Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
Research article

Self-adaptive algorithms for the split problem of the quasi-pseudocontractive operators in Hilbert spaces

  • Received: 27 September 2021 Revised: 20 December 2021 Accepted: 04 January 2022 Published: 03 March 2022
  • MSC : 47H06, 47H09, 47J25, 49J05

  • Self-adaptive algorithms are presented for solving the split common fixed point problem of quasi-pseudocontractive operators in Hilbert spaces. Weak and strong convergence theorems are given under some mild assumptions.

    Citation: Wenlong Sun, Gang Lu, Yuanfeng Jin, Choonkil Park. Self-adaptive algorithms for the split problem of the quasi-pseudocontractive operators in Hilbert spaces[J]. AIMS Mathematics, 2022, 7(5): 8715-8732. doi: 10.3934/math.2022487

    Related Papers:

    [1] Chibueze C. Okeke, Abubakar Adamu, Ratthaprom Promkam, Pongsakorn Sunthrayuth . Two-step inertial method for solving split common null point problem with multiple output sets in Hilbert spaces. AIMS Mathematics, 2023, 8(9): 20201-20222. doi: 10.3934/math.20231030
    [2] Yali Zhao, Qixin Dong, Xiaoqing Huang . A self-adaptive viscosity-type inertial algorithm for common solutions of generalized split variational inclusion and paramonotone equilibrium problem. AIMS Mathematics, 2025, 10(2): 4504-4523. doi: 10.3934/math.2025208
    [3] Mohammad Dilshad, Mohammad Akram, Md. Nasiruzzaman, Doaa Filali, Ahmed A. Khidir . Adaptive inertial Yosida approximation iterative algorithms for split variational inclusion and fixed point problems. AIMS Mathematics, 2023, 8(6): 12922-12942. doi: 10.3934/math.2023651
    [4] Meiying Wang, Luoyi Shi, Cuijuan Guo . An inertial iterative method for solving split equality problem in Banach spaces. AIMS Mathematics, 2022, 7(10): 17628-17646. doi: 10.3934/math.2022971
    [5] Zheng Zhou, Bing Tan, Songxiao Li . Two self-adaptive inertial projection algorithms for solving split variational inclusion problems. AIMS Mathematics, 2022, 7(4): 4960-4973. doi: 10.3934/math.2022276
    [6] Meiying Wang, Luoyi Shi . A new self-adaptive inertial algorithm with W-mapping for solving split feasibility problem in Banach spaces. AIMS Mathematics, 2022, 7(10): 18767-18783. doi: 10.3934/math.20221032
    [7] James Abah Ugboh, Joseph Oboyi, Hossam A. Nabwey, Christiana Friday Igiri, Francis Akutsah, Ojen Kumar Narain . Double inertial extrapolations method for solving split generalized equilibrium, fixed point and variational inequity problems. AIMS Mathematics, 2024, 9(4): 10416-10445. doi: 10.3934/math.2024509
    [8] Yasir Arfat, Poom Kumam, Supak Phiangsungnoen, Muhammad Aqeel Ahmad Khan, Hafiz Fukhar-ud-din . An inertially constructed projection based hybrid algorithm for fixed point and split null point problems. AIMS Mathematics, 2023, 8(3): 6590-6608. doi: 10.3934/math.2023333
    [9] Wenlong Sun, Gang Lu, Yuanfeng Jin, Zufeng Peng . Strong convergence theorems for split variational inequality problems in Hilbert spaces. AIMS Mathematics, 2023, 8(11): 27291-27308. doi: 10.3934/math.20231396
    [10] Austine Efut Ofem, Jacob Ashiwere Abuchu, Godwin Chidi Ugwunnadi, Hossam A. Nabwey, Abubakar Adamu, Ojen Kumar Narain . Double inertial steps extragadient-type methods for solving optimal control and image restoration problems. AIMS Mathematics, 2024, 9(5): 12870-12905. doi: 10.3934/math.2024629
  • Self-adaptive algorithms are presented for solving the split common fixed point problem of quasi-pseudocontractive operators in Hilbert spaces. Weak and strong convergence theorems are given under some mild assumptions.



    Inverse problems in various disciplines can be expressed as split feasibility problems and their generalizations, such as multiple-sets split feasibility problems and split common fixed point problems, and many iterative algorithms have been presented to solve these problems (see [1,2,3,4,5,6] for multiple-sets split feasibility problems, [7,8,9,10] for split feasibility problems, [11,12,13,14,15,16,17,18] for split common fixed point problems, or [19,20,21,22,23,24] for a self-adaptive method).

    The present article is focusing on the split common fixed point problem by virtue of self-adaptive algorithms such that involved methods are simpler. The split common fixed point problem is a generalization of the split feasibility problem which is a general way to characterize various inverse problems arising in many real-world application problems, such as medical image reconstruction and intensity-modulated radiation therapy.

    Recall that the split common fixed point problem is to find a point uH1 such that

    uFix(T)   and   AuFix(S). (1.1)

    The split feasibility problem is to find a point satisfying

    uC   and   AuQ, (1.2)

    where C and Q are two nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively and A:H1H2 is a bounded linear operator. Problem (1.2) was firstly introduced by Censor and Elfving [25] in finite-dimensional Hilbert spaces. In [26], note that solving (1.1) can be translated to solve the fixed point equation

    u=S(uτA(IT)Au), τ>0.

    Whereafter, Censor and Segal proposed an algorithm for directed operators. Since then, there has been growing interest in the split common fixed point problem. In [27], based on the work [26], Moudafi investigated an algorithm for solving the split common fixed-point problem for the class of demicontractive operators in a Hilbert space. In [28], Kraikaew et al. modified the iterative scheme studied by Moudafi for quasi-nonexpansive operators to obtain strong convergence to a solution of the split common fixed point problem. In [29], based on Halpern's type method, Boikanyo constructed an algorithm for demicontractive operators that produces sequences that always converge strongly to a specific solution of the split common fixed point problem. In [30], Ansari introduced an implicit algorithm and an explicit algorithm for solving the split common fixed point problems. In [31], using the hybrid method and the shrinking projection method in mathematical programming, Takahashi proved strong convergence theorems for finding a solution of the split common fixed point problem in two Banach spaces. In [32], Wang proposed a new algorithm for the split common fixed-point problem that does not need any priori information of the operator norm.

    In the case where C and Q in (1.2) are the intersections of finitely many fixed point sets of nonlinear operators, problem (1.2) is called by Censor and Segal ([26]) the split common fixed point problem. More precisely, the split common fixed point problem requires one to seek an element uH1 such that

    usi=1Fix(Ti)   and   Autj=1Fix(Si), (1.3)

    where Fix(Si) and Fix(Ti) denote the fixed point sets of two classes of nonlinear operators Si:H1H1 and Ti:H2H2, respectively.

    In particular, Yao et al. [21] introduced the following new iterative algorithms for the split common fixed point problem of demicontractive operators.

    Algorithm 1.1. Choose an arbitrary initial guess x0H1. Assume xn has been constructed. If

    xnTxn+A(IS)Axn=0, (1.4)

    then stop; otherwise, continue and construct via the manner

    xn+1=xnγτn(xnSxn+A(IT)Axn),

    where γ(0,min{1β,1μ}) is a positive constant and τn is chosen self-adaptively as

    τn=xnSxn2+(IT)Axn2xnSxn+A(IT)Axn2. (1.5)

    Algorithm 1.2. Let uH1 and choose an arbitrary initial value x0H1. Assume xn has been constructed. If

    xnTxn+A(IS)Axn=0, (1.6)

    then stop; otherwise, continue and construct via the manner

    xn+1=αnu+(1αn)[xnγτn(xnTxn+A(IS)Axn)], (1.7)

    where γ(0,min{1β,1μ}) is a positive constant and τn is chosen self-adaptively as

    τn=xnSxn2+(IT)Axn2xnSxn+A(IT)Axn2. (1.8)

    Yao et al. obtained the weak and strong convergence of Algorithms 1.1 and 1.2, respectively. It should be pointed out that Algorithm 1.1 and 1.2 do not need any prior information of the operator norm. Inspired by the work in the literature, the main purpose of this paper is to present two new self-adaptive algorithms for approximating a solution of the split common fixed point problem (1.3) for the class of quasi-pseudocontractive operators which is more general than the classes of quasi-nonexpansive operators, directed operators and demicontractive operators. Weak and strong convergence theorems are given under some mild assumptions.

    In this section, we collect some tools including some definitions, some useful inequalities and lemmas which will be used to derive our main results in the next section.

    Let H be a real Hilbert space with inner product , and norm , respectively. Let C be a nonempty closed convex subset of H. Let T:CC be an operator. We use Fix(T) to denote the set of fixed points of T, that is, Fix(T)={u|u=Tu,uC}.

    First, we give some definitions related to the involved operators.

    Definition 2.1. An operator T:CC is said to be

    (i) nonexpansive if TuTvuv for all u,vC.

    (ii) quasi-nonexpansive if Tuuuu for all uC and uFix(T).

    (iii) firmly nonexpansive if TuTv2uv2(IT)u(IT)v2 for all u,vC.

    (iv) directed(or firmly quasi-nonexpansive) if Tuu2uu2Tuu2for all uC and uFix(T).

    Definition 2.2. An operator T:CC is said to be pseudo-contractive if TuTv,uvuv2 for all u,vC.

    The interest of pseudocontractive operators lies in their connection with monotone operators; namely, T is a pseudocontraction if and only if the complement IT is a monotone operator. It is well known that T is pseudocontractive if and only if

    TuTv2uv2+(IT)u(IT)v2,

    for all u,vC.

    Definition 2.3. An operator T is said to be strictly pseudocontractive if

    TuTv2uv2+k(IT)u(IT)v2,

    for all u,vC, where k[0,1).

    Definition 2.4. An operator T is said to be demicontractive if there exists a constant k[0,1) such that

    Tuu2uu2+kTuu2,

    or equivalently,

    uTu,uu1k2uTu2, (2.1)

    for all uC and uFix(T).

    Remark 2.1. From the above definitions, we note that the class of demicontractive operators contains important operators such as the directed operators, the quasi-nonexpansive operators and the strictly pseudocontractive operators with fixed points. Such a class of operators is fundamental because it includes many types of nonlinear operators arising in applied mathematics and optimization.

    Definition 2.5. An operator T:CC is said to be quasi-pseudocontractive if Tuu2uu2+Tuu2 for all uC and uFix(T).

    Definition 2.6. An operator T:CC is said to be L-Lipschitzian if there exists L>0 such that TuTvLuv for all u,vC.

    Usually, the convergence of fixed point algorithms requires some additional smoothness properties of the mapping T such as demi-closedness.

    Definition 2.7. An operator T is said to be demiclosed if, for any sequence {un} which weakly converges to u, and if Tunw, then Tu=w.

    Definition 2.8. A sequence {un} is called Fejeˊr-monotone with respect to a given nonempty set \Omega if for every u\in\Omega ,

    \|u_{n+1}-u\|\leq\|u_{n}-u\|,

    for all n\geq0 .

    Recall that the (nearest point or metric) projection from H onto C , denoted by P_{C} , assigns to each u\in H , the unique point P_{C}u\in C with the property

    \|u-P_{C}u\| = \inf\{\|u-v\| : v\in C\}.

    The metric projection P_{C} of H onto C is characterized by

    \begin{eqnarray} \langle u-P_{C}u, v-P_{C}u\rangle\leq0, \end{eqnarray} (2.2)

    for all u\in H, v\in C . It is well known that the metric projection P_{C}:H\rightarrow C is firmly nonexpansive, that is,

    \begin{eqnarray*} \begin{split} \langle u\;&-v, P_{C}u-P_{C}v\rangle\geq\|P_{C}u-P_{C}v\|^{2}, \\ \;& \text{or}\ \|P_{C}u-P_{C}v\|^{2}\leq\|u-v\|^{2}-\|(I-P_{C})u-(I-P_{C})v\|^{2}, \end{split} \end{eqnarray*}

    for all u, v\in H .

    Next we adopt the following notations:

    \bullet u_{n}\rightharpoonup u means that \{u_{n}\} converges weakly to u ;

    \bullet u_{n}\rightarrow u means that \{u_{n}\} converges strongly to u ;

    \bullet \omega_{w}(u_{n}) stands for the set of cluster points in the weak topology, that is,

    \omega_{w}(u_{n}) = \{u:\exists u_{n_{j}}\rightharpoonup u\}.

    Lemma 2.1. ([33]) Let C be a nonempty closed convex subset in H . If the sequence \{u_{n}\} is Fej \acute{e} r monotonewith respect to \Omega , then we have the following conclusions:

    (i) u_{n}\rightharpoonup u\in\Omega iff \omega_{w}(u_{n})\subset\Omega ;

    (ii) the sequence \{P_{\Omega}u_{n}\} converges strongly;

    (iii) if u_{n}\rightharpoonup u\in\Omega , then u = \lim_{n\rightarrow \infty}P_{\Omega}u_{n} .

    For all u, v \in H , the following conclusions hold:

    \begin{eqnarray*} \|tu+(1-t)v\|^{2} = t\|u\|^{2}+(1-t)\|v\|^{2}-t(1-t)\|u-v\|^{2}, \ \ t\in[0, 1], \end{eqnarray*}
    \begin{eqnarray*} \|u+v\|^{2} = \|u\|^{2}+2\langle u, v\rangle+\|v\|^{2}, \end{eqnarray*}

    and

    \begin{eqnarray*} \|u+v\|^{2}\leq\|u\|^{2}+2\langle v, u+v\rangle. \end{eqnarray*}

    Lemma 2.2. ([34]) Let H be a Hilbert space and \emptyset\neq C\subset H be a closed convex set. If T:C\rightarrow C is an L-Lipschitzian operator with L\geq1 . Then

    Fix(((1-\delta)I+\delta T)T) = Fix(T((1-\delta)I+\delta T)) = Fix(T),

    where \delta\in(0, \frac{1}{L}) .

    Lemma 2.3. ([34]) Let H be a Hilbert space and \emptyset\neq C\subset H be a closed convex set. If T:C\rightarrow C is an L-Lipschitzian operator with L\geq1 and I-T is demiclosed at 0 , then the composition operator

    I-T((1-\delta)I+\delta T),

    is also demiclosed at 0 provided \delta\in(0, \frac{1}{L}) .

    Lemma 2.4. ([34]) Let H be a Hilbert space and \emptyset\neq C\subset H be a closed convex set. If T:C\rightarrow C is an L-Lipschitzian quasi-pseudocontractive operator. Then we have

    \|T((1-\zeta)I+\zeta T)u-u^{\ast}\|^{2}\leq\|u-u^{\ast}\|^{2}+(1-\zeta)\|T((1-\zeta)+\zeta T)u-u\|^{2},

    for all u\in C and u^{\ast}\in Fix(T) when 0 < \zeta < \frac{1}{\sqrt{1+L^{2}}+1} .

    Lemma 2.5. ([35])Assume that \{\alpha_{n}\} is a sequence of nonnegative real numbers such that

    \alpha_{n+1}\leq(1-\gamma_{n})\alpha_{n} + \delta_{n}, \ \ n\in N,

    where \{\gamma_{n}\} is a sequence in (0, 1) and \{\delta_{n}\} is a sequence such that

    (1) \sum^{\infty}_{n = 1}\gamma_{n} = \infty ;

    (2) \limsup_{n\rightarrow \infty}\frac{\delta_{n}}{\gamma_{n}}\leq0 or \sum^{\infty}_{n = 1}|\delta_{n}| < \infty.

    Then \lim_{n\rightarrow \infty}\alpha_{n} = 0.

    Throughout the present article, let H_{1} and H_{2} be two real Hilbert spaces. We use \langle\cdot, \cdot\rangle to denote the inner product, and \|\cdot\| stands for the corresponding norm. Let s and t be positive integers, and let T_{i}:H_{1}\longrightarrow H_{1} be an L_{1i} -Lipschitzian quasi-pseudocontractive operator with 1 < L_{1i}\leq L_{1} and S_{j}:H_{2}\longrightarrow H_{2} be an L_{2j} -Lipschitzian quasi-pseudocontractive operator with 1 < L_{2j}\leq L_{2} , where L_{1}, L_{2} > 1 . Denote the fixed point sets of T_{i} and S_{j} by \text{Fix}(T_{i}) and \text{Fix}(S_{j}) , respectively. Let A:H_{1}\longrightarrow H_{2} be a bounded linear operator with its adjoint A^{\ast} . Throughout, assume

    \Omega = \{u\in \bigcap\limits^{s}_{i = 1} \text{Fix}(T_{i})\ \text{and} \ Au\in \bigcap\limits^{t}_{j = 1} \text{Fix}(S_{j})\}\neq\emptyset.

    Next we present the following iterative algorithm to solve (1.3).

    Algorithm 3.1. Choose an arbitrary initial value x_{1}\in H_{1} . Assume x_{n} has been constructed. Compute

    \begin{eqnarray} \begin{split} \;& y_{n} = T_{i_{n}}((1-\zeta_{n})I+\zeta_{n} T_{i_{n}})x_{n}, \\ \;& z_{n} = (I-S_{j_{n}}((1-\eta_{n})I+\eta_{n} S_{j_{n}}))Ax_{n}, \\ \;& u_{n} = x_{n}-y_{n}+A^{\ast}z_{n}, \ \ n\geq1, \end{split} \end{eqnarray} (3.1)

    where 0 < \zeta_{n} < \frac{1}{\sqrt{1+L_{1}^{2}}+1} , 0 < \eta_{n} < \frac{1}{\sqrt{1+L_{2}^{2}}+1} ,

    i_{n} = \arg\max\textbf{\{}\|x_{n}-T_{i}((1-\zeta_{n})I+\zeta_{n} T_{i})x_{n}\|:\ i\in I_{1} = \{1, 2, \ldots, s\} \textbf{\}},

    and

    j_{n} = \arg\max\textbf{\{}\|(I-S_{j}((1-\eta_{n})I+\eta_{n} S_{j}))Ax_{n}\|:\ j\in I_{2} = \{1, 2, \ldots, t\} \textbf{\}}.

    If

    \begin{eqnarray} \|u_{n}\| = 0, \end{eqnarray} (3.2)

    then stop (in this case by Remark 3.2 below); otherwise, continue and construct via the manner

    \begin{eqnarray} x_{n+1} = x_{n}-\tau_{n}u_{n}, \end{eqnarray} (3.3)

    where

    \begin{eqnarray} \tau_{n} = \lambda_{n}\frac{\|x_{n}-y_{n}\|^{2}+\|z_{n}\|^{2}}{\|u_{n}\|^{2}}, \end{eqnarray} (3.4)

    in which \lambda_{n} > 0 .

    Remark 3.1. The equality (3.2) holds if and only if x_{n} is a solution of (1.3). First, assume that x_{n} is a solution of (1.3), that is,

    x_{n}\in \bigcap\limits^{s}_{i = 1} \text{Fix}(T_{i})\ \ \ \text{and} \ \ \ Ax_{n}\in \bigcap\limits^{t}_{j = 1} \text{Fix}(S_{i}).

    According to Lemma 2.2, we get that

    T_{i_{n}}((1-\zeta_{n})I+\zeta_{n} T_{i_{n}})x_{n} = x_{n} = T_{i_{n}}x_{n},

    and

    S_{j_{n}}((1-\eta_{n})I+\eta_{n} S_{j_{n}}))Ax_{n} = Ax_{n} = S_{j_{n}}Ax_{n}.

    From (3.1), it turns out that z_{n} = 0 and x_{n} = y_{n} . Therefore, u_{n} = x_{n}-y_{n}+A^{\ast}z_{n} = 0 .

    In the sequel, we assume that the equality (3.2) holds. For any u\in\Omega , we have

    \begin{eqnarray} \begin{split} 0 = \;&\langle u_{n}, x_{n}-u\rangle \\ = \;&\langle x_{n}-y_{n}+A^{\ast}z_{n}, x_{n}-u\rangle \\ = \;&\langle x_{n}-T_{i_{n}}((1-\zeta_{n})I+\zeta_{n} T_{i_{n}})x_{n}, x_{n}-u\rangle\\ \;&+\langle A^{\ast}(I-S_{j_{n}}((1-\eta_{n})u+\eta_{n} S_{j_{n}}))Ax_{n}, x_{n}-u\rangle \\ = \;&\langle x_{n}-T_{i_{n}}((1-\zeta_{n})I+\zeta_{n} T_{i_{n}})x_{n}, x_{n}-u\rangle\\ \;&+\langle (I-S_{j_{n}}((1-\eta_{n})I+\eta_{n} S_{j_{n}}))Ax_{n}, Ax_{n}-Au\rangle. \end{split} \end{eqnarray} (3.5)

    By Lemma 2.4, T_{i_{n}}((1-\zeta_{n})I+\zeta_{n} T_{i_{n}}) and S_{j_{n}}((1-\eta_{n})I+\eta_{n} S_{j_{n}}) are demicontractive, from (2.1), we deduce

    \begin{eqnarray} \begin{split} \langle x_{n}\;&-T_{i_{n}}((1-\zeta_{n})I+\zeta_{n} T_{i_{n}})x_{n}, x_{n}-u\rangle\\ \;&\geq\frac{1-(1-\zeta_{n})}{2}\|x_{n}-T_{i_{n}}((1-\zeta_{n})I+\zeta_{n} T_{i_{n}})x_{n}\|^{2}\\ \;& = \frac{\zeta_{n}}{2}\|x_{n}-T_{i_{n}}((1-\zeta_{n})I+\zeta_{n} T_{i_{n}})x_{n}\|^{2}, \end{split} \end{eqnarray} (3.6)

    and

    \begin{eqnarray} \begin{split} \langle (I-\;&S_{j_{n}}((1-\eta_{n})I+\eta_{n} S_{j_{n}}))Ax_{n}, Ax_{n}-Au\rangle\\ \;&\geq\frac{1-(1-\eta_{n})}{2}\|(I-S_{j_{n}}((1-\eta_{n})I+\eta_{n} S_{j_{n}}))Ax_{n}\|^{2}\\ \;& = \frac{\eta_{n}}{2}\|(I-S_{j_{n}}((1-\eta_{n})I+\eta_{n} S_{j_{n}}))Ax_{n}\|^{2}. \end{split} \end{eqnarray} (3.7)

    By(3.5)–(3.7), we get

    \begin{eqnarray} \begin{split} 0 = \;&\langle u_{n}, x_{n}-u\rangle \\ \geq\;&\frac{\zeta_{n}}{2}\|x_{n}-T_{i_{n}}((1-\zeta_{n})I+\zeta_{n} T_{i_{n}})x_{n}\| ^{2}\\ \;&+\frac{\eta_{n}}{2}\|(I-S_{j_{n}}((1-\eta_{n})I+\eta_{n} S_{j_{n}}))Ax_{n}\|^{2}. \end{split} \end{eqnarray} (3.8)

    Since \zeta_{n}, \eta_{n}\in(0, 1) , we deduce

    \begin{eqnarray} \|x_{n}-T_{i_{n}}((1-\zeta_{n})I+\zeta_{n} T_{i_{n}})x_{n}\| = 0, \end{eqnarray} (3.9)

    and

    \begin{eqnarray} \|(I-S_{j_{n}}((1-\eta_{n})I+\eta_{n} S_{j_{n}}))Ax_{n}\| = 0. \end{eqnarray} (3.10)

    According to the definitions of i_{n} and j_{n} , it follows from (3.9) and (3.10) that

    \begin{eqnarray} \|x_{n}-T_{i}((1-\zeta_{n})I+\zeta_{n} T_{i})x_{n}\| = 0, \end{eqnarray} (3.11)

    for all i\in I_{1} and

    \begin{eqnarray} \|(I-S_{j}((1-\eta_{n})I+\eta_{n} S_{j}))Ax_{n}\| = 0, \end{eqnarray} (3.12)

    for all j\in I_{2} . Hence, by Lemma 2.2, we have

    x_{n}\in \bigcap\limits^{s}_{i = 1} \text{Fix} (T_{i}((1-\zeta_{n})I+\zeta_{n} T_{i})) = \bigcap\limits^{s}_{i = 1} \text{Fix}(T_{i}),

    and

    Ax_{n}\in \bigcap\limits^{t}_{j = 1} \text{Fix}(S_{j}((1-\eta_{n})I+\eta_{n} S_{j})) = \bigcap\limits^{t}_{j = 1} \text{Fix}(S_{j}).

    Therefore, x_{n}\in \Omega .

    Assume that the sequence \{x_{n}\} generated by Algorithm 3.1 is infinite. In other words, Algorithm 3.1 does not terminate in a finite number of iterations. Next, we demonstrate the convergence analysis of the sequence \{x_{n}\} generated by Algorithm 3.1.

    Theorem 3.1. Suppose that I-T_{i} (for all i\in I_{1} ) and I-S_{j} (for all j\in I_{2} ) are demiclosed at zero. If \Omega\neq\emptyset and the followingconditions are satisfied:

    ( C_{1} ) 0 < \zeta\leq\zeta_{n} < \frac{1}{\sqrt{1+L_{1}^{2}}+1} ;

    ( C_{2} ) 0 < \eta\leq\eta_{n} < \frac{1}{\sqrt{1+L_{2}^{2}}+1} ;

    ( C_{3} ) 0 < \liminf_{n\rightarrow \infty}\lambda_{n}\leq \limsup_{n\rightarrow \infty}\lambda_{n} < \min\{\zeta, \eta\} .

    Then the sequence \{x_{n}\} generated by Algorithm 3.1 converges weakly to a solution z^{\ast}( = \lim_{n\rightarrow \infty}P_{\Omega}(x_{n})) of problem (1.3).

    Proof. Firstly, we prove that the sequence \{x_{n}\} is Fej \acute{ \text{e}} r-monotone with respect to \Omega . Picking up z\in\Omega , from (3.8), we have

    \begin{eqnarray} \begin{split} \langle u_{n}, \;&x_{n}-z\rangle\\ = \;&\langle x_{n}-y_{n}+A^{\ast}z_{n}, x_{n}-z\rangle \\ \geq\;&\frac{\zeta}{2}\|x_{n}-T_{i_{n}}((1-\zeta_{n})I+\zeta_{n} T_{i_{n}} )x_{n}\|^{2}\\ \;&+\frac{\eta}{2}\|(I-S_{j_{n}}((1-\eta_{n})I+\eta_{n} S_{j_{n}}))Ax_{n}\|^{2}\\ \geq\;&\frac{1}{2}\min\{\zeta, \eta\}(\|x_{n}-y_{n}\|^{2} +\|z_{n}\|^{2}). \end{split} \end{eqnarray} (3.13)

    According to (3.1), (3.3), (3.4) and (3.13), we derive

    \begin{eqnarray} \begin{split} \|x_{n+1}\;&-z\|^{2}\\ = \;&\|x_{n}-z-\tau_{n}u_{n}\|^{2}\\ = \;& \|x_{n}-z\|^{2}-2\tau_{n}\langle u_{n}, x_{n}-z\rangle+\tau^{2}_{n}\|u_{n}\|^{2}\\ \leq\;& \|x_{n}-z\|^{2}-\min\{\zeta, \eta\}\frac{\lambda_{n}(\|x_{n}-y_{n}\|^{2}+\|z_{n} \|^{2})^{2}}{\|u_{n}\|^{2}}\\ \;&+\frac{\lambda^{2}_{n}(\|x_{n}-y_{n}\|^{2}+\|z_{n} \|^{2})^{2}}{\|u_{n}\|^{2}}\\ = \;&\|x_{n}-z\|^{2}-\lambda_{n}(\theta-\lambda_{n}) \frac{(\|x_{n}-y_{n}\|^{2}+\|z_{n} \|^{2})^{2}}{\|u_{n}\|^{2}}, \end{split} \end{eqnarray} (3.14)

    where

    \theta = \min\{\zeta, \eta\}.

    By virtue of (3.14), we deduce that the sequence \{x_{n}\} is Fej \acute{ \text{e}} r-monotone with respect to \Omega . Next, we show that every weak cluster point of the sequence \{x_{n}\} belongs to the solution set of problem (1.3), i.e. \omega_{w}(x_{n})\subset\Omega .

    From the Fej \acute{ \text{e}} r-monotonicity of \{x_{n}\} it follows that the sequence \{x_{n}\} is bounded, and so are the sequences \{Ax_{n}\} , \{T_{i}x_{n}\}(i\in I_{1}) and \{S_{j}Ax_{n}\}(j\in I_{2}) . Further, from (3.14), we obtain

    \begin{eqnarray} \lambda_{n}(\theta-\lambda_{n}) \frac{(\|x_{n}-y_{n}\|^{2}+\|z_{n} \|^{2})^{2}}{\|u_{n}\|^{2}} \leq\|x_{n}-z\|^{2}-\|x_{n+1}-z\|^{2}, \end{eqnarray} (3.15)

    which implies that

    \begin{eqnarray} \lim\limits_{n\rightarrow \infty}\frac{(\|x_{n}-y_{n}\|^{2}+\|z_{n} \|^{2})^{2}}{\|u_{n}\|^{2}} = 0. \end{eqnarray} (3.16)

    This together with the boundedness of the sequence \{u_{n}\} implies that

    \lim\limits_{n\rightarrow \infty}\|x_{n}-y_{n}\| = 0,

    and

    \lim\limits_{n\rightarrow \infty}\|z_{n} \| = 0.

    Hence,

    \lim\limits_{n\rightarrow \infty}\|x_{n}-T_{i}((1-\zeta_{n})I+\zeta_{n} T_{i} )x_{n}\| = 0,

    for all i\in I_{1} and

    \lim\limits_{n\rightarrow \infty}\|Ax_{n}-S_{j}((1-\eta_{n})I+\eta_{n} S_{j})Ax_{n}\| = 0,

    for all j\in I_{2} . It follows that

    \begin{eqnarray} \begin{split} \|x_{n}-\;&T_{i}x_{n}\|\\ \leq\;&\|x_{n}-T_{i}((1-\zeta_{n})I+\zeta_{n} T_{i} )x_{n}\|\\ \;&+\|T_{i}((1-\zeta_{n})I+\zeta_{n} T_{i}) )x_{n}-T_{i}x_{n}\|\\ \leq\;&\|x_{n}-T_{i}((1-\zeta_{n})I+\zeta_{n} T_{i} )x_{n}\|\\ \;&+\zeta_{n}L_{1i}\|x_{n}-T_{i}x_{n}\|\\ \leq\;&\|x_{n}-T_{i}((1-\zeta_{n})I+\zeta_{n} T_{i} )x_{n}\|\\ \;&+\zeta_{n} L_{1}\|x_{n}-T_{i}x_{n}\|, \end{split} \end{eqnarray} (3.17)

    for all i\in I_{1} and

    \begin{eqnarray} \begin{split} \|Ax_{n}-\;&S_{j}Ax_{n}\|\\ \leq\;&\|Ax_{n}-S_{j}((1-\eta_{n})I+\eta_{n} S_{j}) Ax_{n}\|\\ \;&+\|S_{j}((1-\eta_{n})I+\eta_{n} S_{j} )Ax_{n}-S_{j}Ax_{n}\|\\ \leq\;&\|Ax_{n}-S_{j}((1-\eta_{n})I+\eta_{n} S_{j} )Ax_{n}\|\\ \;&+\eta_{n}L_{2j}\|Ax_{n}-S_{j}Ax_{n}\|\\ \leq\;&\|Ax_{n}-S_{j}((1-\eta_{n})I+\eta_{n} S_{j} )Ax_{n}\|\\ \;&+\eta_{n} L_{2}\|Ax_{n}-S_{j}Ax_{n}\|, \end{split} \end{eqnarray} (3.18)

    for all j\in I_{2} . By (C_{1}) , we have \zeta_{n}(\sqrt{1+L_{1}^{2}}+1) < 1 and so \zeta_{n}L_{1} < 1-\zeta_{n}\leq1-\zeta. This together with (3.17) implies that

    \begin{eqnarray} \begin{split} \|x_{n}-T_{i}x_{n}\|\;&\leq\frac{1}{1-\zeta_{n} L_{1}}\|x_{n}-T_{i}((1-\zeta_{n})I+\zeta_{n} T_{i}) )x_{n}\|\\ \;&\leq\frac{1}{\zeta}\|x_{n}-T_{i}((1-\zeta_{n})I+\zeta_{n} T_{i}) )x_{n}\|, \end{split} \end{eqnarray} (3.19)

    for all i\in I_{1} . Employing a similar way, we obtain

    \begin{eqnarray} \begin{split} \|Ax_{n}-S_{j}Ax_{n}\|\;&\leq\frac{1}{1-\eta_{n} L_{2}}\|Ax_{n}-S_{j}((1-\eta_{n})I+\eta_{n} S_{j}) )Ax_{n}\|\\ \;&\leq\frac{1}{\eta}\|Ax_{n}-S_{j}((1-\eta_{n})I+\eta_{n} S_{j}) )Ax_{n}\|, \end{split} \end{eqnarray} (3.20)

    for all j\in I_{2} . Therefore,

    \lim\limits_{n\rightarrow \infty}\|x_{n}-T_{i}x_{n}\| = 0,

    for all i\in I_{1} , and

    \lim\limits_{n\rightarrow \infty}\|Ax_{n}-S_{j}Ax_{n}\| = 0,

    for all j\in I_{2} . By the demiclosedness (at zero) of I-T_{i} (for all i\in I_{1} ) and I-S_{j} (for all j\in I_{2} ), we deduce immediately \omega_{w}(x_{n})\subset\Omega . To this end, the conditions of Lemma 2.1 are all satisfied. Consequently, x_{n}\rightharpoonup z^{\ast}( = \lim_{n\rightarrow \infty}P_{\Omega}x_{n}) . The proof is completed.

    Algorithm 3.1 has only weak convergence. Now, we present a new algorithm with strong convergence.

    Algorithm 3.2. Let u\in H_{1} and choose an arbitrary initial value x_{1}\in H_{1} . Assume x_{n} has been constructed. Compute

    \begin{eqnarray} \begin{split} \;& y_{n} = T_{i_{n}}((1-\zeta_{n})I+\zeta_{n} T_{i_{n}})x_{n}, \\ \;& z_{n} = (I-S_{j_{n}}((1-\eta_{n})I+\eta_{n} S_{j_{n}}))Ax_{n}, \\ \;& u_{n} = x_{n}-y_{n}+A^{\ast}z_{n}, \ \ n\geq1, \end{split} \end{eqnarray} (3.21)

    where 0 < \zeta_{n} < \frac{1}{\sqrt{1+L_{1}^{2}}+1} , 0 < \eta_{n} < \frac{1}{\sqrt{1+L_{2}^{2}}+1} ,

    i_{n} = \arg\max\textbf{\{}\|x_{n}-T_{i}((1-\zeta_{n})I+\zeta_{n} T_{i})x_{n}\|:\ i\in I_{1} = \{1, 2, \ldots, s\} \textbf{\}},

    and

    j_{n} = \arg\max\textbf{\{}\|(I-S_{j}((1-\eta_{n})I+\eta_{n} S_{j}))Ax_{n}\|:\ j\in I_{2} = \{1, 2, \ldots, t\} \textbf{\}}.

    If

    \begin{eqnarray} \|u_{n}\| = 0, \end{eqnarray} (3.22)

    then stop; otherwise, continue and construct via the manner

    \begin{eqnarray} x_{n+1} = \alpha_{n}u+(1-\alpha_{n})(x_{n}-\tau_{n}u_{n}), \end{eqnarray} (3.23)

    where \alpha_{n}\in(0, 1) and

    \begin{eqnarray} \tau_{n} = \lambda_{n}\frac{\|x_{n}-y_{n}\|^{2}+\|z_{n}\|^{2}}{\|u_{n}\|^{2}}, \end{eqnarray} (3.24)

    in which \lambda_{n} > 0 .

    Assume that the sequence \{x_{n}\} generated by Algorithm 3.2 is infinite. In other words, Algorithm 3.2 does not terminate in a finite number of iterations.

    Theorem 3.2. Suppose that I-T_{i} (for all i\in I_{1} ) and I-S_{j} (for all j\in I_{2} ) are demiclosed at zero. If \Omega\neq\emptyset and the followingconditions are satisfied:

    ( C_{1} ) 0 < \zeta\leq\zeta_{n} < \frac{1}{\sqrt{1+L_{1}^{2}}+1} ;

    ( C_{2} ) 0 < \eta\leq\eta_{n} < \frac{1}{\sqrt{1+L_{2}^{2}}+1} ;

    ( C_{3} ) \lim_{n\rightarrow \infty}\alpha_{n} = 0 \sum^{\infty}_{n = 1}\alpha_{n} = +\infty ;

    ( C_{4} ) 0 < \liminf_{n\rightarrow \infty}\lambda_{n}\leq \limsup_{n\rightarrow \infty}\lambda_{n} < \min\{\zeta, \eta\} .

    Then the sequence \{x_{n}\} generated by Algorithm 3.2 converges strongly to a solution z( = P_{\Omega}(u)) of problem (1.3).

    Proof. Set v_{n} = x_{n}-\tau_{n}u_{n} for all n\geq0 . By (3.14), we have

    \begin{eqnarray} \begin{split} \|v_{n}-z\|^{2} \leq\|x_{n}-z\|^{2}-\lambda_{n}(\theta-\lambda_{n}) \frac{(\|x_{n}-y_{n}\|^{2}+\|z_{n} \|^{2})^{2}}{\|u_{n}\|^{2}}. \end{split} \end{eqnarray} (3.25)

    In particular, we have \|v_{n}-z\|\leq\|x_{n}-z\| . Thus, from (3.23), we obtain

    \begin{eqnarray} \begin{split} \|x_{n+1}\;&-z\|\\ = \;&\|\alpha_{n}u+(1-\alpha_{n})v_{n}-z\|\\ \leq\;&\alpha_{n}\|u-z\|+(1-\alpha_{n})\|x_{n}-z\|\\ \leq\;&\max\{\|u-z\|, \|x_{n}-z\|\}. \end{split} \end{eqnarray} (3.26)

    By induction, we derive

    \|x_{n+1}-z\|\leq \max\{\|u-z\|, \|x_{0}-z\|\}.

    Hence, \{x_{n}\} is bounded and so are the sequences \{Ax_{n}\} , \{T_{i}x_{n}\}(i\in I_{1}) and \{S_{j}Ax_{n}\}(j\in I_{2}) .

    From (3.23), we have

    \begin{eqnarray} \begin{split} \|x_{n+1}\;&-z\|^{2}\\ = \;&\|\alpha_{n}(u-z)+(1-\alpha_{n})(v_{n}-z)\|^{2}\\ \leq\;&(1-\alpha_{n})\|v_{n}-z)\|^{2}+2\alpha_{n}\langle u-z, x_{n+1}-z\rangle. \end{split} \end{eqnarray} (3.27)

    By virtue of (3.25) and (3.27), we deduce

    \begin{eqnarray} \begin{split} \|x_{n+1}\;&-z\|^{2}\\ \leq\;&(1-\alpha_{n})\|x_{n}-z\|^{2}+2\alpha_{n}\langle u-z, x_{n+1}-z\rangle\\ \;&-(1-\alpha_{n})\lambda_{n}(\theta-\lambda_{n}) \frac{(\|x_{n}-y_{n}\|^{2}+\|z_{n} \|^{2})^{2}}{\|u_{n}\|^{2}}\\ \leq\;&(1-\alpha_{n})\|x_{n}-z\|^{2}+\alpha_{n}[2\langle u-z, x_{n+1}-z\rangle\\ \;&-\frac{1-\alpha_{n}}{\alpha_{n}}\lambda_{n}(\theta-\lambda_{n}) \frac{(\|x_{n}-y_{n}\|^{2}+\|z_{n} \|^{2})^{2}}{\|u_{n}\|^{2}}]. \end{split} \end{eqnarray} (3.28)

    Set \varpi_{n} = \|x_{n}-z\|^{2} and

    \delta_{n} = 2\langle u-z, x_{n+1}-z\rangle -\frac{1-\alpha_{n}}{\alpha_{n}}\lambda_{n}(\theta-\lambda_{n}) \frac{(\|x_{n}-y_{n}\|^{2}+\|z_{n} \|^{2})^{2}}{\|u_{n}\|^{2}}

    for all n\geq1 . Then, from (3.28), we have

    \begin{eqnarray} 0\leq\varpi_{n+1}\leq(1-\alpha_{n})\varpi_{n}+\alpha_{n}\delta_{n}, \ \ n\geq1. \end{eqnarray} (3.29)

    It is obvious that

    \delta_{n}\leq2\langle u-z, x_{n+1}-z\rangle\leq2\| u-z\|\cdot\|x_{n+1}-z\|.

    So, \limsup_{n\rightarrow \infty}\delta_{n} < \infty . Next, we show that \limsup_{n\rightarrow \infty}\delta_{n}\geq-1 by contradiction. Assume that \limsup_{n\rightarrow \infty}\delta_{n} < -1 . Then there exists m such that \delta_{n}\leq-1 for all n\geq m . It follows from (3.29) that

    \begin{eqnarray} \begin{split} \varpi_{n+1}\;&\leq(1-\alpha_{n})\varpi_{n}+\alpha_{n}\delta_{n}\\ \;& = \varpi_{n}+\alpha_{n}(\delta_{n}-\varpi_{n})\\ \;&\leq\varpi_{n}-\alpha_{n}, \end{split} \end{eqnarray} (3.30)

    for all n\geq m . Thus,

    \varpi_{n+1}\leq\varpi_{m}-\sum^{n}_{i = m}\alpha_{i}.

    Hence, by taking \limsup as n\rightarrow \infty in the last inequality, we obtain

    0\leq \limsup\limits_{n\rightarrow \infty}\varpi_{n+1}\leq\varpi_{m}-\sum^{\infty}_{i = m}\alpha_{i} = -\infty,

    which is a contradiction. Therefore, \limsup_{n\rightarrow \infty}\delta_{n} > -1 and it is finite. Consequently, we can take a subsequence \{n_{i}\} such that

    \begin{eqnarray} \begin{split} \limsup\limits_{n\rightarrow \infty}\delta_{n} = \;&\lim\limits_{i\rightarrow \infty}\delta_{n_{i}}\\ = \;&\lim\limits_{i\rightarrow \infty}[-\frac{1-\alpha_{n_{i}}}{\alpha_{n_{i}}}\lambda_{n_{i}} (\theta-\lambda_{n_{i}}) \frac{(\|x_{n_{i}}-y_{n_{i}}\|^{2}+\|z_{n_{i}} \|^{2})^{2}}{\|u_{n_{i}}\|^{2}}\\ \;&+2\langle u-z, x_{n_{i}+1}-z\rangle]. \end{split} \end{eqnarray} (3.31)

    Since \langle u-z, x_{n_{i}+1}-z\rangle is a bounded real sequence, without loss of generality, we may assume the limit \lim_{i\rightarrow \infty}\langle u-z, x_{n_{i}+1}-z\rangle exists. Consequently, from (3.31), the following limit also exists

    \lim\limits_{i\rightarrow \infty}\frac{1-\alpha_{n_{i}}}{\alpha_{n_{i}}}\lambda_{n_{i}}(\theta-\lambda_{n_{i}}) \frac{(\|x_{n_{i}}-y_{n_{i}}\|^{2}+\|z_{n_{i}} \|^{2})^{2}}{\|u_{n_{i}}\|^{2}}.

    This together with conditions (C_{3}) and (C_{4}) implies that

    \lim\limits_{i\rightarrow \infty} \frac{(\|x_{n_{i}}-y_{n_{i}}\|^{2}+\|z_{n_{i}} \|^{2})^{2}}{\|u_{n_{i}}\|^{2}} = 0,

    which yields \lim_{i\rightarrow \infty}\|x_{n_{i}}-y_{n_{i}}\| = 0 and \lim_{i\rightarrow \infty}\|z_{n_{i}}\| = 0 . By a similar proof as in Theorem 3.3, we conclude that any weak cluster point of \{x_{n_{i}}\} belongs to \Omega . Note that

    \begin{eqnarray} \begin{split} \|x_{n_{i}+1}\;&-x_{n_{i}}\|\\ = \;&\|\alpha_{n_{i}}u+(1-\alpha_{n_{i}})v_{n_{i}}-x_{n_{i}}\|\\ \leq\;&\alpha_{n_{i}}\|u-x_{n_{i}}\|+(1-\alpha_{n_{i}})\|v_{n_{i}}-x_{n_{i}}\|\\ \leq\;&\alpha_{n_{i}}\|u-x_{n_{i}}\|+\tau_{n_{i}}\|u_{n_{i}}\|\\ \leq\;&\alpha_{n_{i}}\|u-x_{n_{i}}\|+\lambda_{n_{i}}\frac{\|x_{n_{i}}-y_{n_{i}}\|^{2} +\|z_{n_{i}}\|^{2}}{2\|u_{n_{i}}\|}\\ \rightarrow \;&0. \end{split} \end{eqnarray} (3.32)

    This indicates that \omega_{w}(x_{n_{i}+1})\subset\Omega . Without loss of generality, we assume that x_{n_{i}+1} converges weakly to x^{\dagger}\in\Omega . Now by (3.31), we infer that

    \begin{eqnarray} \begin{split} \limsup\limits_{n\rightarrow \infty}\delta_{n} = \;&\lim\limits_{i\rightarrow \infty}\delta_{n_{i}}\\ = \;&\lim\limits_{i\rightarrow \infty}[-\frac{1-\alpha_{n_{i}}}{\alpha_{n_{i}}}\lambda_{n_{i}} (\theta-\lambda_{n_{i}}) \frac{(\|x_{n_{i}}-y_{n_{i}}\|^{2}+\|z_{n_{i}} \|^{2})^{2}}{\|u_{n_{i}}\|^{2}}\\ \;&+2\langle u-z, x_{n_{i}+1}-z\rangle]\\ \leq\;&2\lim\limits_{i\rightarrow \infty}\langle u-z, x_{n_{i}+1}-z\rangle\\ = \;&2\langle u-z, x^{\dagger}-z\rangle\\ \leq\;&0, \end{split} \end{eqnarray} (3.33)

    due to the fact that z = P_{\Omega}u and (2.2). Finally, applying Lemma 2.5 to (3.29), we conclude that x_{n}\rightarrow z . This completes the proof.

    In this section, some numerical results are presented. The MATLAB codes run in MATLAB version 9.5 (R2018b) on a PC Intel(R) Core(TM)i5-6200 CPU @ 2.30 GHz 2.40 GHz, RAM 8.00 GB. In all examples y -axes shows the value of x_{n} while the x -axis indicates to the number of iterations.

    Example 4.1. Let T_{1}:R\rightarrow R be odd function and defined by

    \begin{equation} T_{1}(x) = \left\{ \begin{aligned} &x, \ &x\in [0, 1], \\ &-4x+5, \ &\in (1, 2), \\ &4x-11, \ &\in [2, 3), \\ &x-2, \ &\in [3, +\infty).\\ \end{aligned} \right. \end{equation} (4.1)

    Let S_{1}:R\rightarrow R be odd function and defined by

    \begin{equation} S_{1}(x) = \left\{ \begin{aligned} &x, \ &x\in [0, 1], \\ &-5x+6, \ &\in (1, 2), \\ &5x-14, \ &\in [2, 3), \\ &x-2, \ &\in [3, +\infty).\\ \end{aligned} \right. \end{equation} (4.2)

    Let T_{2}:R\rightarrow R and S_{2}:R\rightarrow R be defined by T_{2}(x) = T_{1}(x+1)-1 and S_{2}(x) = S_{1}(x+1)-1 , respectively. It is obvious that \text{Fix}(T_{1}) = [-1, 1] , \text{Fix}(S_{1}) = [-1, 1] , \text{Fix}(T_{2}) = [-2, 0] and \text{Fix}(S_{2}) = [-2, 0] . We can easily see that T_{1}, \ T_{2}, \ S_{1} and S_{2} are quasi-pseudocontractive operators but neither pseudocontractive nor quasi-nonexpansive operators. We also observe that T_{1}, \ T_{2}, \ S_{1} and S_{2} are Lipschitzian operators. The values of control parameters for Algorithm 3.1 and Algorithm 3.2 are \eta_{n} = \zeta_{n} = 0.125 , \lambda_{n} = 0.1 , \alpha_{n} = \frac{1}{n} , x_{1} = 3 and u = 3 .

    The numerical results regarding Example 4.1 is reported in Figures 1 and 2.

    Figure 1.  Example 4.1: Numerical behaviour of Algorithm 3.1.
    Figure 2.  Example 4.1: Numerical behaviour of Algorithm 3.2.

    Remark 4.1. In finite dimensional Hilbert spaces, weak convergence and strong convergence are equivalent. As can be seen from Figures 1 and 2, Algorithm 3.1 is more efficient than Algorithm 3.2 for finite dimensional Hilbert spaces. However, for infinite dimensional Hilbert spaces, in order to ensure strong convergence, generally speaking, we have to use Algorithm 3.2.

    In this paper, we considered a class of the split common fixed point problem. we present two new self-adaptive algorithms for approximating a solution of the split common fixed point problem (1.3) for the class of quasi-pseudocontractive operators. Besides, weak and strong convergence theorems are established under some mild assumptions. Numerical findings have been documented to compare the numerical efficiency of Algorithms 3.1 and 3.2.

    This work was supported by the National Natural Science Foundation of China under Grant (No. 62103289), National Natural Science Foundation of China (No. 11761074), Project of Jilin Science and Technology Development for Leading Talent of Science and Technology Innovation in Middle and Young and Team Project (No. 20200301053RQ), and Natural Science Foundation of Jilin Province (No. 2020122336JC).

    The authors declare that they have no competing interests.



    [1] M. Raeisi, G. Z. Eskandani, M. Eslamian, A general algorithm for multiple-sets split feasibility problem involving resolvents and Bregman mappings, Optimization, 67 (2018), 309–327. https://doi.org/10.1080/02331934.2017.1396603 doi: 10.1080/02331934.2017.1396603
    [2] Y. Shehu, Strong convergence theorem for multiple sets split feasibility problems in Banach spaces, Numer. Func. Anal. Opt., 37 (2016), 1021–1036. https://doi.org/10.1080/01630563.2016.1185614 doi: 10.1080/01630563.2016.1185614
    [3] Q. Dong, S. He, Y. Zhao, On global convergence rate of two acceleration projection algorithms for solving the multiple-sets split feasibility problem, Filomat, 30 (2016), 3243–3252.
    [4] Y. Dang, Z. Xue, Iterative process for solving a multiple-set split feasibility problem, J. Inequal. Appl., 2015 (2015), 47. https://doi.org/10.1186/s13660-015-0576-9 doi: 10.1186/s13660-015-0576-9
    [5] N. Buong, Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces, Numer. Algor., 76 (2017), 783–798. https://doi.org/10.1007/s11075-017-0282-4 doi: 10.1007/s11075-017-0282-4
    [6] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problem, Inverse Probl., 21 (2005), 2071–2084. https://doi.org/10.1088/0266-5611/21/6/017 doi: 10.1088/0266-5611/21/6/017
    [7] A. Bejenaru, M. Postolache, Partially projective algorithm for the split feasibility problem with visualization of the solution set, Symmetry, 12 (2020), 608. https://doi.org/10.3390/sym12040608 doi: 10.3390/sym12040608
    [8] Y. Yao, M. Postolache, X. Qin, J. Yao, Iterative algorithms for the proximal split feasibility problem, U. P. B. Sci. Bull. A, 80 (2018), 37–44.
    [9] Q. L. Dong, Y. C. Tang, Y. J. Cho, Optimal choice of the step length of the projection and contraction methods for solving the split feasibility problem, J. Glob. Optim., 71 (2018), 341–360. https://doi.org/10.1007/s10898-018-0628-z doi: 10.1007/s10898-018-0628-z
    [10] A. E. Al-Mazrooei, A. Latif, X. Qin, J. C. Yao, Fixed point algorithms for split feasibility problems, Fixed Point Theor., 20 (2019), 245–254.
    [11] D. Hou, J. Zhao, X. Wang, Weak convergence of a primal-dual algorithm for split common fixed-point problems in Hilbert spaces, J. Appl. Numer. Optim., 2 (2020), 187–197.
    [12] A. U. Bello, M. T. Omojola, M. O. Nnakwe, Two methods for solving split common fixed point problems of strict pseudo-contractve mappings in Hilbert spaces with applications, Appl. Set-Valued Anal. Optim., 3 (2021), 75–93. https://doi.org/10.23952/asvao.3.2021.1.07 doi: 10.23952/asvao.3.2021.1.07
    [13] Y. Yao, L. Leng, M. Postolache, X. Zheng, Mann-type iteration method for solving the split common fixed point problem, J. Nonlinear Convex Anal., 18 (2017), 875–882.
    [14] Y. Yao, R. P. Agarwal, M. Postolache, Y. Liou, Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem, Fixed Point Theory Appl., 2014 (2014), 183. https://doi.org/10.1186/1687-1812-2014-183 doi: 10.1186/1687-1812-2014-183
    [15] Y. Yao, Y. C. Liou, J. C. Yao, Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction, Fixed Point Theory Appl., 2015 (2015), 127. https://doi.org/10.1186/s13663-015-0376-4 doi: 10.1186/s13663-015-0376-4
    [16] A. Cegielski, General method for solving the split common fixed point problem, J. Optim. Theory Appl., 165 (2015), 385–404. https://doi.org/10.1007/s10957-014-0662-z doi: 10.1007/s10957-014-0662-z
    [17] F. Wang, A new iterative method for the split common fixed point problem in Hilbert spaces, Optimization, 66 (2017), 407–415. https://doi.org/10.1080/02331934.2016.1274991 doi: 10.1080/02331934.2016.1274991
    [18] W. Takahashi, C. F. Wen, J. C. Yao, An implicit algorithm for the split common fixed point problem in Hilbert spaces and applications, Appl. Anal. Optim., 1 (2017), 423–439.
    [19] A. Wang, J. Zhao, Self-adaptive iterative algorithms for the split common fixed point problem with demicontractive operators, J. Nonlinear Var. Anal., 5 (2021), 573–587.
    [20] J. Zhao, Y. Li, A new inertial self-adaptive algorithm for split common fixed-point problems, J. Nonlinear Var. Anal., 5 (2021), 43–57.
    [21] Y. Yao, Y. C. Liou, M. Postolache, Self-adaptive algorithms for the split problem of the demicontractive operators, Optimization, 67 (2018), 1309–1319. https://doi.org/10.1080/02331934.2017.1390747 doi: 10.1080/02331934.2017.1390747
    [22] S. He, Z. Zhao, B. Luo, A relaxed self-adaptive CQ algorithm for the multiple-sets split feasibility problem, Optimization, 64 (2015), 1907–1918. https://doi.org/10.1080/02331934.2014.895898 doi: 10.1080/02331934.2014.895898
    [23] Y. Yao, M. Postolache, Y. C. Liou, Strong convergence of a self-adaptive method for the split feasibility problem, Fixed Point Theory Appl., 2013 (2013), 201. https://doi.org/10.1186/1687-1812-2013-201 doi: 10.1186/1687-1812-2013-201
    [24] Y. Yao, M. Postolache, Z. Zhu, Gradient methods with selection technique for the multiplesets split feasibility problem, Optimization, 69 (2020), 269–281. https://doi.org/10.1080/02331934.2019.1602772 doi: 10.1080/02331934.2019.1602772
    [25] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239. https://doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692
    [26] Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (2009), 587–600.
    [27] A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Probl., 26 (2010), 055007. https://doi.org/10.1088/0266-5611/26/5/055007 doi: 10.1088/0266-5611/26/5/055007
    [28] P. Kraikaew, S. Saejung, On split common fixed point problems, J. Math. Anal. Appl., 415 (2014), 513–524. https://doi.org/10.1016/j.jmaa.2014.01.068 doi: 10.1016/j.jmaa.2014.01.068
    [29] O. A. Boikanyo, A strongly convergent algorithm for the split common fixed point problem, Appl. Math. Comput., 265 (2015), 844–853. https://doi.org/10.1016/j.amc.2015.05.130 doi: 10.1016/j.amc.2015.05.130
    [30] Q. H. Ansari, A. Rehan, C. F. Wen, Implicit and explicit algorithms for split common fixed point problems, J. Nonlinear Convex A., 17 (2016), 1381–1397.
    [31] W. Takahashi, The split common fixed point problem and strong convegence theorems by hybrid methods in two Banach spaces, J Nonlinear Convex A., 17 (2016), 1051–1067.
    [32] F. Wang, A new method for split common fixed-point problem without priori knowledge of operator norms, J. Fixed Point Theory Appl., 19 (2017), 2427–2436. http://dx.doi.org/10.1007/s11784-017-0434-0. doi: 10.1007/s11784-017-0434-0
    [33] H. H. Bauschke, P. L. Combettes, A weak-to-strong convergence principle for Fej\acute{ e} r-monotone methods in Hilbert spaces, Math. Oper. Res., 26 (2001), 248–264. https://doi.org/10.1287/moor.26.2.248.10558 doi: 10.1287/moor.26.2.248.10558
    [34] Y. Yao, Y. C. Liou, J. C. Yao, Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction, Fixed Point Theory Appl., 2015 (2015), 127. https://doi.org/10.1186/s13663-015-0376-4 doi: 10.1186/s13663-015-0376-4
    [35] H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
  • This article has been cited by:

    1. Wenlong Sun, Yuanfeng Jin, Zufeng Peng, Qi Liu, Two new self-adaptive algorithms for solving split common fixed point problems with multiple output sets, 2023, 0233-1934, 1, 10.1080/02331934.2023.2187665
    2. Yuanheng Wang, Bin Huang, Bingnan Jiang, Tiantian Xu, Ke Wang, A general hybrid relaxed CQ algorithm for solving the fixed-point problem and split-feasibility problem, 2023, 8, 2473-6988, 24310, 10.3934/math.20231239
    3. Yuanheng Wang, Bin Huang, Bingnan Jiang, A self-adaptive relaxed primal-dual iterative algorithm for solving the split feasibility and the fixed point problem, 2024, 129, 10075704, 107699, 10.1016/j.cnsns.2023.107699
    4. Tzu-Chien Yin, Nawab Hussain, Hind Alamri, Asim Asiri, Maha Mohammed Saeed, A nonlinear split problem regarding variational inequalities and equilibrium problems, 2024, 2024, 1029-242X, 10.1186/s13660-024-03196-0
    5. Oluwatosin Temitope Mewomo, Victor Amarachi Uzor, Aviv Gibali, A strongly convergent algorithm for solving split equality problems beyond monotonicity, 2024, 43, 2238-3603, 10.1007/s40314-024-02829-w
    6. H.-Y. Xu, H.-Y. Lan, Y. Zhao, Y. Ye, Novel extended Halpern-type convergence algorithms for the split common fixed point problem involving α-demicontractive operators, 2023, 0233-1934, 1, 10.1080/02331934.2023.2256968
    7. Wenlong Sun, Gang Lu, Yuanfeng Jin, Zufeng Peng, Strong convergence theorems for split variational inequality problems in Hilbert spaces, 2023, 8, 2473-6988, 27291, 10.3934/math.20231396
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2119) PDF downloads(80) Cited by(7)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog