem 5, we have the following conclusions:
(i) The inequalities (2.3) are equivalent to the following inequalities:
lnf(a+b2)≤Γ(α)2γλ(α,b−a)[Iα,λa+lnf(b)+Iα,λb−lnf(a)]≤12[lnf(a)+lnf(b)]. |
(ii) If we choose λ=0, then we have the following inequalities:
f(a+b2)≤[aIα∗f(b)⋅∗Iαbf(a)]Γ(α+1)2(b−a)α≤√f(a)f(b), |
which is given by Budak in [12].
(iii) If we choose λ=0 and α=1, then we obtain Theorem 2 given by Ali et al. in [7].
Corollary 1. Suppose that f and g are two positive and multiplicatively convex functions on [a,b], then we have
f(a+b2)g(a+b2)≤[aIα,λ∗fg(b)⋅∗Iα,λbfg(a)]Γ(α)2γλ(α,b−a)≤√f(a)f(b)⋅√g(a)g(b). | (2.6) |
Proof. As f and g are positive and multiplicatively convex, the function fg is positive and multiplicatively convex. If we apply Theorem 5 to the function fg, then we obtain the required inequalities (2.6).
Remark 3. If we take λ=0 in Corollary 1, then we have the following inequalities:
f(a+b2)g(a+b2)≤[aIα∗fg(b)⋅∗Iαbfg(a)]Γ(α+1)2(b−a)α≤√f(a)f(b)⋅√g(a)g(b), |
which is established by Budak in [12]. Especially if we take α = 1, we obtain Theorem 7 in [7].
Hermite–Hadamard's inequalities involving midpoint can be represented in the multiplicative tempered fractional integral forms as follows:
Theorem 6. Under the same assumptions of Theorem 5, we have
f(a+b2)≤[a+b2Iα,λ∗f(b)⋅∗Iα,λa+b2f(a)]Γ(α)2γλ(α,b−a2)≤√f(a)f(b), | (2.7) |
where γλ(⋅,⋅) is the λ-incomplete gamma function.
Proof. On account of the multiplicative convexity of f on interval [a,b], we have
f(a+b2)=f[12(t2a+2−t2b)+12(2−t2a+t2b)], |
i.e.
lnf(a+b2)≤12[lnf(t2a+2−t2b)+lnf(2−t2a+t2b)]. | (2.8) |
Multiplying both sides of (2.8) by tα−1e−λ(b−a)2t then integrating the resulting inequality with respect to t over [0, 1], we obtain
lnf(a+b2)∫10tα−1e−λ(b−a)2tdt≤12[∫10tα−1e−λ(b−a)2tlnf(t2a+2−t2b)dt+∫10tα−1e−λ(b−a)2tlnf(2−t2a+t2b)dt]. |
That is,
2α(b−a)αγλ(α,b−a2)lnf(a+b2)≤2α−1(b−a)αΓ(α)[Iα,λ(a+b2)+lnf(b)+Iα,λ(a+b2)−lnf(a)], |
which yields that,
f(a+b2)≤e[Iα,λ(a+b2)+lnf(b)+Iα,λ(a+b2)−lnf(a)]Γ(α)2γλ(α,b−a2)=[a+b2Iα,λ∗f(b)⋅∗Iα,λa+b2f(a)]Γ(α)2γλ(α,b−a2). |
This completes the proof of the first inequality in inequalities (2.7).
On the other hand, as f is multiplicatively convex, we get
f(t2a+2−t2b)≤[f(a)]t2[f(b)]2−t2, |
and
f(2−t2a+t2b)≤[f(a)]2−t2[f(b)]t2. |
Thus, we have
lnf(t2a+2−t2b)+lnf(2−t2a+t2b)≤lnf(a)+lnf(b). | (2.9) |
Multiplying both sides of (2.9) by tα−1e−λ(b−a)2t then integrating the resulting inequality with respect to t over [0, 1], we have
2α(b−a)αΓ(α)[Iα,λ(a+b2)+lnf(b)+Iα,λ(a+b2)−lnf(a)]≤2α(b−a)αγλ(α,b−a2)[lnf(a)+lnf(b)], |
i.e.
Γ(α)2γλ(α,b−a2)[Iα,λ(a+b2)+lnf(b)+Iα,λ(a+b2)−lnf(a)]≤12[lnf(a)+lnf(b)]. |
Consequently, we get the inequality
[a+b2Iα,λ∗f(b)⋅∗Iα,λa+b2f(a)]Γ(α)2γλ(α,b−a2)≤√f(a)f(b). |
This ends the proof.
Next, we are going to establish several integral inequalities concerning the multiplicative tempered fractional integral operators. To this end, we present the following lemma.
Lemma 1. Let f:I∘⊂R→R+ be a ∗differentiable mapping on I∘, a,b∈I∘ with a<b. If f∗ is integrable on [a,b], then we have
√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)=∫10[f∗(ta+(1−t)b)η(γλ(b−a)(α,t)−γλ(b−a)(α,1−t))]dt, | (2.10) |
where
η=(b−a)α2γλ(α,b−a). | (2.11) |
Proof. Applying the multiplicative integration by parts, we have
∫10[f∗(ta+(1−t)b)η(γλ(b−a)(α,t)−γλ(b−a)(α,1−t))]dt=f(a)ηγλ(b−a)(α,1)f(b)−ηγλ(b−a)(α,1)⋅1∫10(f(ta+(1−t)b)η(tα−1e−λ(b−a)t+(1−t)α−1e−λ(b−a)(1−t)))dt=[f(a)⋅f(b)]ηγλ(b−a)(α,1)exp{∫10ηlnf(ta+(1−t)b)⋅tα−1e−λ(b−a)tdt+∫10ηlnf(ta+(1−t)b)⋅(1−t)α−1e−λ(b−a)(1−t)dt}=[f(a)⋅f(b)]ηγλ(α,b−a)(b−a)αexp{I1+I2}. |
Utilizing the changed variable, we obtain
I1=η∫10lnf(ta+(1−t)b)tα−1e−λ(b−a)tdt=η(b−a)α∫balnf(u)(b−u)α−1e−λ(b−u)du=ηΓ(α)(b−a)αIα,λa+lnf(b), |
and
I2=η∫10lnf(ta+(1−t)b)(1−t)α−1e−λ(b−a)(1−t)dt=η(b−a)α∫balnf(u)(u−a)α−1e−λ(u−a)du=ηΓ(α)(b−a)αIα,λb−lnf(a). |
Then, we have
∫10[f∗(at+(1−t)b)η(γλ(b−a)(α,t)−γλ(b−a)(α,1−t))]dt=√f(a)f(b)exp{Γ(α)2γλ(α,b−a)[Iα,λa+lnf(b)+Iα,λb−lnf(a)]}=√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a). |
This ends the proof.
Remark 4. Considering Lemma 1, we have the following conclusions:
(i) If we take λ=0, then we have
√f(a)f(b)[aIα∗f(b)⋅∗Iαbf(a)]Γ(α+1)2(b−a)α=∫10(f∗(ta+(1−t)b)12[tα−(1−t)α])dt. | (2.12) |
(ii) If we take λ=0 and α=1, then we have
√f(a)f(b)∫ba(f(u)1b−a)du=∫10(f∗(ta+(1−t)b)12(2t−1))dt. | (2.13) |
It is worth mentioning that, to the best of our knowledge, the identities (2.12) and (2.13) obtained here are new in the literature.
Theorem 7. Let f:I∘⊂R→R+ be a ∗differentiable mapping on I∘, a,b∈I∘ with a<b. If |f∗| is multiplicatively convex on [a,b], then we have
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤[|f∗(a)|⋅|f∗(b)|]ηδ, | (2.14) |
where η is defined by (2.11) in Lemma 1 and
δ=γλ(α,b−a)(b−a)α−γλ(α,b−a2)(b−a)α+2γλ(α+1,b−a2)(b−a)α+1−γλ(α+1,b−a)(b−a)α+1. | (2.15) |
Proof. Making use of Lemma 1, we deduce
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|=|∫10[f∗(at+(1−t)b)η(γλ(b−a)(α,t)−γλ(b−a)(α,1−t))]dt|≤exp{∫10|lnf∗(at+(1−t)b)η[γλ(b−a)(α,t)−γλ(b−a)(α,1−t)]|dt}=exp{∫10|η[γλ(b−a)(α,t)−γλ(b−a)(α,1−t)]|⋅|lnf∗(at+(1−t)b)|dt}. | (2.16) |
As t∈[0,1], we can know
|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|={ ∫1−ttuα−1e−λ(b−a)udu,0≤t≤12,∫t1−tuα−1e−λ(b−a)udu,12<t≤1. | (2.17) |
Since |f∗| is multiplicatively convex, we get
|lnf∗(ta+(1−t)b)|≤tln|f∗(a)|+(1−t)ln|f∗(b)|. | (2.18) |
If we apply (2.17) and (2.18) to the inequality (2.16), we obtain
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{η∫120 ∫1−ttuα−1e−λ(b−a)udu[tln|f∗(a)|+(1−t)ln|f∗(b)|]dt+η∫112∫t1−tuα−1e−λ(b−a)udu[tln|f∗(a)|+(1−t)ln|f∗(b)|]dt}=exp{ηln|f∗(a)|∫120∫1−tttuα−1e−λ(b−a)ududt+ηln|f∗(b)|∫120∫1−tt(1−t)uα−1e−λ(b−a)ududt+ηln|f∗(a)|∫112∫t1−ttuα−1e−λ(b−a)ududt+ηln|f∗(b)|∫112∫t1−t(1−t)uα−1e−λ(b−a)ududt}=exp{η(ln|f∗(a)|⋅Δ1+ln|f∗(b)|⋅Δ2+ln|f∗(a)|⋅Δ3+ln|f∗(b)|⋅Δ4)}. |
Here, let's evaluate an integral by changing the order of it.
Δ1=∫120∫1−tttuα−1e−λ(b−a)ududt=∫120∫u0tuα−1e−λ(b−a)udtdu+∫112∫1−u0tuα−1e−λ(b−a)udtdu=12[∫120uα+1e−λ(b−a)udu+∫112(u2−2u+1)uα−1e−λ(b−a)udu]=12[γλ(b−a)(α+2,12)+∫112uα+1e−λ(b−a)udu−2∫112uαe−λ(b−a)udu+∫112uα−1e−λ(b−a)udu]=12{γλ(b−a)(α+2,12)+[γλ(b−a)(α+2,1)−γλ(b−a)(α+2,12)]−2[γλ(b−a)(α+1,1)−γλ(b−a)(α+1,12)]+[γλ(b−a)(α,1)−γλ(b−a)(α,12)]}. | (2.19) |
Analogously, we can get
Δ2=12{2γλ(b−a)(α+1,12)−γλ(b−a)(α+2,12)+[γλ(b−a)(α,1)−γλ(b−a)(α,12)]−[γλ(b−a)(α+2,1)−γλ(b−a)(α+2,12)]}, | (2.20) |
Δ3=12{2γλ(b−a)(α+1,12)−γλ(b−a)(α+2,12)+[γλ(b−a)(α,1)−γλ(b−a)(α,12)]−[γλ(b−a)(α+2,1)−γλ(b−a)(α+2,12)]}, | (2.21) |
and
Δ4=12{γλ(b−a)(α+2,12)+[γλ(b−a)(α+2,1)−γλ(b−a)(α+2,12)]−2[γλ(b−a)(α+1,1)−γλ(b−a)(α+1,12)]+[γλ(b−a)(α,1)−γλ(b−a)(α,12)]}. | (2.22) |
Consequently,
ln|f∗(a)|⋅Δ1+ln|f∗(b)|⋅Δ2+ln|f∗(a)|⋅Δ3+ln|f∗(b)|⋅Δ4=[ln|f∗(a)|+ln|f∗(b)|][γλ(α,b−a)(b−a)α−γλ(α,b−a2)(b−a)α+2γλ(α+1,b−a2)(b−a)α+1−γλ(α+1,b−a)(b−a)α+1]. |
Thus, we deduce
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{η[ln|f∗(a)|+ln|f∗(b)|][γλ(α,b−a)(b−a)α−γλ(α,b−a2)(b−a)α+2γλ(α+1,b−a2)(b−a)α+1−γλ(α+1,b−a)(b−a)α+1]}=exp{ηδ[ln|f∗(a)|+ln|f∗(b)|]}=[|f∗(a)|⋅|f∗(b)|]ηδ. |
The proof is completed.
Theorem 8. Let f:I∘⊂R→R+ be a ∗differentiable mapping on I∘, a,b∈I∘ with a<b. For q>1 with p−1+q−1=1, if |f∗|q is multiplicatively convex on [a,b], then we have
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{η⋅τ1p(ln|f∗(a)|q+ln|f∗(b)|q2)1q}, | (2.23) |
where η is defined by (2.11) in Lemma 1 and
τ=∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|pdt. |
Proof. Making use of Lemma 1 and Hölder's inequality, we deduce
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|=|∫10[f∗(at+(1−t)b)η(γλ(b−a)(α,t)−γλ(b−a)(α,1−t))]dt|≤exp{∫10|lnf∗(at+(1−t)b)η[γλ(b−a)(α,t)−γλ(b−a)(α,1−t)]|dt}=exp{∫10|η[γλ(b−a)(α,t)−γλ(b−a)(α,1−t)]⋅lnf∗(at+(1−t)b)|dt}=exp{∫10|η[γλ(b−a)(α,t)−γλ(b−a)(α,1−t)]|⋅|lnf∗(at+(1−t)b)|dt}. | (2.24) |
Due to the Hölder's inequality, we have
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{η(∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|pdt)1p×(∫10|lnf∗(ta+(1−t)b)|qdt)1q}. | (2.25) |
By virtue of the multiplicative convexity of |f∗|q, we obtain
∫10|lnf∗(at+(1−t)b)|qdt≤∫10[tln|f∗(a)|q+(1−t)ln|f∗(b)|q]dt=ln|f∗(a)|q+ln|f∗(b)|q2. | (2.26) |
Combining (2.26) with (2.25), we know that Theorem 8 is true. Thus the proof is completed.
Remark 5. Considering Theorem 8, we have the following conclusions:
(i) If we choose λ=0, then we have
|√f(a)f(b)[aIα∗f(b)⋅∗Iαbf(a)]Γ(α+1)2(b−a)α|≤exp{12(∫10|tα−(1−t)α|pdt)1p(ln|f∗(a)|q+ln|f∗(b)|q2)1q}≤exp{12(1αp+1(2−12αp−1))1p(ln|f∗(a)|q+ln|f∗(b)|q2)1q}. |
To prove the second inequality above, we use the fact
[(1−t)α−tα]p≤(1−t)αp−tαp, |
for t∈ [0,12] and
[tα−(1−t)α]p≤tαp−(1−t)αp, |
for t∈ [12,1], which follows from (A−B)q ≤ Aq−Bq for any A≥B≥0 and q≥1.
(ii) If we choose λ=0 and α=1, then we have
√f(a)f(b)∫ba(f(u)1b−a)du≤exp{12(1p+1)1p(ln|f∗(a)|q+ln|f∗(b)|q2)1q}. |
Theorem 9. Let f:I∘⊂R→R+ be a ∗differentiable mapping on I∘, a,b∈I∘ with a<b. If |f∗|q, q>1, is multiplicatively convex on [a,b], then we have
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{21−1q⋅η⋅δ(ln|f∗(a)|q+ln|f∗(b)|q)1q}, | (2.27) |
where η is defined by (2.11) in Lemma 1 and δ is defined by (2.15) in Theorem 7, respectively.
Proof. Continuing from the inequality (2.24) in the proof of Theorem 8, using the power-mean inequality, we have
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{η(∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|dt)1−1q×(∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|⋅|lnf∗(at+(1−t)b)|qdt)1q}. |
For the convenience of expression, let us define the quantities
J1=∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|dt, |
and
J2=∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|⋅|lnf∗(at+(1−t)b)|qdt. |
According to the equalities (2.17), we have
J1=∫120∫1−ttuα−1e−λ(b−a)ududt+∫112∫t1−tuα−1e−λ(b−a)ududt=2{2γλ(b−a)(α+1,12)+[γλ(b−a)(α,1)−γλ(b−a)(α,12)]−γλ(b−a)(α+1,1)}. | (2.28) |
Utilizing the multiplicative convexity of |f∗|q, we obtain
J2≤∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|⋅[tln|f∗(a)|q+(1−t)ln|f∗(b)|q]dt=∫120∫1−ttuα−1e−λ(b−a)u⋅[tln|f∗(a)|q+(1−t)ln|f∗(b)|q]dudt+∫112∫t1−tuα−1e−λ(b−a)u⋅[tln|f∗(a)|q+(1−t)ln|f∗(b)|q]dudt=ln|f∗(a)|q⋅∫120∫1−tttuα−1e−λ(b−a)ududt+ln|f∗(b)|q⋅∫120∫1−tt(1−t)uα−1e−λ(b−a)ududt+ln|f∗(a)|q⋅∫112∫t1−ttuα−1e−λ(b−a)ududt+ln|f∗(b)|q⋅∫112∫t1−t(1−t)uα−1e−λ(b−a)ududt=ln|f∗(a)|q⋅Δ1+ln|f∗(b)|q⋅Δ2+ln|f∗(a)|q⋅Δ3+ln|f∗(b)|q⋅Δ4, |
where Δi(i=1,2,3,4) are given by (2.19)–(2.22) in the proof of Theorem 7, respectively.
Consequently,
ln|f∗(a)|q⋅Δ1+ln|f∗(b)|q⋅Δ2+ln|f∗(a)|q⋅Δ3+ln|f∗(b)|q⋅Δ4=[ln|f∗(a)|q+ln|f∗(b)|q][γλ(α,b−a)(b−a)α−γλ(α,b−a2)(b−a)α+2γλ(α+1,b−a2)(b−a)α+1−γλ(α+1,b−a)(b−a)α+1]. | (2.29) |
Combining (2.28) with (2.29), we have
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{η(2δ)1−1q⋅(δ(ln|f∗(a)|q+ln|f∗(b)|q))1q}=exp{21−1q⋅η⋅δ(ln|f∗(a)|q+ln|f∗(b)|q)1q}. |
The proof is completed.
The main point of the results established in this paper is that the calculation of the right-hand side is much easier than that of the left-hand side. To show this, three interesting examples are demonstrated below.
Example 1. Let the log-convex function f: (0,∞)→(0,∞) be defined by f(x)=2x2−3. If we take a=1,b=2, α=12 and λ=14, then all assumptions in Theorem 5 are satisfied.
The left-hand side term of (2.3) is
f(a+b2)=f(1+22)=2−34≈0.5946. |
The middle term of (2.3) is
[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)=[eI12,141+lnf(2)⋅eI12,142−lnf(1)]Γ(12)2γ14(12,1)=[e∫21(u2−3)ln2⋅(2−u)−12e−14(2−u)du+∫21(u2−3)ln2⋅(u−1)−12e−14(u−1)du]12∫10u−12e−14udu≈0.6461. |
The right-hand side term of (2.3) is
√f(a)f(b)=√f(1)f(2)=2−12≈0.7071. |
It is clear that 0.5946<0.6461<0.7071, which demonstrates the result described in Theorem 5.
Example 2. Let the log-convex function f: (0,∞)→(0,∞) be defined by f(x)=ex2. If we take a=1,b=2, α=12 and λ=12, then all assumptions in Theorem 6 are satisfied.
The left-hand side term of (2.7) is
f(a+b2)=f(1+22)=e94≈9.4877. |
The middle term of (2.7) is
[a+b2Iα,λ∗f(b)⋅∗Iα,λa+b2f(a)]Γ(α)2γλ(α,b−a2)=[eI12,1232+lnf(2)⋅eI12,1232−lnf(1)]Γ(12)2γ12(12,12)=[e∫232u2(2−u)−12e−12(2−u)du+∫321u2(u−1)−12e−12(u−1)du]12∫120u−12e−12udu≈10.9088. |
The right-hand side term of (2.7) is
√f(a)f(b)=√f(1)f(2)=e52≈12.1825. |
It is clear that 9.4877<10.9088<12.1825, which demonstrates the result described in Theorem 6.
Example 3. Let the log-convex function f′(x)f(x): (0,∞)→(0,∞) be defined by f′(x)f(x)=1x. We can get f∗(x)=e1x, f(x)=x. If we take a=1,b=2, α=12 and λ=12, then all assumptions in Theorem 7 are satisfied.
The left-hand side term of (2.14) is
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|=|√f(1)f(2)[eI12,121+lnf(2)⋅eI12,122−lnf(1)]Γ(12)2γ12(12,1)|=|√2[e∫21lnu⋅(2−u)−12e−12(2−u)du+∫21lnu⋅(u−1)−12e−12(u−1)du]12γ12(12,1)|≈0.9702. |
The right-hand side term of (2.14) is
[|f∗(a)|⋅|f∗(b)|]ηδ=(e32)12γ12(12,1)[γ12(12,1)−γ12(12,12)+2γ12(32,12)−γ12(32,1)]≈1.1480. |
It is clear that 0.9702<1.1480, which demonstrates the result described in Theorem 7.
To the best of our knowledge, this is a first pervasive work on the multiplicative tempered fractional Hermite–Hadamard type inequalities via the multiplicatively convex functions. Two Hermite–Hadamard type inequalities for the multiplicative tempered fractional integrals are hereby established. An integral identity for ∗differentiable mappings is presented. By using it, some estimates of the upper bounds pertaining to trapezoid type inequalities via the multiplicative tempered fractional integral operators are obtained. Inequalities obtained in this paper generalize some results given by Budak and Tunç (2020) and Ali et al. (2019). Also, three examples show that the calculation of the right-hand side is much easier than that of the left-hand side. The ideas and techniques of this article may inspire further research in this field. This promising field about the multiplicative tempered fractional inequalities is worth further exploration.
The authors would like to thank the reviewer for his/her valuable comments and suggestions.
The authors declare no conflict of interest.
[1] | UNFCCC (2017) The Sustainable Development Goals Report. United Nations Publications. Available from: https://unstats.un.org/sdgs/files/report/2017/thesustainabledevelopmentgoalsreport2017.pdf. |
[2] | European Parliament; The Council of the European Union (2010) Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast), Brussels. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:en:PDF. |
[3] |
Gagliano A, Giuffrida S, Nocera F, et al. (2017) Energy efficient measure to upgrade a multistory residential in a nZEB. AIMS Energy 5: 601-624. https://doi.org/10.3934/energy.2017.4.601 doi: 10.3934/energy.2017.4.601
![]() |
[4] |
Rivas S, Urraca R, Bertoldi P, et al. (2021) Towards the EU Green Deal: Local key factors to achieve ambitious 2030 climate targets. J Cleaner Prod 320: 128878. https://doi.org/10.1016/j.jclepro.2021.128878 doi: 10.1016/j.jclepro.2021.128878
![]() |
[5] | European Commission (2019) The European Green Deal. COM(2019) 640 final, Brussels. Available from: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0006.02/DOC_1&format=PDF. |
[6] | European Commission (2021) Proposal for a Directive of The European Parliament and of The Council on the Energy Performance of Buildings (recast). COM/2021/802 final, Bruxelles. Available from: https://eur-lex.europa.eu/resource.html?uri=cellar:c51fe6d1-5da2-11ec-9c6c-01aa75ed71a1.0001.02/DOC_1&format=PDF. |
[7] |
Li Z, Kuo T-H, Siao-Yun W, et al. (2022) Role of green finance, volatility and risk in promoting the investments in Renewable Energy Resources in the post-covid-19. Resour Policy 76: 102563. https://doi.org/10.1016/j.resourpol.2022.102563 doi: 10.1016/j.resourpol.2022.102563
![]() |
[8] | Becchio C, Bertoncini M, Boggio A, et al. (2019) The impact of users' lifestyle in zero-energy and emission buildings: An application of cost-benefit analysis, In: Calabrò F, Della Spina L, Bevilacqua C (Eds.), New Metropolitan Perspectives, ISHT 2018. Smart Innovation, Systems and Technologies, Cham, Springer, 123-131. https://doi.org/10.1007/978-3-319-92099-3_15 |
[9] |
Marique A-F, Reiter S (2014) A simplified framework to assess the feasibility of zero-energy at the neighbourhood/community scale. Energy Build 82: 114-122. https://doi.org/10.1016/j.enbuild.2014.07.006 doi: 10.1016/j.enbuild.2014.07.006
![]() |
[10] |
Kalaycıoğlu E, Yılmaz AZ (2017) A new approach for the application of nearly zero energy concept at district level to reach EPBD recast requirements through a case study in Turkey. Energy Build 152: 680-700. https://doi.org/10.1016/j.enbuild.2017.07.040 doi: 10.1016/j.enbuild.2017.07.040
![]() |
[11] |
Becchio C, Corgnati SP, Delmastro C, et al. (2016) The role of nearly-zero energy buildings in the transition towards Post-Carbon Cities. Sustainable Cities Soc 27: 324-337. https://doi.org/10.1016/j.scs.2016.08.005 doi: 10.1016/j.scs.2016.08.005
![]() |
[12] |
Dranka GG, Cunha J, de Lima JD, et al. (2020) Economic evaluation methodologies for renewable energy projects. AIMS Energy 8: 339-364. https://doi.org/10.3934/energy.2020.2.339 doi: 10.3934/energy.2020.2.339
![]() |
[13] |
Echeverri-Martínez R, Alfonso-Morales W, Caicedo-Bravo EF (2020) A methodological decision-making support for the planning, design and operation of smart grid projects. AIMS Energy 8: 627-651. https://doi.org/10.3934/energy.2020.4.627 doi: 10.3934/energy.2020.4.627
![]() |
[14] |
D'Alpaos C, Moretto M (2019) Do smart grid innovations affect real estate market values? AIMS Energy 7: 141-150. https://doi.org/10.3934/energy.2019.2.141 doi: 10.3934/energy.2019.2.141
![]() |
[15] |
Strantzali E, Aravossis K (2016) Decision making in renewable energy investments: A review. Renewable Sustainable Energy Rev 55: 885-898. https://doi.org/10.1016/j.rser.2015.11.021 doi: 10.1016/j.rser.2015.11.021
![]() |
[16] |
Bottero M, Dell'Anna F, Morgese V (2021) Evaluating the transition towards Post-Carbon cities: A literature review. Sustainability 13: 567. https://doi.org/10.3390/su13020567 doi: 10.3390/su13020567
![]() |
[17] |
D'Adamo I, Falcone PM, Huisingh D, et al. (2021) A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond? Renewable Energy 163: 1660-1672. https://doi.org/10.1016/j.renene.2020.10.072 doi: 10.1016/j.renene.2020.10.072
![]() |
[18] | Bouyssou D (1990) Building criteria: A prerequisite for MCDA. Read Mult Criter Decis Aid, 58-80. https://doi.org/10.1007/978-3-642-75935-2_4 |
[19] |
Brans JP, Vincke P, Mareschal B (1986) How to select and how to rank projects: The promethee method. Eur J Oper Res 24: 228-238. https://doi.org/10.1016/0377-2217(86)90044-5 doi: 10.1016/0377-2217(86)90044-5
![]() |
[20] | Brans JP, Mareschal B, Vincke P (1984) PROMETHEE: A new family of outranking methods in multicriteria analysis. Oper Res. |
[21] |
Brans J-P, Mareschal B (1994) The PROMCALC & GAIA decision support system for multicriteria decision aid. Decis Support Syst 12: 297-310. https://doi.org/10.1016/0167-9236(94)90048-5 doi: 10.1016/0167-9236(94)90048-5
![]() |
[22] | Brans J-P, De Smet Y (2016) PROMETHEE methods. International Series in Operations Research and Management Science, 187-219. https://doi.org/10.1007/978-1-4939-3094-4_6 |
[23] | Mareschal B, De Smet Y (2009) Visual PROMETHEE: Developments of the PROMETHEE & GAIA multicriteria decision aid methods. 2009 IEEE International Conference on Industrial Engineering and Engineering Management, IEEE, 1646-1649. https://doi.org/10.1109/IEEM.2009.5373124 |
[24] |
Dell'Anna F, Bottero M, Becchio C, et al. (2020) Designing a decision support system to evaluate the environmental and extra-economic performances of a nearly zero-energy building. Smart Sustainable Built Environ 9: 413-442. https://doi.org/10.1108/SASBE-09-2019-0121 doi: 10.1108/SASBE-09-2019-0121
![]() |
[25] |
Andreopoulou Z, Koliouska C, Galariotis E, et al. (2018) Renewable energy sources: Using PROMETHEE Ⅱ for ranking websites to support market opportunities. Technol Forecast Soc Change 131: 31-37. https://doi.org/10.1016/j.techfore.2017.06.007 doi: 10.1016/j.techfore.2017.06.007
![]() |
[26] |
Abdel-Basset M, Gamal A, Chakrabortty RK, et al. (2021) A new hybrid multi-criteria decision-making approach for location selection of sustainable offshore wind energy stations: A case study. J Cleaner Prod 280. https://doi.org/10.1016/j.jclepro.2020.124462 doi: 10.1016/j.jclepro.2020.124462
![]() |
[27] | Sotiropoulou KF, Vavatsikos AP (2021) Onshore wind farms GIS-Assisted suitability analysis using PROMETHEE Ⅱ. Energy Policy 158. https://doi.org/10.1016/j.enpol.2021.112531 |
[28] |
Vagiona DG (2021) Comparative multicriteria analysis methods for ranking sites for solar farm deployment: A case study in Greece. Energies 14: 8371. https://doi.org/10.3390/en14248371 doi: 10.3390/en14248371
![]() |
[29] |
Madlener R, Kowalski K, Stagl S (2007) New ways for the integrated appraisal of national energy scenarios: The case of renewable energy use in Austria. Energy Policy 35: 6060-6074. https://doi.org/10.1016/j.enpol.2007.08.015 doi: 10.1016/j.enpol.2007.08.015
![]() |
[30] |
Falcone PM, Imbert E, Sica E, et al. (2021) Towards a bioenergy transition in Italy? Exploring regional stakeholder perspectives towards the Gela and Porto Marghera biorefineries. Energy Res Soc Sci 80: 102238. https://doi.org/10.1016/j.erss.2021.102238 doi: 10.1016/j.erss.2021.102238
![]() |
[31] |
Polikarpova I, Lauka D, Blumberga D, et al. (2019) Multi-Criteria Analysis to select renewable energy solution for district heating system. Environ Clim Technol 23: 101-109. https://doi.org/10.2478/rtuect-2019-0082 doi: 10.2478/rtuect-2019-0082
![]() |
[32] |
Wu Z, Wang Y, You S, et al. (2020) Thermo-economic analysis of composite district heating substation with absorption heat pump. Appl Therm Eng 166: 114659. https://doi.org/10.1016/j.applthermaleng.2019.114659 doi: 10.1016/j.applthermaleng.2019.114659
![]() |
[33] |
Dirutigliano D, Delmastro C, Torabi Moghadam S (2018) A multi-criteria application to select energy retrofit measures at the building and district scale. Therm Sci Eng Prog 6: 457-464. https://doi.org/10.1016/j.tsep.2018.04.007 doi: 10.1016/j.tsep.2018.04.007
![]() |
[34] |
Jalilzadehazhari E, Johansson P, Johansson J, et al. (2019) Developing a decision-making framework for resolving conflicts when selecting windows and blinds. Archit Eng Des Manage 15: 357-381. https://doi.org/10.1080/17452007.2018.1537235 doi: 10.1080/17452007.2018.1537235
![]() |
[35] |
Vujošević ML, Popović MJ (2016) The comparison of the energy performance of hotel buildings using promethee decision-making method. Therm Sci 20: 197-208. https://doi.org/10.2298/TSCI150409098V doi: 10.2298/TSCI150409098V
![]() |
[36] |
Setyantho GR, Park H, Chang S (2021) Multi-criteria performance assessment for semi-transparent photovoltaic windows in different climate contexts. Sustainability (Switzerland) 13: 1-22. https://doi.org/10.3390/su13042198 doi: 10.3390/su13042198
![]() |
[37] | Pinto MC, Crespi G, Dell'Anna F, et al. (2022) A Multi-dimensional decision support system for choosing solar shading devices in office buildings, In: Calabrò F, Della Spina L, Bevilacqua C (Eds.), New Metropolitan Perspectives, NMP 2022, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, Cham. https://doi.org/10.1007/978-3-031-06825-6_168 |
[38] | Barthelmes VM, Becchio C, Bottero M, et al. (2016) Cost-optimal analysis for the definition of energy design strategies: the case of a Nearly-Zero Energy Building. Valori e Valutazioni 16: 61-76. |
[39] | Lund H (2007) EnergyPLAN advanced energy systems analysis computer model. Aalborg University Denmark. Available from: https://www.energyplan.eu/. |
[40] |
Østergaard PA (2015) Reviewing EnergyPLAN simulations and performance indicator applications in EnergyPLAN simulations. Appl Energy 154: 921-933. https://doi.org/10.1016/j.apenergy.2015.05.086 doi: 10.1016/j.apenergy.2015.05.086
![]() |
[41] |
Brans J, Vincke P (1985) A preference ranking organization method: the PROMETHEE method for MCDM. Manage Sci 31: 647-656. https://doi.org/10.1287/mnsc.31.6.647 doi: 10.1287/mnsc.31.6.647
![]() |
[42] |
Figueira J, Roy B (2002) Determining the weights of criteria in the ELECTRE type methods with a revised Simos' procedure. Eur J Oper Res 139: 317-326. https://doi.org/10.1016/S0377-2217(01)00370-8 doi: 10.1016/S0377-2217(01)00370-8
![]() |
[43] | Marique AF, Reiter S (2012) A method to evaluate the energy consumption of suburban neighborhoods. HVAC R Res 18: 88-99. |
[44] |
da Graça Carvalho M, Bonifacio M, Dechamps P (2011) Building a low carbon society. Energy 36: 1842-1847. https://doi.org/10.1016/j.energy.2010.09.030 doi: 10.1016/j.energy.2010.09.030
![]() |
[45] |
Ballarini I, Corgnati SP, Corrado V (2014) Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project. Energy Policy 68: 273-284. https://doi.org/10.1016/j.enpol.2014.01.027 doi: 10.1016/j.enpol.2014.01.027
![]() |
[46] | D'Alpaos C, Bragolusi P (2018) Multicriteria prioritization of policy instruments in buildings energy retrofit. Valori e Valutazioni 21: 15-25. |
[47] |
Marinakis V, Doukas H, Xidonas P, et al. (2017) Multicriteria decision support in local energy planning: An evaluation of alternative scenarios for the sustainable energy action plan. Omega 69: 1-16. https://doi.org/10.1016/j.omega.2016.07.005 doi: 10.1016/j.omega.2016.07.005
![]() |
[48] |
Ramanathan R (1999) Selection of appropriate greenhouse gas mitigation options. Global Environ Change 9: 203-210. https://doi.org/10.1016/S0959-3780(98)00039-9 doi: 10.1016/S0959-3780(98)00039-9
![]() |
[49] |
Konidari P, Mavrakis D (2007) A multi-criteria evaluation method for climate change mitigation policy instruments. Energy Policy 35: 6235-6257. https://doi.org/10.1016/j.enpol.2007.07.007 doi: 10.1016/j.enpol.2007.07.007
![]() |
[50] |
Wang J-J, Jing Y-Y, Zhang C-F, et al. (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable Sustainable Energy Rev 13: 2263-2278. https://doi.org/10.1016/j.rser.2009.06.021 doi: 10.1016/j.rser.2009.06.021
![]() |
[51] |
Copiello S (2021) Economic viability of building energy efficiency measures: A review on the discount rate. AIMS Energy 9: 257-285. https://doi.org/10.3934/energy.2021014 doi: 10.3934/energy.2021014
![]() |
[52] | Becchio C, Bottero M, Corgnati SP, et al. (2017) A MCDA-Based approach for evaluating alternative requalification strategies for a Net-Zero Energy District (NZED), In: Zopounidis C, Doumpos M (Eds.), Multiple Criteria Decision Making, Cham, Springer, 189-211. https://doi.org/10.1007/978-3-319-39292-9_10 |
[53] |
Ribeiro F, Ferreira P, Araújo M (2013) Evaluating future scenarios for the power generation sector using a Multi-Criteria Decision Analysis (MCDA) tool: The Portuguese case. Energy 52: 126-136. https://doi.org/10.1016/j.energy.2012.12.036 doi: 10.1016/j.energy.2012.12.036
![]() |
[54] |
Grujić M, Ivezić D, Živković M (2014) Application of multi-criteria decision-making model for choice of the optimal solution for meeting heat demand in the centralized supply system in Belgrade. Energy 67: 341-350. https://doi.org/10.1016/j.energy.2014.02.017 doi: 10.1016/j.energy.2014.02.017
![]() |
[55] |
Dell'Anna F, Bravi M, Bottero M (2022) Urban Green infrastructures: How much did they affect property prices in Singapore? Urban For Urban Greening 68: 127475. https://doi.org/10.1016/j.ufug.2022.127475 doi: 10.1016/j.ufug.2022.127475
![]() |
[56] |
Wang X, Chen Y, Sui P, et al. (2014) Efficiency and sustainability analysis of biogas and electricity production from a large-scale biogas project in China: An emergy evaluation based on LCA. J Cleaner Prod 65: 234-245. https://doi.org/10.1016/j.jclepro.2013.09.001 doi: 10.1016/j.jclepro.2013.09.001
![]() |
[57] | Middelhauve L, Santeccia A, Girardin L, et al. (2020) Key performance indicators for decision making in building energy systems. ECOS 2020—Proceedings of the 33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 401-412. |
[58] |
Ghafghazi S, Sowlati T, Sokhansanj S, et al. (2010) A multicriteria approach to evaluate district heating system options. Appl Energy 87: 1134-1140. https://doi.org/10.1016/j.apenergy.2009.06.021 doi: 10.1016/j.apenergy.2009.06.021
![]() |
[59] |
Theodorou S, Florides G, Tassou S (2010) The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus, A review. Energy Policy 38: 7783-7792. https://doi.org/10.1016/j.enpol.2010.08.038 doi: 10.1016/j.enpol.2010.08.038
![]() |
[60] |
Tsoutsos T, Drandaki M, Frantzeskaki N, et al. (2009) Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy 37: 1587-1600. https://doi.org/10.1016/j.enpol.2008.12.011 doi: 10.1016/j.enpol.2008.12.011
![]() |
[61] | CEN (Comité Européen de Normalisation Standard) (2017) Energy performance of buildings— economic evaluation procedure for energy systems in buildings, Comité Européen de Normalisation Standard. Available from: https://standards.iteh.ai/catalog/standards/cen/189eac8d-14e1-4810-8ebd-1e852b3effa3/en-16883-2017. |
[62] | Joint Research Centre, Institute for Energy and Transport, Onyeji I, Giordano V, Sánchez Jiménez M, et al. (2012) Guidelines for conducting a cost-benefit analysis of Smart Grid projects. Publications Office of the European Union. https://data.europa.eu/doi/10.2790/45979. |
[63] | European Commission, Research and innovation (2005) ExternE—externalities of energy: methodology 2005 update, Bickel P, Friedrich R (Eds.), Publications Office. Available from: https://op.europa.eu/it/publication-detail/-/publication/b2b86b52-4f18-4b4e-a134-b1c81ad8a1b2. |
[64] | Becchio C, Bottero MC, Corgnati SP, et al. (2018) Evaluating health benefits of urban energy retrofitting: An application for the city of turin, In: Bisello A, Vettorato D, Laconte P, et al. (Eds.), Smart and Sustainable Planning for Cities and Regions, Cham, Springer, 281-304. https://doi.org/10.1007/978-3-319-75774-2_20 |
[65] |
Mirasgedis S, Tourkolias C, Pavlakis E, et al. (2014) A methodological framework for assessing the employment effects associated with energy efficiency interventions in buildings. Energy Build 82: 275-286. https://doi.org/10.1016/j.enbuild.2014.07.027 doi: 10.1016/j.enbuild.2014.07.027
![]() |
[66] |
Dell'Anna F (2021) Green jobs and energy efficiency as strategies for economic growth and the reduction of environmental impacts. Energy Policy 149: 112031. https://doi.org/10.1016/j.enpol.2020.112031 doi: 10.1016/j.enpol.2020.112031
![]() |
[67] |
Kontu K, Rinne S, Olkkonen V, et al. (2015) Multicriteria evaluation of heating choices for a new sustainable residential area. Energy Build 93: 169-179. https://doi.org/10.1016/j.enbuild.2015.02.003 doi: 10.1016/j.enbuild.2015.02.003
![]() |
[68] |
Schär S, Geldermann J (2021) Adopting multiactor multicriteria analysis for the evaluation of energy scenarios. Sustainability 13: 2594. https://doi.org/10.3390/su13052594 doi: 10.3390/su13052594
![]() |
[69] |
Lund H, Mathiesen BV (2009) Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050. Energy 34: 524-531. https://doi.org/10.1016/j.energy.2008.04.003 doi: 10.1016/j.energy.2008.04.003
![]() |
[70] | Danish Energy Agency (2015) Danish Energy Agency, The Danish Energy Model. Innovative, efficient and sustainable, 2015. Available from: https://ens.dk/sites/ens.dk/files/Globalcooperation/the_danish_energy_model.pdf. |
1. | Zhengmao Chen, A priori bounds and existence of smooth solutions to a Lp Aleksandrov problem for Codazzi tensor with log-convex measure, 2023, 31, 2688-1594, 840, 10.3934/era.2023042 | |
2. | Yu Peng, Hao Fu, Tingsong Du, Estimations of Bounds on the Multiplicative Fractional Integral Inequalities Having Exponential Kernels, 2022, 2194-6701, 10.1007/s40304-022-00285-8 | |
3. | Badreddine Meftah, Maclaurin type inequalities for multiplicatively convex functions, 2023, 0002-9939, 10.1090/proc/16292 | |
4. | Saowaluck Chasreechai, Muhammad Aamir Ali, Surapol Naowarat, Thanin Sitthiwirattham, Kamsing Nonlaopon, On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications, 2023, 8, 2473-6988, 3885, 10.3934/math.2023193 | |
5. | Artion Kashuri, Soubhagya Kumar Sahoo, Munirah Aljuaid, Muhammad Tariq, Manuel De La Sen, Some New Hermite–Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals, 2023, 15, 2073-8994, 868, 10.3390/sym15040868 | |
6. | Tingsong Du, Yun Long, The multi-parameterized integral inequalities for multiplicative Riemann–Liouville fractional integrals, 2025, 541, 0022247X, 128692, 10.1016/j.jmaa.2024.128692 | |
7. | Yu Peng, Tingsong Du, Fractional Maclaurin-type inequalities for multiplicatively convex functions and multiplicatively P-functions, 2023, 37, 0354-5180, 9497, 10.2298/FIL2328497P | |
8. | Muhammad Ali, On Simpson’s and Newton’s type inequalities in multiplicative fractional calculus, 2023, 37, 0354-5180, 10133, 10.2298/FIL2330133A | |
9. | Abdul Mateen, Serap Özcan, Zhiyue Zhang, Bandar Bin-Mohsin, On Newton–Cotes Formula-Type Inequalities for Multiplicative Generalized Convex Functions via Riemann–Liouville Fractional Integrals with Applications to Quadrature Formulas and Computational Analysis, 2024, 8, 2504-3110, 541, 10.3390/fractalfract8090541 | |
10. | Mohammed Bakheet Almatrafi, Wedad Saleh, Abdelghani Lakhdari, Fahd Jarad, Badreddine Meftah, On the multiparameterized fractional multiplicative integral inequalities, 2024, 2024, 1029-242X, 10.1186/s13660-024-03127-z | |
11. | YU PENG, TINGSONG DU, ON MULTIPLICATIVE (s,P)-CONVEXITY AND RELATED FRACTIONAL INEQUALITIES WITHIN MULTIPLICATIVE CALCULUS, 2024, 32, 0218-348X, 10.1142/S0218348X24500488 | |
12. | Jianqiang Xie, Ali Muhammad, Sitthiwirattham Thanin, Some new midpoint and trapezoidal type inequalities in multiplicative calculus with applications, 2023, 37, 0354-5180, 6665, 10.2298/FIL2320665X | |
13. | Tingsong Du, Yu Peng, Hermite–Hadamard type inequalities for multiplicative Riemann–Liouville fractional integrals, 2024, 440, 03770427, 115582, 10.1016/j.cam.2023.115582 | |
14. | Meriem Merad, Badreddine Meftah, Abdelkader Moumen, Mohamed Bouye, Fractional Maclaurin-Type Inequalities for Multiplicatively Convex Functions, 2023, 7, 2504-3110, 879, 10.3390/fractalfract7120879 | |
15. | Yu Peng, Serap Özcan, Tingsong Du, Symmetrical Hermite–Hadamard type inequalities stemming from multiplicative fractional integrals, 2024, 183, 09600779, 114960, 10.1016/j.chaos.2024.114960 | |
16. | Lulu Zhang, Yu Peng, Tingsong Du, On multiplicative Hermite–Hadamard- and Newton-type inequalities for multiplicatively (P,m)-convex functions, 2024, 534, 0022247X, 128117, 10.1016/j.jmaa.2024.128117 | |
17. | Wen Sheng Zhu, Badreddine Meftah, Hongyan Xu, Fahd Jarad, Abdelghani Lakhdari, On parameterized inequalities for fractional multiplicative integrals, 2024, 57, 2391-4661, 10.1515/dema-2023-0155 | |
18. | Assia Frioui, Badreddine Meftah, Ali Shokri, Abdelghani Lakhdari, Herbert Mukalazi, Parametrized multiplicative integral inequalities, 2024, 2024, 2731-4235, 10.1186/s13662-024-03806-7 | |
19. | Ziyi Zhou, Tingsong Du, Analytical properties and related inequalities derived from multiplicative Hadamard k-fractional integrals, 2024, 189, 09600779, 115715, 10.1016/j.chaos.2024.115715 | |
20. | Muhammad Aamir Ali, Michal Fečkan, Chanon Promsakon, Thanin Sitthiwirattham, A new Approach of Generalized Fractional Integrals in Multiplicative Calculus and Related Hermite–Hadamard-Type Inequalities with Applications, 2024, 74, 0139-9918, 1445, 10.1515/ms-2024-0105 | |
21. | Dawood Khan, Saad Ihsan Butt, Youngsoo Seol, Properties and integral inequalities of P-superquadratic functions via multiplicative calculus with applications, 2024, 2024, 1687-2770, 10.1186/s13661-024-01978-5 | |
22. | YUN LONG, TINGSONG DU, ANALYSIS ON MULTIPLICATIVE k-ATANGANA–BALEANU FRACTIONAL INTEGRALS WITH APPLICATION TO VARIOUS MERCER-TYPE INEQUALITIES, 2025, 33, 0218-348X, 10.1142/S0218348X25500033 | |
23. | Artion Kashuri, Arslan Munir, Hüseyin Budak, Fatih Hezenci, Novel generalized tempered fractional integral inequalities for convexity property and applications, 2025, 75, 0139-9918, 113, 10.1515/ms-2025-0009 | |
24. | Hüseyin Budak, Büşra Betül Ergün, On multiplicative conformable fractional integrals: theory and applications, 2025, 2025, 1687-2770, 10.1186/s13661-025-02026-6 | |
25. | Abdelghani Lakhdari, Djaber Chemseddine Benchettah, Badreddine Meftah, Fractional multiplicative Newton-type inequalities for multiplicative s-convex positive functions with application, 2025, 465, 03770427, 116600, 10.1016/j.cam.2025.116600 | |
26. | Xiaohua Zhang, Yu Peng, Tingsong Du, (k,s)-fractional integral operators in multiplicative calculus, 2025, 195, 09600779, 116303, 10.1016/j.chaos.2025.116303 | |
27. | DAWOOD KHAN, SAAD IHSAN BUTT, YOUNGSOO SEOL, ANALYSIS ON MULTIPLICATIVELY (P,m)-SUPERQUADRATIC FUNCTIONS AND RELATED FRACTIONAL INEQUALITIES WITH APPLICATIONS, 2025, 33, 0218-348X, 10.1142/S0218348X24501299 |