
In this work, estimating the exponentiated half logistic skew-t model parameters using some classical estimation procedures is considered. The finite sample performance of the EHLST parameter estimates is examined through extensive Monte Carlo simulations. The ordering performance of the six criterions was based on the partial and overall ranks of the estimation procedures for all parameter combinations. The criterions performance ordering from finest to poorest, using the overall ranks is maximum likelihood, maximum product of spacing, Anderson-Darling, Cramer-von Mises, least squares and weighted least squares estimators for all the parameter combinations. The simulation results confirm the dominance of the maximum likelihood estimation method over other methods with the least overall rank but shows that the maximum product of spacing is most advantageous when the sample size is 200. More so, the EHLST model efficacy is demonstrated through its application on Nigeria inflation rates dataset using the maximum likelihood and maximum product of spacing estimation procedures. Furthermore, the volatility modeling of the Nigeria inflation log-returns using the GARCH-type models with the EHLST innovation density relative to ten commonly used innovation densities validates the superiority of the GARCH (1, 1) and GJRGARCH (1, 1) models with EHLST innovation density in both in-sample and out-samples performance over other models.
Citation: Obinna D. Adubisi, Ahmed Abdulkadir, Chidi. E. Adubisi. A new hybrid form of the skew-t distribution: estimation methods comparison via Monte Carlo simulation and GARCH model application[J]. Data Science in Finance and Economics, 2022, 2(2): 54-79. doi: 10.3934/DSFE.2022003
[1] | Islam Samir, Hamdy M. Ahmed, Wafaa Rabie, W. Abbas, Ola Mostafa . Construction optical solitons of generalized nonlinear Schrödinger equation with quintuple power-law nonlinearity using Exp-function, projective Riccati, and new generalized methods. AIMS Mathematics, 2025, 10(2): 3392-3407. doi: 10.3934/math.2025157 |
[2] | Elsayed M. E. Zayed, Mona El-Shater, Khaled A. E. Alurrfi, Ahmed H. Arnous, Nehad Ali Shah, Jae Dong Chung . Dispersive optical soliton solutions with the concatenation model incorporating quintic order dispersion using three distinct schemes. AIMS Mathematics, 2024, 9(4): 8961-8980. doi: 10.3934/math.2024437 |
[3] | Muhammad Bilal, Javed Iqbal, Ikram Ullah, Aditi Sharma, Hasim Khan, Sunil Kumar Sharma . Novel optical soliton solutions for the generalized integrable (2+1)- dimensional nonlinear Schrödinger system with conformable derivative. AIMS Mathematics, 2025, 10(5): 10943-10975. doi: 10.3934/math.2025497 |
[4] | Mahmoud Soliman, Hamdy M. Ahmed, Niveen Badra, M. Elsaid Ramadan, Islam Samir, Soliman Alkhatib . Influence of the β-fractional derivative on optical soliton solutions of the pure-quartic nonlinear Schrödinger equation with weak nonlocality. AIMS Mathematics, 2025, 10(3): 7489-7508. doi: 10.3934/math.2025344 |
[5] | Yazid Alhojilan, Islam Samir . Investigating stochastic solutions for fourth order dispersive NLSE with quantic nonlinearity. AIMS Mathematics, 2023, 8(7): 15201-15213. doi: 10.3934/math.2023776 |
[6] | Dumitru Baleanu, Kamyar Hosseini, Soheil Salahshour, Khadijeh Sadri, Mohammad Mirzazadeh, Choonkil Park, Ali Ahmadian . The (2+1)-dimensional hyperbolic nonlinear Schrödinger equation and its optical solitons. AIMS Mathematics, 2021, 6(9): 9568-9581. doi: 10.3934/math.2021556 |
[7] | Jinfang Li, Chunjiang Wang, Li Zhang, Jian Zhang . Multi-solitons in the model of an inhomogeneous optical fiber. AIMS Mathematics, 2024, 9(12): 35645-35654. doi: 10.3934/math.20241691 |
[8] | Ninghe Yang . Exact wave patterns and chaotic dynamical behaviors of the extended (3+1)-dimensional NLSE. AIMS Mathematics, 2024, 9(11): 31274-31294. doi: 10.3934/math.20241508 |
[9] | Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Wafaa B. Rabie, Farah M. Al-Askar, Wael W. Mohammed . New soliton wave structure and modulation instability analysis for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities. AIMS Mathematics, 2024, 9(9): 26166-26181. doi: 10.3934/math.20241278 |
[10] | Nafissa T. Trouba, Huiying Xu, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Xinzhong Zhu . Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics. AIMS Mathematics, 2025, 10(1): 1859-1881. doi: 10.3934/math.2025086 |
In this work, estimating the exponentiated half logistic skew-t model parameters using some classical estimation procedures is considered. The finite sample performance of the EHLST parameter estimates is examined through extensive Monte Carlo simulations. The ordering performance of the six criterions was based on the partial and overall ranks of the estimation procedures for all parameter combinations. The criterions performance ordering from finest to poorest, using the overall ranks is maximum likelihood, maximum product of spacing, Anderson-Darling, Cramer-von Mises, least squares and weighted least squares estimators for all the parameter combinations. The simulation results confirm the dominance of the maximum likelihood estimation method over other methods with the least overall rank but shows that the maximum product of spacing is most advantageous when the sample size is 200. More so, the EHLST model efficacy is demonstrated through its application on Nigeria inflation rates dataset using the maximum likelihood and maximum product of spacing estimation procedures. Furthermore, the volatility modeling of the Nigeria inflation log-returns using the GARCH-type models with the EHLST innovation density relative to ten commonly used innovation densities validates the superiority of the GARCH (1, 1) and GJRGARCH (1, 1) models with EHLST innovation density in both in-sample and out-samples performance over other models.
The nonlinear Schrödinger equations (NLSEs) are extensively used to describe numerous crucial phenomena and dynamic processes in various fields such as fluid dynamics, plasma, chemistry, biology, optical fibers[1,2,3,4], nuclear physics, stochastic mechanics, biomolecule dynamics, dynamics of accelerators, and Bose-Einstein condensates [5,6,7,8,9,10]. The last few decades have seen significant advancements in the field of nonlinear optics [11,12,13]. These equations also appear in other forms of nonlinearities, such as cubic-quintic (CQ), cubic-quintic-septic (CQS), power-law, logarithmic nonlinearities, and various other forms. There is a growing interest in studying soliton pulses that can propagate without changing their shape in optical fibers [14,15].
Therefore, obtaining the exact soliton solutions of these NLSEs can help us to understand these phenomena better. In recent years, several effective approaches have been developed to construct accurate solutions of these equations. For example, the simple equation method [16], Kudryashov's method [17], the Jacobi elliptic function method [18], the inverse scattering method [19], the extended trial function method [20], the tanh method [21], the F-expansion method [22], generalized extended tanh-function method, the sine–cosine method [23], the generalized Riccati equation method [24], the new ϕ6-model expansion method [25], Hirota bilinear method [26], the exp-function method [27], the Darboux transformation [28], the auxiliary equation method [29], the Binary Bell polynomials [30], the extended hyperbolic function method [31], the homogeneous balance Method [32], the (G′G)-expansion method [33,34], the exponential rational function method [35], the Bäcklund transformation [36], the homotopy perturbation method [37], the modified Kudryashov method, the sine-Gordon expansion approach [38], the Riccati-Bernoulli sub-ODE method [39], the modified extended direct algebraic method [40], the truncated Painlevé expansion method [41], the (G′/G,1/G)-expansion method [42], the tan(ϕ/2)-expansion method [43,44], the soliton ansatz method [45,46], and so on.
Researches have been conducted on the study of NLSEs with the polynomial law of nonlinearity. For instance, Seadawy et al. [47] established soliton solutions using the extended simplest equation method, and they also described this model [48], which includes the conservation principles for optical soliton (OS) with polynomial and triple power law nonlinearities, while Aziz et al. [49] discovered chirped soliton solutions by utilizing Jacobi elliptic functions. Furthermore, this model was discussed by Dieu-donne et al. [50], who examined the optical soliton (OS) solutions with two types of nonlinearities, which are triple power and polynomial laws. Sugati et al.[51] also examined this model, obtaining the traveling pulse solutions to the NLSE when it is treated with both spatio-temporal dispersion (STD) and group velocity dispersion (GVD).
In this paper, our aim is to investigate soliton solutions for two models of the NLSE that carry the polynomial law of nonlinearity (cubic-quintic-septic). We will use the variational principle based on finding Lagrangian, which we will then apply it with different trial functions that have one or two nontrivial variational parameters. Furthermore, we will employ another technique called the amplitude ansatz method to extract new solitary wave solutions.
The paper is categorized as follows. In Section 2, we discuss model-I of NLSE with polynomial law nonlinearity in terms of formulation of the variational principle and finding solitary wave solutions. In Section 3, we apply the same steps on model-II of NLSE with polynomial law nonlinearity. Finally, the work concludes in Section 4.
Nonlinear Schrödinger equation (NLSE) with the polynomial nonlinear law is [47]:
iΓt+aΓxx+b1Γ|Γ|2+b2Γ|Γ|4+b3Γ|Γ|6=0. | (2.1) |
Such that Γ is a complex function on the form: Γ(x,t)=Θ(x,t)+iΨ(x,t). Since Θ and Ψ are real functions of x and t, furthermore |Γ|2=(Θ+iΨ)(Θ−iΨ). Using the variational approach, we will search for solutions to NLSE with the polynomial nonlinear law. As a result, we derive Γ with respect to x and t to investigate the existence of a Lagrangian and the invariant variational principle for this equation, which are expressed in the following way:
Let M and N are functionals in Θ and Ψ:
M(Θ,Ψ)=∂Θ∂t+a∂2Ψ∂x2+b1ΨΘ2+b1Ψ3+b2ΨΘ4+2b2Θ2Ψ3+b2Ψ5+b3ΨΘ6+3b3Θ4Ψ3+3b3Θ2Ψ5+b3Ψ7, | (2.2) |
N(Θ,Ψ)=−∂Ψ∂t+a∂2Θ∂x2+b1Θ3+b1ΘΨ2+b2Θ5+2b2Ψ2Θ3+b2ΘΨ4+b3Θ7+3b3Ψ2Θ5+3b3Θ3Ψ4+b3ΘΨ6. | (2.3) |
Put Θ=λΘ and Ψ=λΨ,
∫10M(λΘ,λΨ)dλ=12∂Θ∂t+12a∂2Ψ∂x2+14b1ΨΘ2+14b1Ψ3+16b2ΨΘ4+13b2Θ2Ψ3+16b2Ψ5+18b3ΨΘ6+38b3Θ4Ψ3+38b3Θ2Ψ5+18b3Ψ7, |
∫10N(λΘ,λΨ)dλ=−12∂Ψ∂t+12a∂2Θ∂x2+14b1Θ3+14b1ΘΨ2+16b2Θ5+13b2Ψ2Θ3+16b2ΘΨ4+18b3Θ7+38b3Ψ2Θ5+38b3Θ3Ψ4+18b3ΘΨ6. |
The consistency conditions are expressed as follows [52,53], where Θx, Ψx, Θt and Ψt stand for the partial derivatives of Θ and Ψ with respect to variables x and t. If the system of Eqs (2.2) and (2.3) satisfies the the previously mentioned conditions, then a functional integral J(Θ,Ψ) can be written down using the formula given by Tonti [53]:
J(Θ,Ψ)=∫ω[14b1Θ4+16b2Θ6+18b3Θ8+12b1Θ2Ψ2+12b2Θ4Ψ2+12b3Θ6Ψ2+14b1Ψ4+12b2Θ2Ψ4+34b3Θ4Ψ4+16b2Ψ6+12b3Θ2Ψ6+18b3Ψ8+12ΨΘt−12ΘΨt+12aΘΘxx+12aΨΨxx]dω, |
where dω=dxdt.
The terms ΘΘxx and ΨΨxx solve integration by parts and choosing the boundary on Θx and Ψx to be such that the boundary terms vanish, we get
J(Θ,Ψ)=∫ω[14b1Θ4+16b2Θ6+18b3Θ8+12b1Θ2Ψ2+12b2Θ4Ψ2+12b3Θ6Ψ2+14b1Ψ4+12b2Θ2Ψ4+34b3Θ4Ψ4+16b2Ψ6+12b3Θ2Ψ6+18b3Ψ8+12ΨΘt−12ΘΨt−12aΘ2x−12aΨ2x]dω, | (2.4) |
where dω=dxdt.
We obtain the Lagrangian L as
L(Θ,Ψ)=14b1Θ4+16b2Θ6+18b3Θ8+12b1Θ2Ψ2+12b2Θ4Ψ2+12b3Θ6Ψ2+14b1Ψ4+12b2Θ2Ψ4+34b3Θ4Ψ4+16b2Ψ6+12b3Θ2Ψ6+18b3Ψ8+12ΨΘt−12ΘΨt−12aΘ2x−12aΨ2x. | (2.5) |
We find the value of L in the Euler-Lagrange equations to validate our interpretations:
∂L∂Θ−∂∂t(∂L∂Θt)−∂∂x(∂L∂Θx)=0, |
∂L∂Ψ−∂∂t(∂L∂Ψt)−∂∂x(∂L∂Ψx)=0. |
The resulting derivatives give us the system of Eqs (2.2) and (2.3).
We demonstrate the simplest example of the application of this technique, by taking the box-shaped initial pulse and an ansatz based on linear Jost functions in a single nontrivial variational parameter in three cases.
Case 1: We use the following ansatz for Θ(x,t) and Ψ(x,t) functions:
Θ(x,t)={100exp(−μ(t−5)(x−5)),atx>5,t>5,(t+5)(x+5),at|x|<5,|t|<5,0,atx<−5,t<−5, | (2.6) |
Ψ(x,t)={0,atx>5,t>5,(5−t)(5−x),at|x|<5,|t|<5,100exp(μ(t+5)(x+5)),atx<−5,t<−5. | (2.7) |
We found the values of the Lagrangian L from substituting Eqs (2.6) and (2.7) into Eq (2.5) (see Figure 1):
J(Θ,Ψ)=∫−5−∞∫−5−∞Ldxdt+∫5−5∫5−5Ldxdt+∫∞5∫∞5Ldxdt, |
where
∫−5−∞∫−5−∞Ldxdt=∫∞5∫∞5Ldxdt=0. |
By using Mathematica program we get the value of J(Θ,Ψ) at interval −5<x<5,−5<t<5 as
J(Θ,Ψ)=−10000a3+1850000000b19+304000000000000b2441+1760000000000000000b3567+250003. | (2.8) |
Case 2: Assume Θ(x,t) and Ψ(x,t) for the Jost function as the following:
Θ(x,t)={20exp(−μ(t−5)(x−5)),atx>5,t>5,t+x+10,at|x|<5,|t|<5,0,atx<−5,t<−5, | (2.9) |
Ψ(x,t)={0,atx>5,t>5,10−t−x,at|x|<5,|t|<5,20exp(μ(t+5)(x+5)),atx<−5,t<−5. | (2.10) |
We found the values of the Lagrangian L from substituting by Eqs (2.9) and (2.10) into Eq (2.5), then we get
J(Θ,Ψ)=10063(−63a+882000b1+145800000b2+28120000000b3+630). | (2.11) |
Case 3:
Θ(x,t)={12(exp(6π−t−x)−exp(−2π−t−x)),atx>π,t>π,sinh(t+x+2π),at|x|<π,|t|<π,0,atx<−π,t<−π, | (2.12) |
ψ(x,t)={0,atx>π,t>π,sinh(2π−t−x),at|x|<π,|t|<π,12(exp(6π+t+x)−exp(−2π+t+x)),atx<−π,t<−π. | (2.13) |
We found the values of the Lagrangian L from substituting by Eqs (2.12) and (2.13) into Eq (2.5), then we have
J(Θ,Ψ)=−1.02783×1010a+2.64108×1019b1+1.60864×1029b2+1.39506×1039b3+2.83012×106. | (2.14) |
Case 1: We try the following Jost functions:
Θ(x,t)={12(exp(π2(3+2α+α2)−πt−πx)−exp(π2(1−2α−α2)−πt−πx)),atx>π,t>π,sinh((π+αt)(π+αx)),at0<x<π,0<t<π,sinh((t+π)(x+π)),at−π<x<0,−π<t<0,0,atx<−π,t<−π, | (2.15) |
Ψ(x,t)={0,atx>π,t>π,sinh((π−t)(π−x)),at0<x<π,0<t<π,sinh((π−αt)(π−αx)),at−π<x<0,−π<t<0,12(exp(π2(3+2α+α2)+πt+πx)−exp(π2(1−2α−α2)+πt+πx)),atx<−π,t<−π. | (2.16) |
This ansatz now contains nontrivial variational parameter α. Substituting Eqs (2.15) and (2.16) into Eq (2.5) (see Figure 2), then we obtain the functional integral at α=−1 as follows:
J(Θ,Ψ)=−4.43569×107a+1.13554×1014b1+6.23167×1021b2+4.89178×1029b3. | (2.17) |
Also, we can use α=2, then we get
∫0−π∫0−πLdxdt=∫π0∫π0Ldxdt=−4.42653×1075a+5.59314×10148b1+5.89626×10224b2+8.85443×10300b3−2.66975×1036. |
The functional integral at α=2 becomes
J(Θ,Ψ)=−1.77562×1076a+4.12756×10150b1+4.35525×10226b2+6.5433×10302b3−5.33949×1036. | (2.18) |
Case 2: We now try the following Jost function:
Θ(x,t)={12(exp(4π−t−x+2πα)−exp(−t−x−2πα)),atx>π,t>π,sinh(2π+αt+αx),at0<x<π,0<t<π,sinh(2π+t+x),at−π<t<0,−π<x<0,0,atx<−π,t<−π, | (2.19) |
Ψ(x,t)={0,atx>π,t>π,sinh(2π−t−x),at0<x<π,0<t<π,sinh(2π−αt−αx),at−π<x<0,−π<t<0,12(exp(4π+t+x+2πα)−exp(t+x−2πα)),atx<−π,t<−π. | (2.20) |
This ansatz contains nontrivial variational parameter α. Substituting Eqs (2.19) and (2.20) into Eq (2.5), then we get the functional integral at α=0.5 as follows:
J(Θ,Ψ)=−1.84004×107a+2.29576×1014b1+2.6187×1021b2+4.24151×1028b3+270561. | (2.21) |
Also, we can take α=−0.2, then we obtain
∫0−π∫0−πLdxdt=∫π0∫π0Ldxdt=−13516.2a+2.22124×109b1+7.54018×1013b2+3.79568×1018b3+19035.7. |
The functional integral at α=−0.2 becomes
J(Θ,Ψ)=−28484a+4.44353×109b1+1.50805×1014b2+7.59137×1018b3+38071.3. | (2.22) |
We assume the Jost function by quadratic polynomials at interval |x|<5,|t|<5:
Case 1: We use the following Jost functions:
Θ(x,t)={(100+10000α)exp(−μ(t−5)(x−5)),atx>5,t>5,(t+5)(x+5)+α(5+t)2(5+x)2,at|x|<5,|t|<5,0,atx<−5,t<−5, | (2.23) |
Ψ(x,t)={0,atx>5,t>5,(5−t)(5−x)+α(5−t)2(5−x)2,at|x|<5,|t|<5,(100+10000α)exp(μ(t+5)(x+5)),atx<−5,t<−5. | (2.24) |
We found the values of Lagrangian calculation from Eqs (2.23) and (2.24) into Eq (2.5), and we get
J(Θ,Ψ)=5.55556×106α2−2.66667×107aα2−500000aα+555556α−3333.33a+8.65053×1030α8b3+7.81255×1029α7b3+1.97241×1023α6b2+3.11121×1028α6b3+1.38897×1022α5b2+7.14358×1026α5b3+6.1741×1015α4b1+4.13321×1020α4b2+1.03576×1025α4b3+3.12755×1014α3b1+6.67171×1018α3b2+9.72777×1022α3b3+6.14172×1012α2b1+6.18569×1016α2b2+5.79228×1020α2b3+5.61111×1010αb1+3.14172×1014αb2+2.00529×1018αb3+2.05556×108b1+6.89342×1011b2+3.10406×1015b3+8333.33. | (2.25) |
We choose a=3, b1=2, b2=12, and b3=16, then the functional integral J(Θ,Ψ) becomes
J(Θ,Ψ)=1.44175×1030α8+1.30209×1029α7+5.18545×1027α6+1.19067×1026α5+1.72648×1024α4+1.62163×1022α3+9.65689×1019α2+3.34372×1017α+5.17688×1014. | (2.26) |
Derive Eq (2.26) with respect to α, then values of α are:
α=−0.0136245,α=−0.012952−0.00218808i,α=−0.012952+0.00218808i,α=−0.0110959−0.00364364i,α=−0.0110959+0.00364364i,α=−0.0086518−0.00394467i,α=−0.0086518+0.00394467i. |
We substitute the exact roots of α into Eq (2.26) give the following analytical equations:
J(Θ,Ψ)=4.83907×1010,J(Θ,Ψ)=3.84513×1010−4.55557×1010i,J(Θ,Ψ)=3.84513×1010+4.55557×1010i,J(Θ,Ψ)=−3.14336×109−1.06115×1011i,J(Θ,Ψ)=−3.14336×109+1.06115×1011i,J(Θ,Ψ)=−1.8701×1011−2.04551×1011i,J(Θ,Ψ)=−1.8701×1011+2.04551×1011i. | (2.27) |
Case 2: We try the following Jost functions:
Θ(x,t)={(20+200α)exp(−μ(t−5)(x−5)),atx>5,t>5,(10+t+x)+α(t+5)2+α(x+5)2,at|x|<5,|t|<5,0,atx<−5,t<−5, | (2.28) |
Ψ(x,t)={0,atx>5,t>5,(10−t−x)+α(5−t)2+α(5−x)2,at|x|<5,|t|<5,(20+200α)exp(μ(t+5)(x+5)),atx<−5,t<−5. | (2.29) |
We found the values of Lagrangian calculation from Eqs (2.28) and (2.29) into Eq (2.5) (see Figure 3), and we have
J(Θ,Ψ)=50000α2−13333.3aα2−2000aα+15000α−100a+9.90698×1017α8b3+9.04639×1017α7b3+5.97273×1013α6b2+3.65565×1017α6b3+4.25597×1013α5b2+8.55415×1016α5b3+4.78095×109α4b1+1.28615×1013α4b2+1.27048×1016α4b3+2.39683×109α3b1+2.11556×1012α3b2+1.22953×1015α3b3+4.62698×108α2b1+2.00368×1011α2b2+7.59375×1013α2b3+4.08889×107αb1+1.03937×1010αb2+2.7454×1012αb3+1.4×106b1+2.31429×108b2+4.46349×1010b3+1000. | (2.30) |
We put a=6, b1=3, b2=14, and b3=13, then the functional integral J(Θ,Ψ) becomes
J(Θ,Ψ)=3.30233×1017α8+3.01546×1017α7+1.2187×1017α6+2.85245×1016α5+4.23816×1015α4+4.10379×1014α3+2.5364×1013α2+9.17853×1011α+1.49404×1010. | (2.31) |
Derive Eq (2.31) with respect to α, then values of α are:
α=−0.131984,α=−0.129184−0.0176052i,α=−0.129184+0.0176052i,α=−0.117682−0.0366915i,α=−0.117682+0.0366915i,α=−0.0866387−0.051817i,α=−0.0866387+0.051817i. |
We substitute the exact roots of α into Eq (2.31) give the following analytical equations:
J(Θ,Ψ)=207360,J(Θ,Ψ)=−102453−293854i,J(Θ,Ψ)=−102453+293854i,J(Θ,Ψ)=−1.38256×106+542198i,J(Θ,Ψ)=−1.38256×106−542198i,J(Θ,Ψ)=−1.31177×107+1.75734×107i,J(Θ,Ψ)=−1.31177×107−1.75734×107i. | (2.32) |
We inspect here the exact solutions of the nonlinear Schrödinger equation with the polynomial nonlinear law. This equation is defined as Eq (2.1).
Case 1: We suppose the ansatz function of the NLSE with the polynomial nonlinear law is in the form of a bright solitary wave solution
h1(x,t)=Asech(w(x−tv)),Γ(x,t)=Asech(w(x−tv))ei(kx−ωt), | (2.33) |
where A,w and v are the amplitude, the pulse width, and velocity of soliton in normalized unites. Substituting from Eq (2.33) in Eq (2.1), and separating the real and imaginary parts, we obtain
−ak2v+avw2+vω+(A2b1v−2avw2)sech2(w(x−tv))+A4b2vsech4(w(x−tv))+A6b3vsech6(w(x−tv))=0, | (2.34) |
(w−2akvw)tanh(w(x−tv))=0. | (2.35) |
Equating the coefficients of the linearly independent terms to zero, we obtain the dynamical system in A,w,v,k,ω,a,b1,b2,b3 by solving this system we get:
Family I:
A=±w√b1kv,a=12kv,ω=k2−w22kv. | (2.36) |
The sufficient conditions for solitary wave solution stability are
b1kv>0,kv≠0. | (2.37) |
Family II:
A=±√k−2vωb1v,a=12kv,w=±√k(k−2vω), | (2.38) |
provided that
k−2vωb1v>0,kv≠0,k(k−2vω)>0. | (2.39) |
Family III:
A=±w√2ωb1k2−b1w2,a=ωk2−w2,v=k2−w22kω, | (2.40) |
whenever
ωb1(k2−w2)>0,kω≠0,k2−w2≠0. | (2.41) |
Family IV:
A=±√1b1(√v4ω2+v2w2v2−ω),a=√v4ω2+v2w2−v2ω2v2w2,k=√v4ω2+v2w2v+vω, | (2.42) |
provided that
v4ω2+v2w2>0,1b1(√v4ω2+v2w2v2−ω)>0,v2w2≠0. | (2.43) |
Then, the solutions of the NLSE with the polynomial nonlinear law as bright solitary wave solutions are (see Figures 4 and 5):
Γ11(x,t)=±w√b1kvsech(w(x−tv))ei(kx−ωt), | (2.44) |
Γ12(x,t)=±√k−2vωb1vsech(w(x−tv))ei(kx−ωt), | (2.45) |
Γ13(x,t)=±w√2ωb1k2−b1w2sech(w(x−tv))ei(kx−ωt), | (2.46) |
Γ14(x,t)=±√1b1(√v4ω2+v2w2v2−ω)sech(w(x−tv))ei(kx−ωt). | (2.47) |
Case 2: Another choice of the dark solitary wave solution of the NLSE with the polynomial nonlinear law is
h2(x,t)=A+Btanh(w(x−tv)),Γ(x,t)=(A+Btanh(w(x−tv)))ei(kx−ωt). | (2.48) |
By replacement from Eq (2.48) in Eq (2.1) and separating the real and imaginary parts
−aAk2+A7b3+21A5b3B2+A5b2+35A3b3B4+10A3b2B2+A3b1+7Ab3B6+5Ab2B4+3Ab1B2+Aω+(−21A5b3B2−70A3b3B4−10A3b2B2−21Ab3B6−10Ab2B4−3Ab1B2)×sech2(w(x−tv))+(35A3b3B4+21Ab3B6+5Ab2B4)×sech4(w(x−tv))−7Ab3B6sech6(w(x−tv))+(−aBk2+7A6b3B+35A4b3B3+5A4b2B+21A2b3B5+10A2b2B3+3A2b1B+b3B7+b2B5+b1B3+Bω)×tanh(w(x−tv))+(−2aBw2−35A4b3B3−42A2b3B5−10A2b2B3−3b3B7−2b2B5−b1B3)×tanh(w(x−tv))sech2(w(x−tv))+(21A2b3B5+3b3B7+b2B5)tanh(w(x−tv))sech4(w(x−tv))−B7b3tanh(w(x−tv))sech6(w(x−tv))=0, | (2.49) |
(2aBkw−Bwv)sech2(w(x−tv))=0 | (2.50) |
Equating the coefficients of the linearly independent terms to zero, we deduce the coefficients A,B,w,v,k,ω,a,b1,b2,b3 in the form:
Family I:
A=0,B=±i√b23b3,b1=27b23ω+2b32−27ab23k29b2b3,w=±13b3√27b23ω−b32−27ab23k26a,v=12ak. | (2.51) |
The sufficient conditions for dark solitary wave solution stability are
b2b3<0,b2b3≠0,ak≠0,27b23ω−b32−27ab23k2a>0. | (2.52) |
Family II:
A=0,B=±i√b23b3,w=±13b3√3b1b2b3−b322a,v=12ak,ω=27ab23k2−2b32+9b1b3b227b23, | (2.53) |
provided that
b2b3<0,3b1b2b3−b32a>0,ak≠0,b3≠0. | (2.54) |
Family III:
A=0,B=±6√k2−2kvω+2w22b3kv,a=12kv,b1=3√b3(3k2−6kvω+4w2)3√4k2v2(k2−2kvω+2w2),b2=−33√b23(k2−2kvω+2w2)2kv, | (2.55) |
such that
k2−2kvω+2w2b3kv>0,kv≠0,4k2v2(k2−2kvω+2w2)≠0. | (2.56) |
Family IV:
A=0,B=±6√ak2+2aw2−ωb3,b1=(3ak2+4aw2−3ω)3√b3ak2+2aw2−ω,b2=−33√b23(ak2+2aw2−ω),v=k2+2w22k(ak2+2aw2), | (2.57) |
whenever
ak2+2aw2−ωb3>0,ak2+2aw2−ω≠0,k(ak2+2aw2)≠0. | (2.58) |
Then, the dark soliton solutions of the NLSE with the polynomial nonlinear law Eq (2.1) are (see Figure 6):
Γ21(x,t)=±i√b23b3tanh(w(x−tv))ei(kx−ωt), | (2.59) |
Γ23(x,t)=±6√k2−2kvω+2w22b3kvtanh(w(x−tv))ei(kx−ωt), | (2.60) |
Γ24(x,t)=±6√ak2+2aw2−ωb3tanh(w(x−tv))ei(kx−ωt). | (2.61) |
The model II of the NLSE with polynomial nonlinearity is given by [49]:
iΨt+aΨxx+bΨxt+(k1|Ψ|2+k2|Ψ|4+k3|Ψ|6)Ψ=0, | (3.1) |
where Ψ(x,t) denotes the complex valued function. The coefficients a and b indicate group velocity dispersion (GVD) and spatio-temporal dispersion (STD), respectively. The first term represents the linear evolution of pulses in nonlinear optical fibers. The final term represents the nonlinearity of the non-Kerr law. Since Ψ(x,t) is a complex function on the form Ψ(x,t)=u(x,t)+iv(x,t) such that u and v are real functions of x and t, also |Ψ|2=(u+iv)(u−iv). We will use the variational technique to find solutions for the Eq (3.1), where we derive Ψ with respect to x and t to obtain the Lagrangian of this equation, which is expressed in the following way:
Let M and N are functionals in u and v,
M(u,v)=∂u∂t+a∂2v∂x2+b∂2v∂x∂t+k1vu2+k1v3+k2vu4+2k2u2v3+k2v5+k3vu6+3k3v3u4+3k3u2v5+k3v7, | (3.2) |
N(u,v)=−∂v∂t+a∂2u∂x2+b∂2u∂x∂t+k1u3+k1uv2+k2u5+2k2v2u3+k2uv4+k3u7+3k3v2u5+3k3u3v4+k3uv6. | (3.3) |
The system of Eqs (3.2) and (3.3) satisfies the conditions mentioned in [52,53], then a functional integral J(u,v) can be written down using the formula given by Tonti [53]:
J(u,v)=∫ω[12auuxx+12avvxx+12buuxt+12bvvxt+12k3v2u6+34k3u4v4+12k2v2u4+12k3u2v6+12k2u2v4+12k1u2v2+18k3u8+16k2u6+14k1u4+18k3v8+16k2v6+14k1v4+12vut−12uvt]dω, | (3.4) |
where dω=dxdt.
Then the Lagrangian L is given by
L(u,v)=12auuxx+12avvxx+12buuxt+12bvvxt+12k3v2u6+34k3u4v4+12k2v2u4+12k3u2v6+12k2u2v4+12k1u2v2+18k3u8+16k2u6+14k1u4+18k3v8+16k2v6+14k1v4+12vut−12uvt. | (3.5) |
As a necessary check to our calculations, we use the value of L in the Euler-Lagrange equations:
∂L∂u−∂∂t(∂L∂ut)+∂2∂x2(∂L∂uxx)+∂2∂x∂t(∂L∂uxt)=0, |
∂L∂v−∂∂t(∂L∂vt)+∂2∂x2(∂L∂vxx)+∂2∂x∂t(∂L∂vxt)=0, |
which yields the system of Eqs (3.2) and (3.3).
We provide an example of applying this technique by using a box-shaped initial pulse and a single nontrivial variational parameter based on linear Jost functions in three cases.
Case 1: We use the following ansatz for u(x,t) and v(x,t) functions:
u(x,t)={100exp(−μ(t−5)(x−5)),atx>5,t>5,(t+5)(x+5),at|x|<5,|t|<5,0,atx<−5,t<−5, | (3.6) |
v(x,t)={0,atx>5,t>5,(5−t)(5−x),at|x|<5,|t|<5,100exp(μ(t+5)(x+5)),atx<−5,t<−5. | (3.7) |
We found the values of the Lagrangian L from substituting Eqs (3.6) and (3.7) into Eq (3.5), and by using Mathematica program we get the value of J(u,v) at interval −5<x<5,−5<t<5 as
J(u,v)=2500b+2.05556×108k1+6.89342×1011k2+3.10406×1015k3+8333.33. | (3.8) |
Case 2: Assume u(x,t) and v(x,t) for the Jost function as the following:
u(x,t)={20exp(−μ(t−5)(x−5)),atx>5,t>5,t+x+10,at|x|<5,|t|<5,0,atx<−5,t<−5, | (3.9) |
v(x,t)={0,atx>5,t>5,10−t−x,at|x|<5,|t|<5,20exp(μ(t+5)(x+5)),atx<−5,t<−5. | (3.10) |
We found the values of the Lagrangian L from substituting by Eqs (3.9) and (3.10) into Eq (3.5) (see Figure 7), then we have
J(u,v)=100063(88200k1+14580000k2+2812000000k3+63). | (3.11) |
Case 3:
u(x,t)={12(exp(6π−t−x)−exp(−2π−t−x)),atx>π,t>π,sinh(t+x+2π),at|x|<π,|t|<π,0,atx<−π,t<−π, | (3.12) |
v(x,t)={0,atx>π,t>π,sinh(2π−t−x),at|x|<π,|t|<π,12(exp(6π+t+x)−exp(−2π+t+x)),atx<−π,t<−π. | (3.13) |
We found the values of the Lagrangian L from substituting by Eqs (3.12) and (3.13) into Eq (3.5), then we get
J(u,v)=1.02783×1010a+1.02783×1010b+2.64108×1019k1+1.60864×1029k2+1.39506×1039k3+2.83012×106. | (3.14) |
Case 1: We try the following Jost functions:
u(x,t)={12(exp(π2(3+2α+α2)−πt−πx)−exp(π2(1−2α−α2)−πt−πx)),atx>π,t>π,sinh((π+αt)(π+αx)),at0<x<π,0<t<π,sinh((t+π)(x+π)),at−π<x<0,−π<t<0,0,atx<−π,t<−π, | (3.15) |
v(x,t)={0,atx>π,t>π,sinh((π−t)(π−x)),at0<x<π,0<t<π,sinh((π−αt)(π−αx)),at−π<x<0,−π<t<0,12(exp(π2(3+2α+α2)+πt+πx)−exp(π2(1−2α−α2)+πt+πx)),atx<−π,t<−π. | (3.16) |
This ansatz now contains nontrivial variational parameter α. Substituting Eqs (3.15) and (3.16) into Eq (3.5), then we obtain the functional integral at α=−1 as follows:
J(u,v)=4.43568×107a+4.92254×107b+1.13554×1014k1+6.23167×1021k2+4.89178×1029k3. | (3.17) |
Also, we can use α=2, then we get
∫0−π∫0−πLdxdt=∫π0∫π0Ldxdt=4.42653×1075a+4.47679×1075b+5.59314×10148k1+5.89626×10224k2+8.85443×10300k3−2.66975×1036. |
The functional integral at α=2 becomes
J(u,v)=1.77562×1076a+1.78568×1076b+4.12756×10150k1+4.35525×10226k2+6.5433×10302k3−5.33949×1036. | (3.18) |
Case 2: We now try the following Jost function:
u(x,t)={12(exp(4π−t−x+2πα)−exp(−t−x−2πα)),atx>π,t>π,sinh(2π+αt+αx),at0<x<π,0<t<π,sinh(2π+t+x),at−π<t<0,−π<x<0,0,atx<−π,t<−π, | (3.19) |
v(x,t)={0,atx>π,t>π,sinh(2π−t−x),at0<x<π, 0<t<π,sinh(2π−αt−αx),at−π<x<0,−π<t<0,12(exp(4π+t+x+2πα)−exp(t+x−2πα)),atx<−π,t<−π. | (3.20) |
This ansatz contains nontrivial variational parameter α. Substituting Eqs (3.19) and (3.20) into Eq (3.5) (see Figure 8), then we get the functional integral at α=−0.2 as follows:
J(u,v)=28473.8a+28473.8b+4.44353×109k1+1.50805×1014k2+7.59137×1018k3+38071.3. | (3.21) |
Also, we can take α=0.5 then we obtain
∫0−π∫0−πLdxdt=∫π0∫π0Ldxdt=4.40169×106a+4.40169×106b+9.17623×1013k1+1.04745×1021k2+1.6966×1028k3+135281. |
The functional integral at α=0.5 becomes
J(u,v)=1.84004×107a+1.84004×107b+2.29576×1014k1+2.6187×1021k2+4.24151×1028k3+270561. | (3.22) |
We assume the Jost function by quadratic polynomials at interval |x|<5,|t|<5:
Case 1: We use the following Jost functions:
u(x,t)={(100+10000α)exp(−μ(t−5)(x−5)),atx>5,t>5,(t+5)(x+5)+α(5+t)2(5+x)2,at|x|<5,|t|<5,0,atx<−5,t<−5, | (3.23) |
v(x,t)={0,atx>5,t>5,(5−t)(5−x)+α(5−t)2(5−x)2,at|x|<5,|t|<5,(100+10000α)exp(μ(t+5)(x+5)),atx<−5,t<−5. | (3.24) |
We found the values of Lagrangian calculation from Eqs (3.23) and (3.24) into Eq (3.5) (see Figure 9), and we get
J(u,v)=5.55556×106α2+1.33333×107aα2+250000aα+555556α+2.5×107α2b+555556αb+2500b+8.65053×1030α8k3+7.81255×1029α7k3+1.97241×1023α6k2+3.11121×1028α6k3+1.38897×1022α5k2+7.14358×1026α5k3+6.1741×1015α4k1+4.13321×1020α4k2+1.03576×1025α4k3+3.12755×1014α3k1+6.67171×1018α3k2+9.72777×1022α3k3+6.14172×1012α2k1+6.18569×1016α2k2+5.79228×1020α2k3+5.61111×1010αk1+3.14172×1014αk2+2.00529×1018αk3+2.05556×108k1+6.89342×1011k2+3.10406×1015k3+8333.33. | (3.25) |
We put a=2, b=6, k1=2, k2=3, and k3=4, then the functional integral J(u,v) becomes
J(u,v)=3.46021×1031α8+3.12502×1030α7+1.24449×1029α6+2.85747×1027α5+4.14318×1025α4+3.89131×1023α3+2.3171×1021α2+8.02211×1018α+1.24183×1016. | (3.26) |
Derive Eq (3.26) with respect to α, then values of α are:
α=−0.0136235,α=−0.0129514−0.00218597i,α=−0.0129514+0.00218597i,α=−0.0110962−0.00364064i,α=−0.0110962+0.00364064i,α=−0.00865263−0.00394263i,α=−0.00865263+0.00394263i. |
We substitute the exact roots of α into Eq (3.26) give the following analytical equations:
J(u,v)=1.15381×1012,J(u,v)=9.16876×1011−1.08685×1012i,J(u,v)=9.16876×1011+1.08685×1012i,J(u,v)=−7.64569×1010−2.53327×1012i,J(u,v)=−7.64569×1010+2.53327×1012i,J(u,v)=−4.47645×1012−4.88381×1012i,J(u,v)=−4.47645×1012+4.88381×1012i. | (3.27) |
Case 2: We try the following Jost functions:
u(x,t)={(20+200α)exp(−μ(t−5)(x−5)),atx>5,t>5,(10+t+x)+α(t+5)2+α(x+5)2,at|x|<5,|t|<5,0,atx<−5,t<−5, | (3.28) |
v(x,t)={0,atx>5,t>5,(10−t−x)+α(5−t)2+α(5−x)2,at|x|<5,|t|<5,(20+200α)exp(μ(t+5)(x+5)),atx<−5,t<−5. | (3.29) |
We found the values of Lagrangian calculation from Eqs (3.28) and (3.29) into Eq (3.5), and we have
J(u,v)=50000α2+13333.3aα2+2000aα+15000α+9.90698×1017α8k3+9.04639×1017α7k3+5.97273×1013α6k2+3.65565×1017α6k3+4.25597×1013α5k2+8.55415×1016α5k3+4.78095×109α4k1+1.28615×1013α4k2+1.27048×1016α4k3+2.39683×109α3k1+2.11556×1012α3k2+1.22953×1015α3k3+4.62698×108α2k1+2.00368×1011α2k2+7.59375×1013α2k3+4.08889×107αk1+1.03937×1010αk2+2.7454×1012αk3+1.4×106k1+2.31429×108k2+4.46349×1010k3+1000. | (3.30) |
We put a=3, b=−2, k1=2, k2=4, and k3=6, then the functional integral J(u,v) becomes
J(u,v)=5.94419×1018α8+5.42784×1018α7+2.19363×1018α6+5.13419×1017α5+7.62802×1016α4+7.38564×1015α3+4.56427×1014α2+1.6514×1013α+2.68738×1011. | (3.31) |
Derive Eq (3.31) with respect to α, then values of α are:
α=−0.131961,α=−0.129142−0.0174743i,α=−0.129142+0.0174743i,α=−0.117682−0.0366515i,α=−0.117682+0.0366515i,α=−0.0866909−0.0518096i,α=−0.0866909+0.0518096i. |
We substitute the exact roots of α into Eq (3.31) give the following analytical equations:
J(u,v)=3.53554×106,J(u,v)=−1.84827×106−5.13825×106i,J(u,v)=−1.84827×106+5.13825×106i,J(u,v)=−2.46359×107+1.0125×107i,J(u,v)=−2.46359×107−1.0125×107i,J(u,v)=−2.31965×108+3.16423×108i,J(u,v)=−2.31965×108−3.16423×108i. | (3.32) |
We survey here the exact solutions of the nonlinear Schrödinger equation with polynomial law nonlinearity Eq (3.1).
Case 1: We suppose the ansatz function of the NLSE with polynomial law nonlinearity is in the form of a bright solitary wave solution.
h1(x,t)=Asech(w(x−tv)),Ψ(x,t)=Asech(w(x−tv))ei(μx−ωt), | (3.33) |
where A,w and v are the amplitude, the pulse width, and velocity of soliton in normalized unites. Substituting from Eq (3.33) in Eq (3.1), and separating the real and imaginary parts, we obtain
avw2+bμvω−aμ2v−bw2+vω+(−2avw2+A2k1v+2bw2)×sech2(w(x−tv))+A4k2vsech4(w(x−tv))+A6k3vsech6(w(x−tv))=0, | (3.34) |
(−2aμvw+bvwω+bμw+w)tanh(w(x−tv))=0. | (3.35) |
Equating the coefficients of the linearly independent terms to zero, we obtain the dynamical system in A,w,v,μ,ω,a,b,k1,k2,k3 by solving this system we get:
Family I:
A=±√2(μw2−vw2ω)k1μ2v+k1vw2,a=−v2ω2−w2v(μ2+w2)(vω−μ),b=2μvω+w2−μ2(μ2+w2)(μ−vω). | (3.36) |
The sufficient conditions for solitary wave solution stability are:
μw2−vw2ωk1μ2v+k1vw2>0,v(μ2+w2)(vω−μ)≠0,(μ2+w2)(μ−vω)≠0. | (3.37) |
Family II:
A=±√bμ2−bμvω+μ−2vωk1v,a=bμ+bvω+12μv,w=±√bμ3−bμ2vω+μ2−2μvωbvω+1−bμ, | (3.38) |
provided that
bμ2−bμvω+μ−2vωk1v>0,bμ3−bμ2vω+μ2−2μvωbvω+1−bμ>0,μv≠0. | (3.39) |
Family III:
A=±w√2ωbk1μ3+bk1μw2+k1μ2−k1w2,a=ω(b2μ2+b2w2+2bμ+1)bμ3+bμw2+μ2−w2,v=bμ3+bμw2+μ2−w2ω(bμ2+bw2+2μ), | (3.40) |
whenever
ωbk1μ3+bk1μw2+k1μ2−k1w2>0,bμ3+bμw2+μ2−w2≠0,ω(bμ2+bw2+2μ)≠0. | (3.41) |
Then, the solutions of the NLSE with polynomial law nonlinearity as bright solitary wave solutions are (see Figures 10 and 11):
Ψ11(x,t)=±√2(μw2−vw2ω)k1μ2v+k1vw2sech(w(x−tv))ei(μx−ωt), | (3.42) |
Ψ12(x,t)=±√bμ2−bμvω+μ−2vωk1vsech(w(x−tv))ei(μx−ωt), | (3.43) |
Ψ13(x,t)=±w√2ωbk1μ3+bk1μw2+k1μ2−k1w2sech(w(x−tv))ei(μx−ωt). | (3.44) |
Case 2: Another choice of the dark solitary wave solution of the NLSE with polynomial law nonlinearity is
Ψ(x,t)=(A+Btanh(w(x−tv)))ei(μx−ωt). | (3.45) |
By replacement from Eq (3.45) in Eq (3.1) and separating the real and imaginary parts
A7k3−aAμ2+21A5B2k3+A5k2+35A3B4k3+10A3B2k2+A3k1+Abμω+7AB6k3+5AB4k2+3AB2k1+Aω+(−21A5B2k3−70A3B4k3−10A3B2k2−21AB6k3−10AB4k2−3AB2k1)×sech2(w(x−tv))+(35A3B4k3+21AB6k3+5AB4k2)×sech4(w(x−tv))−7AB6k3sech6(w(x−tv))+(−aBμ2+7A6Bk3+35A4B3k3+5A4Bk2+21A2B5k3+10A2B3k2+3A2Bk1+bBμω+B7k3+B5k2+B3k1+Bω)tanh(w(x−tv))+(−2aBw2−35A4B3k3−42A2B5k3−10A2B3k2+2bBw2v−3B7k3−2B5k2−B3k1)tanh(w(x−tv))sech2(w(x−tv))+(21A2B5k3+3B7k3+B5k2)tanh(w(x−tv))sech4(w(x−tv))−B7k3tanh(w(x−tv))sech6(w(x−tv))=0, | (3.46) |
(2aBμw−bBμwv−bBwω−Bwv)sech2(w(x−tv))=0. | (3.47) |
Equating the coefficients of the linearly independent terms to zero, we deduce the coefficients A,B,w,v,μ,ω,a,b,k1,k2,k3 in the form:
Family I:
A=0,B=±i√k23k3,a=k32v2ω+k32μv+54k23w2−27k23v2ω227k23v(μ2−2w2)(vω−μ),b=54k23μvω−27k23μ2−2k32μv−54k23w227k23(μ2−2w2)(μ−vω),k1=3k32μ2v−54k23vw2ω−4k32vw2+54k23μw29k2k3v(μ2−2w2). | (3.48) |
The sufficient conditions for dark solitary wave solution stability are
k2k3<0,k23v(μ2−2w2)(vω−μ)≠0,k2k3v(μ2−2w2)≠0. | (3.49) |
Family II:
A=0,B=±i√k23k3,a=27b2k23μ2−54b2k23w2+54bk23μ+bk32v+27k2327k23v(bμ2−2bw2+2μ),k1=3bk32μ2v−4bk32vw2+6k32μv+54k23w29k2k3v(bμ2−2bw2+2μ),ω=27bk23μ3−54bk23μw2+27k23μ2+2k32μv+54k23w227k23v(bμ2−2bw2+2μ), | (3.50) |
provided that
k2k3<0,k2k3v(bμ2−2bw2+2μ)≠0,k23v(bμ2−2bw2+2μ)≠0. | (3.51) |
Family III:
A=0,B=±i√k23k3,a=bμ+bvω+12μv,k1=27bk23μvω−27bk23μ2−27k23μ+54k23vω+4k32v18k2k3v,w=−√μ(27bk23μvω−27k23μ+54k23vω−2k32v−27bk23μ2)54bk23vω+54k23−54bk23μ, | (3.52) |
whenever
k2k3<0,μv≠0,k2k3v≠0,μ(27bk23μvω−27k23μ+54k23vω−2k32v−27bk23μ2)54bk23vω+54k23−54bk23μ>0. | (3.53) |
Family IV:
B=±6√aμ2v2ω−2av2w2ω−aμ3v+2aμvw2+v2ω2−2w2v(2w2−μ2)(vω−μ)(k3(μ+vω)(2w2−μ2)(μ−vω)),A=0,b=2aμv−1μ+vω,k1=1v2/3(μ+vω)3√2w2(av(vω−μ)+1)−v(aμ2(vω−μ)+vω2)×(3√(k3(μ+vω)(2w2−μ2)(μ−vω))(2w2−μ2)(vω−μ)×(3v(aμ2(vω−μ)+vω2)−4w2(av(vω−μ)+1))),k2=3k33√2w2(av(vω−μ)+1)−v(aμ2(vω−μ)+vω2)3√v(2w2−μ2)(vω−μ)(k3(μ+vω)(2w2−μ2)(μ−vω)), | (3.54) |
such that
aμ2v2ω−2av2w2ω−aμ3v+2aμvw2+v2ω2−2w2v(2w2−μ2)(vω−μ)(k3(μ+vω)(2w2−μ2)(μ−vω))>0,μ+vω≠0,v2/3(μ+vω)3√2w2(av(vω−μ)+1)−v(aμ2(vω−μ)+vω2)≠0,3√v(2w2−μ2)(vω−μ)(k3(μ+vω)(2w2−μ2)(μ−vω))≠0. | (3.55) |
Then, the dark soliton solutions of the NLSE with polynomial law nonlinearity Eq (3.1) are (see Figure 12)
Ψ21(x,t)=±i√k23k3tanh(w(x−tv))ei(μx−ωt), | (3.56) |
Ψ24(x,t)=±6√aμ2v2ω−2av2w2ω−aμ3v+2aμvw2+v2ω2−2w2v(2w2−μ2)(vω−μ)(k3(μ+vω)(2w2−μ2)(μ−vω))×tanh(w(x−tv))ei(μx−ωt). | (3.57) |
In this paper, we discussed the two models of the nonlinear Schrödinger equation (NLSE) with polynomial law nonlinearity by effective and understandable techniques, such as the variational principle method based on the Lagrangian and the amplitude ansatz method. We found the functional integral and the Lagrangian of these models. Meanwhile, the solutions of the proposed equations were extracted by choice of different ansatz functions based on the Jost function, and they are continuous at all intervals. Firstly, the Jost function was approximated by piecewise linear ansatz function with a single nontrivial variational parameter in three cases from a region of a rectangular box. Then, the Jost function was approximated by the piecewise ansatz function containing the hyperbolic function in two cases of the two-box potential and was also approximated by quadratic polynomials with two free parameters rather than a piecewise linear ansatz function. Finally, this trial function had been approximated by the tanh function. Besides, we applied the amplitude ansatz method to obtain the new soliton solutions of the offered equations that contain bright soliton, dark soliton, bright-dark solitary wave solutions, rational dark-bright solutions, and periodic solitary wave solutions. The conditions for the stability of solutions were conducted. Graphical models, such as 2D, 3D, and contour plots, were induced using appropriate parameter values. These solutions have vital applications in applied sciences and might provide valuable support for investigators and physicists to solve more complex physical phenomena.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through project number 445-9-693. Furthermore, the authors would like to extend their appreciation to Taibah University for its supervision support.
The authors declare that they have no competing interests.
[1] |
Aas K, Haff IH (2006) The Generalised Hyperbolic Skew Student's t-distribution. J Financ Econ 4: 275-309. https://doi.org/10.1093/jjfinec/nbj006 doi: 10.1093/jjfinec/nbj006
![]() |
[2] |
Adubisi OD, Abdulkadir A, Chiroma H (2021a) A Two Parameter Odd Exponentiated Skew-t Distribution with J-Shaped Hazard Rate Function. J Stat Model Anal 3: 26-46. https://doi.org/10.22452/josma.vol3no1.3 doi: 10.22452/josma.vol3no1.3
![]() |
[3] |
Adubisi OD, Abdulkadir A, Chiroma H, et al. (2021b) The Type I Half Logistic Skew-t Distribution: A Heavy-Tail Model with Inverted Bathtub Shaped Hazard Rate. Asian J Probab Stat 14: 21-40. https://doi.org/10.9734/AJPAS/2021/v14i430336 doi: 10.9734/AJPAS/2021/v14i430336
![]() |
[4] | Adubisi OD, Abdulkadir A, Farouk UA, et al. (2021c) Financial data and a new generalization of the skew-t distribution. Covenant J Phys Life Sci 9: 1-18. |
[5] |
Aldahlan MAD, Afify AM (2020) The odd exponential half-logistic exponential distribution: Estimation methods and application to Engineering data. Mathematics 8: 1684. https://doi.org/10.3390/math8101684 doi: 10.3390/math8101684
![]() |
[6] |
Altun E, (2019) Two-sided exponential-geometric distribution: Inference and volatility modeling. Comput Stat 34: 1215-1245. https://doi.org/10.1007/s00180-019-00873-3 doi: 10.1007/s00180-019-00873-3
![]() |
[7] |
Altun E, Tatlidil H, Ozel G, et al. (2018) A new generalized of skew-T distribution with volatility models. J Stat Comput Simu 88: 1252-1272. https://doi.org/10.1080/00949655.2018.1427240 doi: 10.1080/00949655.2018.1427240
![]() |
[8] |
Alzaatreh A, Lee C, Famoye F (2013) A new method for generating families of continuous distributions. Metron 71: 63-79. https://doi.org/10.1007/s40300-013-0007-y doi: 10.1007/s40300-013-0007-y
![]() |
[9] |
Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew-t distribution. J Roy Statist Soc B 65: 367-389. https://doi.org/10.1111/1467-9868.00391 doi: 10.1111/1467-9868.00391
![]() |
[10] |
Bakouch HS, Dey S, Ramos PL, et al. (2017) Binomial-exponential 2 distribution: Different estimation methods with weather applications. TEMA 18: 233-251. https://doi.org/10.5540/tema.2017.018.02.0233 doi: 10.5540/tema.2017.018.02.0233
![]() |
[11] |
Basalamah D, Ning W, Gupta A (2018) The beta skew-t distribution and its properties. J Stat Theory Pract 12: 837-860. https://doi.org/10.1080/15598608.2018.1481468 doi: 10.1080/15598608.2018.1481468
![]() |
[12] |
Bollerslev T (1986) Generalized Autoregressive Conditional Heteroskedasticity. J Econometrics 31: 307-327. https://doi.org/10.1016/0304-4076(86)90063-1 doi: 10.1016/0304-4076(86)90063-1
![]() |
[13] |
Brooks C, Burke SP (2003) Information criteria for GARCH model selection. Eur J Financ 9: 557-580. https://doi.org/10.1080/1351847021000029188 doi: 10.1080/1351847021000029188
![]() |
[14] | Cheng R, Amin N (1979) Maximum product of spacing estimation with application to Lognormal distribution. Mathematical Report 79-1, University of Wales, Cardiff, UK. |
[15] |
Cheng R, Amin N (1983) Estimating parameters in continuous univariate distributions with a shifted origin. J R Stat Soc Ser B Methodol 45: 394-403. https://doi.org/10.1111/j.2517-6161.1983.tb01268.x doi: 10.1111/j.2517-6161.1983.tb01268.x
![]() |
[16] |
Chesneau C, Bakouch HS, Ramos PL, et al. (2020) The polynomial-exponential distribution: a continuous probability model allowing for occurrence of zero values. Commun Stat Simul Comput 20: 1-26. https://doi.org/10.1080/03610918.2020.1746339 doi: 10.1080/03610918.2020.1746339
![]() |
[17] |
Cordeiro GM, Alizadeh M, Ortega EMM (2014) The Exponentiated Half-Logistic Family of Distributions: Properties and Applications. J Probab Stat 21 https://doi.org/10.1155/2014/864396 doi: 10.1155/2014/864396
![]() |
[18] | Dikko HG, Agboola S (2017) Exponentiated generalized Skew-t distribution. J Nigerian Assoc Math Phys 42: 219-228. |
[19] |
Engle RF (1982) Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica 50: 987-1008. https://doi.org/10.2307/1912773 doi: 10.2307/1912773
![]() |
[20] |
Glosten LR, Jagannathan R, Runkle DE (1993) On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. J Financ 48: 1779-1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x doi: 10.1111/j.1540-6261.1993.tb05128.x
![]() |
[21] | Johnson NL, Kotz S, Balakrishnan N (1995) Continuous Univariate Distributions. New York: Wiley. |
[22] | Jones MC (2001) A skew t distribution. In Probability and Statistical Models with Applications. London: Chapman and Hall, 269-277. |
[23] |
Jones MC, Faddy MJ (2003) A skew extension of the t-distribution, with applications. J Roy Statist Soc Ser B 65: 159-174. https://doi.org/10.1111/1467-9868.00378 doi: 10.1111/1467-9868.00378
![]() |
[24] | Khamis KS, Basalamah D, Ning W, et al. (2017) The Kumaraswamy Skew-t Distribution and Its Related Properties. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2017.1346801. |
[25] | Louzada F, Ramos PL, Perdoná GS (2016) Different estimation procedures for the parameters of the extended exponential geometric distribution for medical data. Comput Math Methods Med https://doi.org/10.1155/2016/8727951 |
[26] |
Ramos PL, Louzada F, Ramos E, et al. (2020) The Fréchet distribution: Estimation and application-An overview. J Stat Manage Syst 23: 549-578. https://doi.org/10.1080/09720510.2019.1645400 doi: 10.1080/09720510.2019.1645400
![]() |
[27] |
Rodrigues GC, Louzada F, Ramos PL (2018) Poisson-exponential distribution: different methods of estimation. J Appl Stat 45: 128-144. https://doi.org/10.1080/02664763.2016.1268571 doi: 10.1080/02664763.2016.1268571
![]() |
[28] |
Sahu SK, Dey DK, Branco MD (2003) A new class of multivariate skew distributions with applications to Bayesian regression models. Can J Stat 31: 129-150. https://doi.org/10.2307/3316064 doi: 10.2307/3316064
![]() |
[29] |
Shafiei S, Doostparast M (2014) Balakrishnan skew-t distribution and associated statistical characteristics. Comm Statist Theory Methods 43: 4109-4122. https://doi.org/10.1080/03610926.2012.701697 doi: 10.1080/03610926.2012.701697
![]() |
[30] | Shittu OI, Adepoju KA, Adeniji OE (2014) On the Beta Skew-t distribution in modelling stock return in Nigeria. Int J Mod Math Sci 11: 94-102. |
[31] |
ZeinEldin RA, Chesneau C, Jamal F, et al. (2019) Different estimation methods for type I half-logistic Topp-Leone distribution Mathematics 7: 985. https://doi.org/10.3390/math7100985 doi: 10.3390/math7100985
![]() |
![]() |
![]() |
1. | Feifei Yang, Xinlin Song, Zhenhua Yu, Dynamics of a functional neuron model with double membranes, 2024, 188, 09600779, 115496, 10.1016/j.chaos.2024.115496 | |
2. | Xin-Yi Gao, Hetero-Bäcklund transformation, bilinear forms and multi-solitons for a (2+1)-dimensional generalized modified dispersive water-wave system for the shallow water, 2024, 92, 05779073, 1233, 10.1016/j.cjph.2024.10.004 | |
3. | Shuang Li, Xing‐Hua Du, The analysis of traveling wave structures and chaos of the cubic–quartic perturbed Biswas–Milovic equation with Kudryashov's nonlinear form and two generalized nonlocal laws, 2024, 0170-4214, 10.1002/mma.10462 | |
4. | Atallah El-shenawy, Mohamed El-Gamel, Amir Teba, Simulation of the SIR dengue fever nonlinear model: A numerical approach, 2024, 11, 26668181, 100891, 10.1016/j.padiff.2024.100891 | |
5. | Syed T. R. Rizvi, Aly R. Seadawy, Nighat Farah, Sarfaraz Ahmad, Ali Althobaiti, The interactions of dark, bright, parabolic optical solitons with solitary wave solutions for nonlinear Schrödinger–Poisson equation by Hirota method, 2024, 56, 1572-817X, 10.1007/s11082-024-07008-z | |
6. | Jicheng Yu, Yuqiang Feng, Lie symmetries, exact solutions and conservation laws of (2+1)-dimensional time fractional cubic Schrödinger equation, 2024, 1425-6908, 10.1515/jaa-2024-0072 | |
7. | Muhammad Arshad, Aly R. Seadawy, Aliza Mehmood, Khurrem Shehzad, Lump Kink interactional and breather-type waves solutions of (3+1)-dimensional shallow water wave dynamical model and its stability with applications, 2024, 0217-9849, 10.1142/S0217984924504025 | |
8. | Noor Alam, Ali Akbar, Mohammad Safi Ullah, Md. Mostafa, Dynamic waveforms of the new Hamiltonian amplitude model using three different analytic techniques, 2024, 0973-1458, 10.1007/s12648-024-03426-7 | |
9. | Thabet Abdeljawad, Asma Al-Jaser, Bahaaeldin Abdalla, Kamal Shah, Manel Hleili, Manar Alqudah, Coherent manipulation of bright and dark solitons of reflection and transmission pulses through sodium atomic medium, 2024, 22, 2391-5471, 10.1515/phys-2024-0058 | |
10. | Mohammed Aldandani, Syed T. R. Rizvi, Abdulmohsen Alruwaili, Aly R. Seadawy, Discussion on optical solitons, sensitivity and qualitative analysis to a fractional model of ion sound and Langmuir waves with Atangana Baleanu derivatives, 2024, 22, 2391-5471, 10.1515/phys-2024-0080 | |
11. | Subhashish Tiwari, Ajay Vyas, Vijay Singh, G. Maity, Achyutesh Dixit, Investigation of wave propagation characteristics in photonic crystal micro-structure containing circular shape with varied nonlinearity, 2024, 56, 1572-817X, 10.1007/s11082-024-07421-4 | |
12. | Aydin Secer, Ismail Onder, Handenur Esen, Neslihan Ozdemir, Melih Cinar, Hasan Cakicioglu, Selvi Durmus, Muslum Ozisik, Mustafa Bayram, On Stochastic Pure-Cubic Optical Soliton Solutions of Nonlinear Schrödinger Equation Having Power Law of Self-Phase Modulation, 2024, 63, 1572-9575, 10.1007/s10773-024-05756-y | |
13. | M. Aamir Ashraf, Aly R. Seadawy, Syed T. R. Rizvi, Ali Althobaiti, Dynamical optical soliton solutions and behavior for the nonlinear Schrödinger equation with Kudryashov’s quintuple power law of refractive index together with the dual-form of nonlocal nonlinearity, 2024, 56, 1572-817X, 10.1007/s11082-024-07096-x | |
14. | Setu Rani, Sachin Kumar, Raj Kumar, Dynamical Study of Newly Created Analytical Solutions, Bifurcation Analysis, and Chaotic Nature of the Complex Kraenkel–Manna–Merle System, 2024, 23, 1575-5460, 10.1007/s12346-024-01148-z | |
15. | Syed Oan Abbas, Aly R. Seadawy, Sana Ghafoor, Syed T. R. Rizvi, Applications of variational integrators to couple of linear dynamical models discussing temperature distribution and wave phenomena, 2024, 0217-9849, 10.1142/S0217984924504359 | |
16. | Kashif Ali, Aly. R. Seadawy, Syed T. R. Rizvi, Noor Aziz, Ali Althobaiti, Dynamical properties and travelling wave analysis of Rangwala–Rao equation by complete discrimination system for polynomials, 2024, 56, 1572-817X, 10.1007/s11082-024-06894-7 | |
17. | Engy A. Ahmed, Rasha B. AL-Denari, Aly R. Seadawy, Numerical solution, conservation laws, and analytical solution for the 2D time-fractional chiral nonlinear Schrödinger equation in physical media, 2024, 56, 1572-817X, 10.1007/s11082-024-06828-3 | |
18. | Prasanta Chatterjee, Nanda Kanan Pal, Gaston M. N'Guérékata, Asit Saha, Multiple tsunami waves of the fractional geophysical KdV equation, 2024, 0003-6811, 1, 10.1080/00036811.2024.2426238 | |
19. | Sheikh Zain Majid, Muhammad Imran Asjad, Sachin Kumar, Taseer Muhammad, Dynamical Study with Exact Travelling Waves with High Amplitude Solitons to Clannish Random Walker’s Parabolic Equation, 2025, 24, 1575-5460, 10.1007/s12346-024-01175-w | |
20. | Ghauss ur Rahman, J. F. Gómez-Aguilar, Energy balance approach to an optical solitons of (2+1)-dimensional fourth-order Korteweg–de Vries equation with two contemporary integration norms using a new mapping method, 2024, 0924-090X, 10.1007/s11071-024-10659-y | |
21. | Huilin Cui, Yexuan Feng, Zhonglong Zhao, The Integrability and Several Localized Wave Solutions of a Generalized (2+1)-Dimensional Nonlinear Wave Equation, 2025, 24, 1575-5460, 10.1007/s12346-024-01176-9 | |
22. | Hassan Khaider, Achraf Azanzal, Abderrahmane Raji, Global well-posedness and analyticity for the fractional stochastic Hall-magnetohydrodynamics system in the Besov–Morrey spaces, 2024, 2193-5343, 10.1007/s40065-024-00488-7 | |
23. | Brij Mohan, Sachin Kumar, Raj Kumar, On investigation of kink-solitons and rogue waves to a new integrable (3+1)-dimensional KdV-type generalized equation in nonlinear sciences, 2024, 0924-090X, 10.1007/s11071-024-10792-8 | |
24. | Khurrem Shehzad, Jun Wang, Muhammad Arshad, Ali Althobaiti, Aly R. Seadawy, Analytical solutions of (3+1)-dimensional modified KdV–Zakharov–Kuznetsov dynamical model in a homogeneous magnetized electron–positron–ion plasma and its applications, 2025, 22, 0219-8878, 10.1142/S0219887824503146 | |
25. | Yousef Jawernah, Qasem M Tawhari, Musaad S. Aldhabani, Ali H. Hakami, Hussain Gissy, An analytical examination of bright and dark kink solitons in Conformable Pochhammer-Chree equation arising in elastic medium, 2025, 16, 20904479, 103539, 10.1016/j.asej.2025.103539 |