A two-step randomized Gauss-Seidel (TRGS) method is presented for large linear least squares problem with tall and narrow coefficient matrix. The TRGS method projects the approximate solution onto the solution space by given two random columns and is proved to be convergent when the coefficient matrix is of full rank. Several numerical examples show the effectiveness of the TRGS method among all methods compared.
Citation: Yimou Liao, Tianxiu Lu, Feng Yin. A two-step randomized Gauss-Seidel method for solving large-scale linear least squares problems[J]. Electronic Research Archive, 2022, 30(2): 755-779. doi: 10.3934/era.2022040
[1] | Artion Kashuri, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Eman Al-Sarairah, Nejmeddine Chorfi . Novel inequalities for subadditive functions via tempered fractional integrals and their numerical investigations. AIMS Mathematics, 2024, 9(5): 13195-13210. doi: 10.3934/math.2024643 |
[2] | Muhammad Umar, Saad Ihsan Butt, Youngsoo Seol . Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus. AIMS Mathematics, 2024, 9(12): 34090-34108. doi: 10.3934/math.20241625 |
[3] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[4] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[5] | Serap Özcan . Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Mathematics, 2020, 5(2): 1505-1518. doi: 10.3934/math.2020103 |
[6] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[7] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[8] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[9] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[10] | Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098 |
A two-step randomized Gauss-Seidel (TRGS) method is presented for large linear least squares problem with tall and narrow coefficient matrix. The TRGS method projects the approximate solution onto the solution space by given two random columns and is proved to be convergent when the coefficient matrix is of full rank. Several numerical examples show the effectiveness of the TRGS method among all methods compared.
The convexity of functions is a powerful tool to deal with many kinds of issues of pure and applied science. In recent decades, many authors have devoted themselves to studying the properties and inequalities related to convexity in different directions, see [13,21,23,34,52] and the references cited therein. One of the most important mathematical inequalities concerning convex mapping is Hermite–Hadamard inequality, which is also utilized widely in many other disciplines of applied mathematics. Let's review it as follows:
Let f:K⊆R→R be a convex mapping defined on the interval K of real numbers and τ1,τ2∈K with τ1<τ2. The subsequent inequalities are called Hermite–Hadamard inequalities:
f(τ1+τ22)≤1τ2−τ1∫τ2τ1f(t)dt≤f(τ1)+f(τ2)2. | (1.1) |
Many inequalities have been established in terms of inequalities (1.1) via functions of different classes, such as convex functions [28], s-convex functions [33], (α,m)-convex functions [47], harmonically convex functions [16], h-convex functions [18], strongly exponentially generalized preinvex functions [29], h-preinvex functions [37], p-quasiconvex functions [27], N-quasiconvex functions [3], etc. For more recent results about this topic, the readers may refer to [13,22,25,26,30,32,36] and the references cited therein.
The multiplicatively convex function is one of the most significant functions, which can be defined as follows.
Definition 1. A mapping f: I⊆R→[0,∞) is said to be multiplicatively convex or log-convex, if log f is convex or equivalently for all τ1, τ2 ∈I and t ∈[0,1], one has the following inequality:
f(tτ1+(1−t)τ2)≤[f(τ1)]t[f(τ2)]1−t. |
From Definition 1, it follows that
f(tτ1+(1−t)τ2)≤[f(τ1)]t[f(τ2)]1−t≤tf(τ1)+(1−t)f(τ2), |
which reveals that every multiplicatively convex function is a convex mapping, but the converse is not true.
Many properties and inequalities associated with log-convex mappings have been studied by plenty of researchers. For example, Bai and Qi [9] gave several integral inequalities of the Hermite–Hadamard type for log-convex mappings. Dragomir [20] provided some unweighted and weighted inequalities of Hermite–Hadamard type related to log-convex mappings on real intervals. Set and Ardiç [46] established certain Hermite–Hadamard-like type integral inequalities involving log-convex mappings and p-functions. Zhang and Jiang [53] researched some properties for log-convex mapping. For more results on the basis of log-convex mappings, one can see, for example, [10,39,40,49,50] and the references cited therein.
In 2008, Bashirov [11] proposed a class of the multiplicative operators called ∗integral, which is denoted by ∫ba(f(x))dx and the ordinary integral is denoted by ∫baf(x)dx. Recall that the function f is multiplicatively integrable on [a,b], if f is positive and Riemann integrable on [a,b] and
∫ba(f(x))dx=e∫baln(f(x))dx. |
Definition 2. [11] Let f:R→R+ be a positive function. The multiplicative derivative of function f is given by
d∗fdt(t)=f∗(t)=limh→0(f(t+h)f(h))1h. |
If f has positive values and is differentiable at t, then f∗ exists and the relation between f∗ and ordinary derivative f′ is as follows:
f∗(t)=e[lnf(t)]′=ef′(t)f(t). |
The following properties of ∗differentiable exist:
Theorem 1. [11] Let f and g be ∗differentiable functions. If c is an arbitrary constant, then functions cf, fg, f+g, f/g and fg are ∗differentiable and
(i)(cf)∗(t)=f∗(t),(ii)(fg)∗(t)=f∗(t)g∗(t),(iii)(f+g)∗(t)=f∗(t)f(t)f(t)+g(t)g∗(t)g(t)f(t)+g(t),(iv)(fg)∗(t)=f∗(t)g∗(t),(v)(fg)∗(t)=f∗(t)g(t)f(t)g′(t). |
Moreover, Bashirov et al. show that the multiplicative integral has the following properties:
Proposition 1. [11] If f is positive and Riemann integrable on [a,b], then f is ∗integrable on [a,b] and
(i)∫ba((f(x))p)dx=∫ba((f(x))dx)p,(ii)∫ba(f(x)g(x))dx=∫ba(f(x))dx.∫ba(g(x))dx,(iii)∫ba(f(x)g(x))dx=∫ba(f(x))dx∫ba(g(x))dx,(iv)∫ba(f(x))dx=∫ca(f(x))dx.∫bc(f(x))dx,a≤c≤b,(v)∫aa(f(x))dx=1and∫ba(f(x))dx=(∫ab(f(x))dx)−1. |
The interesting geometric mean type inequalities, known as the Hermite–Hadamard inequality for the multiplicatively convex functions, are shown by the following theorem in [7].
Theorem 2. Let f be a positive and multiplicatively convex function on interval [a,b], then the following inequalities hold
f(a+b2)≤(∫ba(f(x))dx)1b−a≤√f(a)f(b). | (1.2) |
Fractional calculus, as an advantageous tool, reveals its significance to implement differentiation and integration of real or complex number orders. Furthermore, it recently emerged rapidly due to its applications in modelling a number of problems especially in dealing with the dynamics of the complex systems, decision making in structural engineering and probabilistic problems, etc., see, for instance, [6,31]. The research of mathematical inequalities including many different types of fractional integral operators, especially the Hermite–Hadamard type inequalities, is a current research focus. For example, refer to [8,19,22] for Riemann–Liouville integrals, to k-Riemann–Liouville integrals [41], to Hadamard fractional integrals [4,48], to conformable fractional integrals [2,14], to Katugampola fractional integrals [17,51], and to exponential kernel integrals [5], etc.
An imperative generalization of Riemann–Liouville fractional integrals was considered by Abdeljawad and Grossman in [1], which is named the multiplicative Riemann–Liouville fractional integrals.
Definition 3. [1] The multiplicative left-sided Riemann–Liouville fractional integral aIα∗f(x) of order α ∈C, Re(α)>0 is defined by
aIα∗f(x)=e(Iαa+(ln∘f))(x), |
and the multiplicative right-sided one ∗Iαbf(x) is defined by
∗Iαbf(x)=e(Iαb−(ln∘f))(x), |
where the symbols Iαa+f(x) and Iαb−f(x) denote respectively the left-sided and right-sided Riemann–Liouville fractional integrals, which are defined by
Iαa+f(x)=1Γ(α)∫xa(x−t)α−1f(t)dt,x>a, |
and
Iαb−f(x)=1Γ(α)∫bx(t−x)α−1f(t)dt,x<b, |
respectively.
On the other hand, Sarikaya et al. proved the following noteworthy inequalities which are the Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals.
Theorem 3. [44] Let f:[a,b]→R be a positive function with 0≤a<b and f∈L1([a,b]). If f is a convex function on [a,b], then the following inequalities for fractional integrals hold:
f(a+b2)≤Γ(α+1)2(b−a)α[Iαa+f(b)+Iαb−f(a)]≤f(a)+f(b)2, | (1.3) |
with α>0.
Also, Sarikaya and Yildirim built another form relevant to Riemann–Liouville fractional Hermite–Hadamard type inequalities as follows.
Theorem 4. [45] Under the same assumptions of Theorem 3, we have
f(a+b2)≤2α−1Γ(α+1)(b−a)α[Iα(a+b2)+f(b)+Iα(a+b2)−f(a)]≤f(a)+f(b)2. | (1.4) |
Sabzikar et al. provided the following tempered fractional operators.
Definition 4. [35] Let [a,b] be a real interval and λ≥0, α>0. Then for a function f ∈L1([a,b]), the left-sided and right-sided tempered fractional integrals are, respectively, defined by
Iα,λa+f(x)=1Γ(α)∫xa(x−t)α−1e−λ(x−t)f(t)dt,x>a, |
and
Iα,λb−f(x)=1Γ(α)∫bx(t−x)α−1e−λ(t−x)f(t)dt,x<b. |
For several recent related results involving the tempered fractional integrals, see [24,38,42,43] and the references included there.
Motivated by the results in the papers above, especially these developed in [12,38], this work aims to investigate some inequalities of Hermite–Hadamard type, which involve the tempered fractional integrals and the notion of the λ-incomplete gamma function for the multiplicatively convex functions. For this purpose, we establish two Hermite–Hadamard type inequalities for the multiplicative tempered fractional integrals, then we present an integral identity for ∗differentiable mappings, from which we provide certain estimates of the upper bounds for trapezoid inequalities via the multiplicative tempered fractional integral operators.
As one can see, the definitions of the tempered fractional integrals and the multiplicative fractional integrals have similar configurations. This observation leads us to present the following definition of fractional integral operators, to be referred to as the multiplicative tempered fractional integrals.
Definition 5. The multiplicative left-sided tempered fractional integral aIα,λ∗f(x) of order α∈C, Re(α)>0, is defined by
aIα,λ∗f(x)=e(Iα,λa+(ln∘f))(x),λ≥0, |
and the multiplicative right-sided one ∗Iα,λbf(x) is defined by
∗Iα,λbf(x)=e(Iα,λb−(ln∘f))(x),λ≥0, |
where the symbols Iα,λa+f(x) and Iα,λb−f(x) denote the left-sided and right-sided tempered fractional integrals, respectively.
Observe that, for λ=0, the multiplicative tempered fractional integrals become to the multiplicative Riemann–Liouville fractional integrals.
The following facts will be required in establishing our main results.
Remark 1. For the real numbers α>0 and x,λ≥0, the following identities hold:
(i) γλ(b−a)(α,1)=γλ(α,b−a)(b−a)α, | (2.1) |
(ii)∫10γλ(b−a)(α,x)dx=γλ(α,b−a)(b−a)α−γλ(α+1,b−a)(b−a)α+1, | (2.2) |
where γλ(⋅,⋅) is the λ-incomplete gamma function [38], which is defined as follows:
γλ(α,x)=∫x0tα−1e−λtdt. |
If λ=1, the λ-incomplete gamma function reduces to the incomplete gamma function [15]:
γ(α,x)=∫x0tα−1e−tdt. |
Proof. (i) By using the changed variable u=(b−a)t in the (2.1), we get
γλ(b−a)(α,1)=∫10tα−1e−λ(b−a)tdt=∫b−a0(ub−a)α−1e−λu(1b−a)du=γλ(α,b−a)(b−a)α, |
which ends the identity (2.1).
(ii) From the definition of λ-incomplete gamma function, we have
∫10γλ(b−a)(α,x)dx=∫10∫x0yα−1e−λ(b−a)ydydx. |
By changing the order of the integration, we get
∫10γλ(b−a)(α,x)dx=∫10∫1yyα−1e−λ(b−a)ydxdy=∫10(1−y)yα−1e−λ(b−a)ydy=∫10yα−1e−λ(b−a)ydy−∫10yαe−λ(b−a)ydy. |
Applying the Remark 1 (i), we get the identity (2.2).
Our first main result is presented by the following theorem.
Theorem 5. Let f be a positive and multiplicatively convex function on interval [a,b], then we have the following Hermite–Hadamard inequalities for the multiplicative tempered fractional integrals:
f(a+b2)≤[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)≤√f(a)f(b), | (2.3) |
where γλ(⋅,⋅) is the λ-incomplete gamma function.
Proof. On account of the multiplicative convexity of f on interval [a,b], we have
f(a+b2)=f(at+(1−t)b+(1−t)a+tb2)≤[f(at+(1−t)b)]12[f((1−t)a+tb)]12, |
i.e.
lnf(a+b2)≤12[lnf(at+(1−t)b)+lnf((1−t)a+tb)]. | (2.4) |
Multiplying both sides of (2.4) by tα−1e−λ(b−a)t then integrating the resulting inequality with respect to t over [0, 1], we obtain
lnf(a+b2)∫10tα−1e−λ(b−a)tdt≤12[∫10tα−1e−λ(b−a)tlnf(at+(1−t)b)dt+∫10tα−1e−λ(b−a)tlnf((1−t)a+tb)dt]. |
Utilizing the changed variable, we have
1(b−a)αlnf(a+b2)∫b−a0xα−1e−λxdx≤12(b−a)α[∫ba(b−x)α−1e−λ(b−x)lnf(x)dx+∫ba(x−a)α−1e−λ(x−a)lnf(x)dx]. |
That is,
γλ(α,b−a)(b−a)αlnf(a+b2)≤12(b−a)α[∫ba(b−x)α−1e−λ(b−x)lnf(x)dx+∫ba(x−a)α−1e−λ(x−a)lnf(x)dx],lnf(a+b2)≤Γ(α)2γλ(α,b−a)[Iα,λa+lnf(b)+Iα,λb−lnf(a)]. |
Thus we get,
f(a+b2)≤eΓ(α)2γλ(α,b−a)[Iα,λa+lnf(b)+Iα,λb−lnf(a)]=[eIα,λa+lnf(b)eIα,λb−lnf(a)]Γ(α)2γλ(α,b−a)=[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a), |
which completes the proof of the first inequality in (2.3).
On the other hand, as f is multiplicatively convex on interval [a,b], we have
f(at+(1−t)b)≤[f(a)]t[f(b)]1−t, |
and
f((1−t)a+tb)≤[f(a)]1−t[f(b)]t. |
Thus,
lnf(at+(1−t)b)+lnf((1−t)a+tb)≤tlnf(a)+(1−t)lnf(b)+(1−t)lnf(a)+tlnf(b)=lnf(a)+lnf(b). | (2.5) |
Multiplying both sides of (2.5) by tα−1e−λ(b−a)t then integrating the resulting inequality with respect to t over [0,1], we obtain
∫10tα−1e−λ(b−a)tlnf(at+(1−t)b)dt+∫10tα−1e−λ(b−a)tlnf((1−t)a+tb)dt≤[lnf(a)+lnf(b)]∫10tα−1e−λ(b−a)tdt. |
Hence,
Γ(α)2γλ(α,b−a)[Iα,λa+lnf(b)+Iα,λb−lnf(a)]≤12[lnf(a)+lnf(b)]. |
Consequently, we have the following inequality
e[Iα,λa+lnf(b)+Iα,λb−lnf(a)]Γ(α)2γλ(α,b−a)≤√f(a)f(b), |
i.e.
[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)≤√f(a)f(b). |
This ends the proof.
Remark 2. Considering Theorem 5, we have the following conclusions:
(i) The inequalities (2.3) are equivalent to the following inequalities:
lnf(a+b2)≤Γ(α)2γλ(α,b−a)[Iα,λa+lnf(b)+Iα,λb−lnf(a)]≤12[lnf(a)+lnf(b)]. |
(ii) If we choose λ=0, then we have the following inequalities:
f(a+b2)≤[aIα∗f(b)⋅∗Iαbf(a)]Γ(α+1)2(b−a)α≤√f(a)f(b), |
which is given by Budak in [12].
(iii) If we choose λ=0 and α=1, then we obtain Theorem 2 given by Ali et al. in [7].
Corollary 1. Suppose that f and g are two positive and multiplicatively convex functions on [a,b], then we have
f(a+b2)g(a+b2)≤[aIα,λ∗fg(b)⋅∗Iα,λbfg(a)]Γ(α)2γλ(α,b−a)≤√f(a)f(b)⋅√g(a)g(b). | (2.6) |
Proof. As f and g are positive and multiplicatively convex, the function fg is positive and multiplicatively convex. If we apply Theorem 5 to the function fg, then we obtain the required inequalities (2.6).
Remark 3. If we take λ=0 in Corollary 1, then we have the following inequalities:
f(a+b2)g(a+b2)≤[aIα∗fg(b)⋅∗Iαbfg(a)]Γ(α+1)2(b−a)α≤√f(a)f(b)⋅√g(a)g(b), |
which is established by Budak in [12]. Especially if we take α = 1, we obtain Theorem 7 in [7].
Hermite–Hadamard's inequalities involving midpoint can be represented in the multiplicative tempered fractional integral forms as follows:
Theorem 6. Under the same assumptions of Theorem 5, we have
f(a+b2)≤[a+b2Iα,λ∗f(b)⋅∗Iα,λa+b2f(a)]Γ(α)2γλ(α,b−a2)≤√f(a)f(b), | (2.7) |
where γλ(⋅,⋅) is the λ-incomplete gamma function.
Proof. On account of the multiplicative convexity of f on interval [a,b], we have
f(a+b2)=f[12(t2a+2−t2b)+12(2−t2a+t2b)], |
i.e.
lnf(a+b2)≤12[lnf(t2a+2−t2b)+lnf(2−t2a+t2b)]. | (2.8) |
Multiplying both sides of (2.8) by tα−1e−λ(b−a)2t then integrating the resulting inequality with respect to t over [0, 1], we obtain
lnf(a+b2)∫10tα−1e−λ(b−a)2tdt≤12[∫10tα−1e−λ(b−a)2tlnf(t2a+2−t2b)dt+∫10tα−1e−λ(b−a)2tlnf(2−t2a+t2b)dt]. |
That is,
2α(b−a)αγλ(α,b−a2)lnf(a+b2)≤2α−1(b−a)αΓ(α)[Iα,λ(a+b2)+lnf(b)+Iα,λ(a+b2)−lnf(a)], |
which yields that,
f(a+b2)≤e[Iα,λ(a+b2)+lnf(b)+Iα,λ(a+b2)−lnf(a)]Γ(α)2γλ(α,b−a2)=[a+b2Iα,λ∗f(b)⋅∗Iα,λa+b2f(a)]Γ(α)2γλ(α,b−a2). |
This completes the proof of the first inequality in inequalities (2.7).
On the other hand, as f is multiplicatively convex, we get
f(t2a+2−t2b)≤[f(a)]t2[f(b)]2−t2, |
and
f(2−t2a+t2b)≤[f(a)]2−t2[f(b)]t2. |
Thus, we have
lnf(t2a+2−t2b)+lnf(2−t2a+t2b)≤lnf(a)+lnf(b). | (2.9) |
Multiplying both sides of (2.9) by tα−1e−λ(b−a)2t then integrating the resulting inequality with respect to t over [0, 1], we have
2α(b−a)αΓ(α)[Iα,λ(a+b2)+lnf(b)+Iα,λ(a+b2)−lnf(a)]≤2α(b−a)αγλ(α,b−a2)[lnf(a)+lnf(b)], |
i.e.
Γ(α)2γλ(α,b−a2)[Iα,λ(a+b2)+lnf(b)+Iα,λ(a+b2)−lnf(a)]≤12[lnf(a)+lnf(b)]. |
Consequently, we get the inequality
[a+b2Iα,λ∗f(b)⋅∗Iα,λa+b2f(a)]Γ(α)2γλ(α,b−a2)≤√f(a)f(b). |
This ends the proof.
Next, we are going to establish several integral inequalities concerning the multiplicative tempered fractional integral operators. To this end, we present the following lemma.
Lemma 1. Let f:I∘⊂R→R+ be a ∗differentiable mapping on I∘, a,b∈I∘ with a<b. If f∗ is integrable on [a,b], then we have
√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)=∫10[f∗(ta+(1−t)b)η(γλ(b−a)(α,t)−γλ(b−a)(α,1−t))]dt, | (2.10) |
where
η=(b−a)α2γλ(α,b−a). | (2.11) |
Proof. Applying the multiplicative integration by parts, we have
∫10[f∗(ta+(1−t)b)η(γλ(b−a)(α,t)−γλ(b−a)(α,1−t))]dt=f(a)ηγλ(b−a)(α,1)f(b)−ηγλ(b−a)(α,1)⋅1∫10(f(ta+(1−t)b)η(tα−1e−λ(b−a)t+(1−t)α−1e−λ(b−a)(1−t)))dt=[f(a)⋅f(b)]ηγλ(b−a)(α,1)exp{∫10ηlnf(ta+(1−t)b)⋅tα−1e−λ(b−a)tdt+∫10ηlnf(ta+(1−t)b)⋅(1−t)α−1e−λ(b−a)(1−t)dt}=[f(a)⋅f(b)]ηγλ(α,b−a)(b−a)αexp{I1+I2}. |
Utilizing the changed variable, we obtain
I1=η∫10lnf(ta+(1−t)b)tα−1e−λ(b−a)tdt=η(b−a)α∫balnf(u)(b−u)α−1e−λ(b−u)du=ηΓ(α)(b−a)αIα,λa+lnf(b), |
and
I2=η∫10lnf(ta+(1−t)b)(1−t)α−1e−λ(b−a)(1−t)dt=η(b−a)α∫balnf(u)(u−a)α−1e−λ(u−a)du=ηΓ(α)(b−a)αIα,λb−lnf(a). |
Then, we have
∫10[f∗(at+(1−t)b)η(γλ(b−a)(α,t)−γλ(b−a)(α,1−t))]dt=√f(a)f(b)exp{Γ(α)2γλ(α,b−a)[Iα,λa+lnf(b)+Iα,λb−lnf(a)]}=√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a). |
This ends the proof.
Remark 4. Considering Lemma 1, we have the following conclusions:
(i) If we take λ=0, then we have
√f(a)f(b)[aIα∗f(b)⋅∗Iαbf(a)]Γ(α+1)2(b−a)α=∫10(f∗(ta+(1−t)b)12[tα−(1−t)α])dt. | (2.12) |
(ii) If we take λ=0 and α=1, then we have
√f(a)f(b)∫ba(f(u)1b−a)du=∫10(f∗(ta+(1−t)b)12(2t−1))dt. | (2.13) |
It is worth mentioning that, to the best of our knowledge, the identities (2.12) and (2.13) obtained here are new in the literature.
Theorem 7. Let f:I∘⊂R→R+ be a ∗differentiable mapping on I∘, a,b∈I∘ with a<b. If |f∗| is multiplicatively convex on [a,b], then we have
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤[|f∗(a)|⋅|f∗(b)|]ηδ, | (2.14) |
where η is defined by (2.11) in Lemma 1 and
δ=γλ(α,b−a)(b−a)α−γλ(α,b−a2)(b−a)α+2γλ(α+1,b−a2)(b−a)α+1−γλ(α+1,b−a)(b−a)α+1. | (2.15) |
Proof. Making use of Lemma 1, we deduce
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|=|∫10[f∗(at+(1−t)b)η(γλ(b−a)(α,t)−γλ(b−a)(α,1−t))]dt|≤exp{∫10|lnf∗(at+(1−t)b)η[γλ(b−a)(α,t)−γλ(b−a)(α,1−t)]|dt}=exp{∫10|η[γλ(b−a)(α,t)−γλ(b−a)(α,1−t)]|⋅|lnf∗(at+(1−t)b)|dt}. | (2.16) |
As t∈[0,1], we can know
|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|={ ∫1−ttuα−1e−λ(b−a)udu,0≤t≤12,∫t1−tuα−1e−λ(b−a)udu,12<t≤1. | (2.17) |
Since |f∗| is multiplicatively convex, we get
|lnf∗(ta+(1−t)b)|≤tln|f∗(a)|+(1−t)ln|f∗(b)|. | (2.18) |
If we apply (2.17) and (2.18) to the inequality (2.16), we obtain
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{η∫120 ∫1−ttuα−1e−λ(b−a)udu[tln|f∗(a)|+(1−t)ln|f∗(b)|]dt+η∫112∫t1−tuα−1e−λ(b−a)udu[tln|f∗(a)|+(1−t)ln|f∗(b)|]dt}=exp{ηln|f∗(a)|∫120∫1−tttuα−1e−λ(b−a)ududt+ηln|f∗(b)|∫120∫1−tt(1−t)uα−1e−λ(b−a)ududt+ηln|f∗(a)|∫112∫t1−ttuα−1e−λ(b−a)ududt+ηln|f∗(b)|∫112∫t1−t(1−t)uα−1e−λ(b−a)ududt}=exp{η(ln|f∗(a)|⋅Δ1+ln|f∗(b)|⋅Δ2+ln|f∗(a)|⋅Δ3+ln|f∗(b)|⋅Δ4)}. |
Here, let's evaluate an integral by changing the order of it.
Δ1=∫120∫1−tttuα−1e−λ(b−a)ududt=∫120∫u0tuα−1e−λ(b−a)udtdu+∫112∫1−u0tuα−1e−λ(b−a)udtdu=12[∫120uα+1e−λ(b−a)udu+∫112(u2−2u+1)uα−1e−λ(b−a)udu]=12[γλ(b−a)(α+2,12)+∫112uα+1e−λ(b−a)udu−2∫112uαe−λ(b−a)udu+∫112uα−1e−λ(b−a)udu]=12{γλ(b−a)(α+2,12)+[γλ(b−a)(α+2,1)−γλ(b−a)(α+2,12)]−2[γλ(b−a)(α+1,1)−γλ(b−a)(α+1,12)]+[γλ(b−a)(α,1)−γλ(b−a)(α,12)]}. | (2.19) |
Analogously, we can get
Δ2=12{2γλ(b−a)(α+1,12)−γλ(b−a)(α+2,12)+[γλ(b−a)(α,1)−γλ(b−a)(α,12)]−[γλ(b−a)(α+2,1)−γλ(b−a)(α+2,12)]}, | (2.20) |
Δ3=12{2γλ(b−a)(α+1,12)−γλ(b−a)(α+2,12)+[γλ(b−a)(α,1)−γλ(b−a)(α,12)]−[γλ(b−a)(α+2,1)−γλ(b−a)(α+2,12)]}, | (2.21) |
and
Δ4=12{γλ(b−a)(α+2,12)+[γλ(b−a)(α+2,1)−γλ(b−a)(α+2,12)]−2[γλ(b−a)(α+1,1)−γλ(b−a)(α+1,12)]+[γλ(b−a)(α,1)−γλ(b−a)(α,12)]}. | (2.22) |
Consequently,
ln|f∗(a)|⋅Δ1+ln|f∗(b)|⋅Δ2+ln|f∗(a)|⋅Δ3+ln|f∗(b)|⋅Δ4=[ln|f∗(a)|+ln|f∗(b)|][γλ(α,b−a)(b−a)α−γλ(α,b−a2)(b−a)α+2γλ(α+1,b−a2)(b−a)α+1−γλ(α+1,b−a)(b−a)α+1]. |
Thus, we deduce
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{η[ln|f∗(a)|+ln|f∗(b)|][γλ(α,b−a)(b−a)α−γλ(α,b−a2)(b−a)α+2γλ(α+1,b−a2)(b−a)α+1−γλ(α+1,b−a)(b−a)α+1]}=exp{ηδ[ln|f∗(a)|+ln|f∗(b)|]}=[|f∗(a)|⋅|f∗(b)|]ηδ. |
The proof is completed.
Theorem 8. Let f:I∘⊂R→R+ be a ∗differentiable mapping on I∘, a,b∈I∘ with a<b. For q>1 with p−1+q−1=1, if |f∗|q is multiplicatively convex on [a,b], then we have
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{η⋅τ1p(ln|f∗(a)|q+ln|f∗(b)|q2)1q}, | (2.23) |
where η is defined by (2.11) in Lemma 1 and
τ=∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|pdt. |
Proof. Making use of Lemma 1 and Hölder's inequality, we deduce
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|=|∫10[f∗(at+(1−t)b)η(γλ(b−a)(α,t)−γλ(b−a)(α,1−t))]dt|≤exp{∫10|lnf∗(at+(1−t)b)η[γλ(b−a)(α,t)−γλ(b−a)(α,1−t)]|dt}=exp{∫10|η[γλ(b−a)(α,t)−γλ(b−a)(α,1−t)]⋅lnf∗(at+(1−t)b)|dt}=exp{∫10|η[γλ(b−a)(α,t)−γλ(b−a)(α,1−t)]|⋅|lnf∗(at+(1−t)b)|dt}. | (2.24) |
Due to the Hölder's inequality, we have
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{η(∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|pdt)1p×(∫10|lnf∗(ta+(1−t)b)|qdt)1q}. | (2.25) |
By virtue of the multiplicative convexity of |f∗|q, we obtain
∫10|lnf∗(at+(1−t)b)|qdt≤∫10[tln|f∗(a)|q+(1−t)ln|f∗(b)|q]dt=ln|f∗(a)|q+ln|f∗(b)|q2. | (2.26) |
Combining (2.26) with (2.25), we know that Theorem 8 is true. Thus the proof is completed.
Remark 5. Considering Theorem 8, we have the following conclusions:
(i) If we choose λ=0, then we have
|√f(a)f(b)[aIα∗f(b)⋅∗Iαbf(a)]Γ(α+1)2(b−a)α|≤exp{12(∫10|tα−(1−t)α|pdt)1p(ln|f∗(a)|q+ln|f∗(b)|q2)1q}≤exp{12(1αp+1(2−12αp−1))1p(ln|f∗(a)|q+ln|f∗(b)|q2)1q}. |
To prove the second inequality above, we use the fact
[(1−t)α−tα]p≤(1−t)αp−tαp, |
for t∈ [0,12] and
[tα−(1−t)α]p≤tαp−(1−t)αp, |
for t∈ [12,1], which follows from (A−B)q ≤ Aq−Bq for any A≥B≥0 and q≥1.
(ii) If we choose λ=0 and α=1, then we have
√f(a)f(b)∫ba(f(u)1b−a)du≤exp{12(1p+1)1p(ln|f∗(a)|q+ln|f∗(b)|q2)1q}. |
Theorem 9. Let f:I∘⊂R→R+ be a ∗differentiable mapping on I∘, a,b∈I∘ with a<b. If |f∗|q, q>1, is multiplicatively convex on [a,b], then we have
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{21−1q⋅η⋅δ(ln|f∗(a)|q+ln|f∗(b)|q)1q}, | (2.27) |
where η is defined by (2.11) in Lemma 1 and δ is defined by (2.15) in Theorem 7, respectively.
Proof. Continuing from the inequality (2.24) in the proof of Theorem 8, using the power-mean inequality, we have
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{η(∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|dt)1−1q×(∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|⋅|lnf∗(at+(1−t)b)|qdt)1q}. |
For the convenience of expression, let us define the quantities
J1=∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|dt, |
and
J2=∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|⋅|lnf∗(at+(1−t)b)|qdt. |
According to the equalities (2.17), we have
J1=∫120∫1−ttuα−1e−λ(b−a)ududt+∫112∫t1−tuα−1e−λ(b−a)ududt=2{2γλ(b−a)(α+1,12)+[γλ(b−a)(α,1)−γλ(b−a)(α,12)]−γλ(b−a)(α+1,1)}. | (2.28) |
Utilizing the multiplicative convexity of |f∗|q, we obtain
J2≤∫10|γλ(b−a)(α,t)−γλ(b−a)(α,1−t)|⋅[tln|f∗(a)|q+(1−t)ln|f∗(b)|q]dt=∫120∫1−ttuα−1e−λ(b−a)u⋅[tln|f∗(a)|q+(1−t)ln|f∗(b)|q]dudt+∫112∫t1−tuα−1e−λ(b−a)u⋅[tln|f∗(a)|q+(1−t)ln|f∗(b)|q]dudt=ln|f∗(a)|q⋅∫120∫1−tttuα−1e−λ(b−a)ududt+ln|f∗(b)|q⋅∫120∫1−tt(1−t)uα−1e−λ(b−a)ududt+ln|f∗(a)|q⋅∫112∫t1−ttuα−1e−λ(b−a)ududt+ln|f∗(b)|q⋅∫112∫t1−t(1−t)uα−1e−λ(b−a)ududt=ln|f∗(a)|q⋅Δ1+ln|f∗(b)|q⋅Δ2+ln|f∗(a)|q⋅Δ3+ln|f∗(b)|q⋅Δ4, |
where Δi(i=1,2,3,4) are given by (2.19)–(2.22) in the proof of Theorem 7, respectively.
Consequently,
ln|f∗(a)|q⋅Δ1+ln|f∗(b)|q⋅Δ2+ln|f∗(a)|q⋅Δ3+ln|f∗(b)|q⋅Δ4=[ln|f∗(a)|q+ln|f∗(b)|q][γλ(α,b−a)(b−a)α−γλ(α,b−a2)(b−a)α+2γλ(α+1,b−a2)(b−a)α+1−γλ(α+1,b−a)(b−a)α+1]. | (2.29) |
Combining (2.28) with (2.29), we have
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|≤exp{η(2δ)1−1q⋅(δ(ln|f∗(a)|q+ln|f∗(b)|q))1q}=exp{21−1q⋅η⋅δ(ln|f∗(a)|q+ln|f∗(b)|q)1q}. |
The proof is completed.
The main point of the results established in this paper is that the calculation of the right-hand side is much easier than that of the left-hand side. To show this, three interesting examples are demonstrated below.
Example 1. Let the log-convex function f: (0,∞)→(0,∞) be defined by f(x)=2x2−3. If we take a=1,b=2, α=12 and λ=14, then all assumptions in Theorem 5 are satisfied.
The left-hand side term of (2.3) is
f(a+b2)=f(1+22)=2−34≈0.5946. |
The middle term of (2.3) is
[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)=[eI12,141+lnf(2)⋅eI12,142−lnf(1)]Γ(12)2γ14(12,1)=[e∫21(u2−3)ln2⋅(2−u)−12e−14(2−u)du+∫21(u2−3)ln2⋅(u−1)−12e−14(u−1)du]12∫10u−12e−14udu≈0.6461. |
The right-hand side term of (2.3) is
√f(a)f(b)=√f(1)f(2)=2−12≈0.7071. |
It is clear that 0.5946<0.6461<0.7071, which demonstrates the result described in Theorem 5.
Example 2. Let the log-convex function f: (0,∞)→(0,∞) be defined by f(x)=ex2. If we take a=1,b=2, α=12 and λ=12, then all assumptions in Theorem 6 are satisfied.
The left-hand side term of (2.7) is
f(a+b2)=f(1+22)=e94≈9.4877. |
The middle term of (2.7) is
[a+b2Iα,λ∗f(b)⋅∗Iα,λa+b2f(a)]Γ(α)2γλ(α,b−a2)=[eI12,1232+lnf(2)⋅eI12,1232−lnf(1)]Γ(12)2γ12(12,12)=[e∫232u2(2−u)−12e−12(2−u)du+∫321u2(u−1)−12e−12(u−1)du]12∫120u−12e−12udu≈10.9088. |
The right-hand side term of (2.7) is
√f(a)f(b)=√f(1)f(2)=e52≈12.1825. |
It is clear that 9.4877<10.9088<12.1825, which demonstrates the result described in Theorem 6.
Example 3. Let the log-convex function f′(x)f(x): (0,∞)→(0,∞) be defined by f′(x)f(x)=1x. We can get f∗(x)=e1x, f(x)=x. If we take a=1,b=2, α=12 and λ=12, then all assumptions in Theorem 7 are satisfied.
The left-hand side term of (2.14) is
|√f(a)f(b)[aIα,λ∗f(b)⋅∗Iα,λbf(a)]Γ(α)2γλ(α,b−a)|=|√f(1)f(2)[eI12,121+lnf(2)⋅eI12,122−lnf(1)]Γ(12)2γ12(12,1)|=|√2[e∫21lnu⋅(2−u)−12e−12(2−u)du+∫21lnu⋅(u−1)−12e−12(u−1)du]12γ12(12,1)|≈0.9702. |
The right-hand side term of (2.14) is
[|f∗(a)|⋅|f∗(b)|]ηδ=(e32)12γ12(12,1)[γ12(12,1)−γ12(12,12)+2γ12(32,12)−γ12(32,1)]≈1.1480. |
It is clear that 0.9702<1.1480, which demonstrates the result described in Theorem 7.
To the best of our knowledge, this is a first pervasive work on the multiplicative tempered fractional Hermite–Hadamard type inequalities via the multiplicatively convex functions. Two Hermite–Hadamard type inequalities for the multiplicative tempered fractional integrals are hereby established. An integral identity for ∗differentiable mappings is presented. By using it, some estimates of the upper bounds pertaining to trapezoid type inequalities via the multiplicative tempered fractional integral operators are obtained. Inequalities obtained in this paper generalize some results given by Budak and Tunç (2020) and Ali et al. (2019). Also, three examples show that the calculation of the right-hand side is much easier than that of the left-hand side. The ideas and techniques of this article may inspire further research in this field. This promising field about the multiplicative tempered fractional inequalities is worth further exploration.
The authors would like to thank the reviewer for his/her valuable comments and suggestions.
The authors declare no conflict of interest.
[1] | A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996. https://doi.org/10.1137/1.9781611971484 |
[2] |
A. Zouzias, N. M. Freris, Randomized extended Kaczmarz for solving least squares, SIAM J. Matrix Anal. Appl., 34 (2013), 773–793. https://doi.org/10.1137/120889897 doi: 10.1137/120889897
![]() |
[3] |
R. M. Gower, P. Richtarik, Randomized iterative methods for linear systems, SIAM J. Matrix Anal. Appl., 36 (2015), 1660-1690. https://doi.org/10.1137/15M1025487 doi: 10.1137/15M1025487
![]() |
[4] |
A. Ma, D. Needell, A. Ramdas, Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods, SIAM J. Matrix Anal. Appl., 36 (2015), 1590–1604. https://doi.org/10.1137/15M1014425 doi: 10.1137/15M1014425
![]() |
[5] |
Z. Z. Bai, W. T. Wu, On greedy randomized Kaczmarz method for solving large sparse linear systems, SIAM J. Sci. Comput., 40 (2018), A592–A606. https://doi.org/10.1137/17M1137747 doi: 10.1137/17M1137747
![]() |
[6] |
A. Ma, D. Needell, A. Ramdas, Iterative methods for solving factorized linear systems, SIAM J. Matrix Anal. Appl., 39 (2018), 104–122. https://doi.org/10.1137/17M1115678 doi: 10.1137/17M1115678
![]() |
[7] |
C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Prob., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
![]() |
[8] |
C. A. Bouman, K. Sauer, A unified approach to statistical tomography using coordinate descent optimization, IEEE Trans. Image Process., 5 (1996), 480–492. https://doi.org/10.1109/83.491321 doi: 10.1109/83.491321
![]() |
[9] |
J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework, J. Opt. Soc. Am. A., 16 (1999), 2400–2412. https://doi.org/10.1364/JOSAA.16.002400 doi: 10.1364/JOSAA.16.002400
![]() |
[10] |
A. A. Canutescu, R. L. Dunbrack, Cyclic coordinate descent: A robotics algorithm for protein loop closure, Protein Sci., 12 (2003), 963–972. https://doi.org/10.1110/ps.0242703 doi: 10.1110/ps.0242703
![]() |
[11] |
K. W. Chang, C. J. Hsieh, C. J. Lin, Coordinate descent method for large-scale L2-loss linear support vector machines, J. Mach. Learn. Res., 9 (2008), 1369–1398. https://doi.org/10.1145/1390681.1442778 doi: 10.1145/1390681.1442778
![]() |
[12] |
P. Breheny, J. Huang, Coordinate descent algorithms for nonconvex penalized regression with applications to biological feature selection, Ann. Appl. Stat., 5 (2011), 232–253. https://doi.org/10.1214/10-AOAS388 doi: 10.1214/10-AOAS388
![]() |
[13] |
M. Elad, B. Matalon, M. Zibulevsky, Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization, Appl. Comput. Harmonic Anal., 23 (2007), 346–367. https://doi.org/10.1016/j.acha.2007.02.002 doi: 10.1016/j.acha.2007.02.002
![]() |
[14] |
C. Wang, D. Wu, K. Yang, New decentralized positioning schemes for wireless sensor networks based on recursive least-squares optimization, IEEE Wirel. Commun. Lett., 3 (2014), 78–81. https://doi.org/10.1109/WCL.2013.111713.130734 doi: 10.1109/WCL.2013.111713.130734
![]() |
[15] |
J. A. Scott, M. Tuma, Sparse stretching for solving sparse-dense linear least-squares problems, SIAM J. Sci. Comput., 41 (2019), A1604–A1625. https://doi.org/10.1137/18M1181353 doi: 10.1137/18M1181353
![]() |
[16] | N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 2002. https://doi.org/10.2307/2669725 |
[17] | Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003. https://doi.org/10.1137/1.9780898718003.ch4 |
[18] |
T. Strohmer, R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl., 15 (2009), 262–278. https://doi.org/10.1007/s00041-008-9030-4 doi: 10.1007/s00041-008-9030-4
![]() |
[19] | D. Leventhal, A. S. Lewis, Randomized methods for linear constraints: Convergence rates and conditioning, Math. Oper. Res., 35 (2010), 641–654. https://arXiv.org/abs/0806.3015 |
[20] |
Z. S. Lu, L. Xiao, On the complexity analysis of randomized block-coordinate descent methods, J. Math. Program, 152 (2015), 615–642. https://doi.org/10.1007/s10107-014-0800-2 doi: 10.1007/s10107-014-0800-2
![]() |
[21] |
Y. Liu, X. L. Jiang, C. Q. Gu, On maximum residual block and two-step Gauss-Seidel algorithms for linear least-squares problems, Calcolo, 58 (2021), 1–32. https://doi.org/10.1007/s10092-021-00404-x doi: 10.1007/s10092-021-00404-x
![]() |
[22] |
Z. Z. Bai, W. T. Wu, On greedy randomized coordinate descent methods for solving large linear least-squares problems, Numer. Linear Algebra Appl., 26 (2019), 22–37. https://doi.org/10.1002/nla.2237 doi: 10.1002/nla.2237
![]() |
[23] |
J. H. Zhang, J. H. Guo, On relaxed greedy randomized coordinate descent methods for solving large linear least-squares problems, J. Appl. Numer. Math., 157 (2020), 372–384. https://doi.org/10.1016/j.apnum.2020.06.014 doi: 10.1016/j.apnum.2020.06.014
![]() |
[24] |
Z. Z. Bai, L. Wang, W. T. Wu, On convergence rate of the randomized Gauss-Seidel method, Linear Algebra Appl., 611 (2021), 237–252. https://doi.org/10.1016/j.laa.2020.10.028 doi: 10.1016/j.laa.2020.10.028
![]() |
[25] |
J. Nutini, M. Schmidt, I. H. Laradji, M. Friedlander, H. Koepke, Coordinate descent converges faster with the Gauss-Southwell rule than random selection, Int. J. Technol. Manage., 43 (2015), 1632-1641. https://doi.org/10.1504/IJTM.200A019410 doi: 10.1504/IJTM.200A019410
![]() |
[26] |
K. Du, Tight upper bounds for the convergence of the randomized extended Kaczmarz and Gauss-Seidel algorithms, Numer. Linear Algebra Appl., 26 (2019), 22–33. https://doi.org/10.1002/nla.2233 doi: 10.1002/nla.2233
![]() |
[27] | W. Wu, Paving the Randomized Gauss-Seidel Method, BSc Thesis, Scripps College, Claremont, California, 2017. https://scholarship.claremont.edu/scripps_theses/1074 |
[28] |
D. Needell, R. Ward, Two-subspace projection method for coherent overdetermined systems, J. J. Fourier Anal. Appl., 19 (2013), 256–269. https://doi.org/10.1007/s00041-012-9248-z doi: 10.1007/s00041-012-9248-z
![]() |
[29] |
W. T. Wu, On two-subspace randomized extended Kaczmarz method for solving large linear least-squares problems, Numer. Algor., 89 (2022), 1–31. https://doi.org/10.1007/s11075-021-01104-x doi: 10.1007/s11075-021-01104-x
![]() |
[30] |
Z. Z. Bai, W. T. Wu, On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems, Linear Algebra Appl., 578 (2019), 225–250. https://doi.org/10.1016/j.laa.2019.05.005 doi: 10.1016/j.laa.2019.05.005
![]() |
[31] |
T. A. Davis, Y. Hu, The university of florida sparse matrix collection, ACM Trans. Math. Software, 38 (2011), 1–25. https://doi.org/10.1145/2049662.2049663 doi: 10.1145/2049662.2049663
![]() |
[32] |
P. C. Hansen, Regularization Tools: A Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algor., 06 (1994), 1–35. https://doi.org/10.1007/BF02149761 doi: 10.1007/BF02149761
![]() |
1. | Zhengmao Chen, A priori bounds and existence of smooth solutions to a Lp Aleksandrov problem for Codazzi tensor with log-convex measure, 2023, 31, 2688-1594, 840, 10.3934/era.2023042 | |
2. | Yu Peng, Hao Fu, Tingsong Du, Estimations of Bounds on the Multiplicative Fractional Integral Inequalities Having Exponential Kernels, 2022, 2194-6701, 10.1007/s40304-022-00285-8 | |
3. | Badreddine Meftah, Maclaurin type inequalities for multiplicatively convex functions, 2023, 0002-9939, 10.1090/proc/16292 | |
4. | Saowaluck Chasreechai, Muhammad Aamir Ali, Surapol Naowarat, Thanin Sitthiwirattham, Kamsing Nonlaopon, On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications, 2023, 8, 2473-6988, 3885, 10.3934/math.2023193 | |
5. | Artion Kashuri, Soubhagya Kumar Sahoo, Munirah Aljuaid, Muhammad Tariq, Manuel De La Sen, Some New Hermite–Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals, 2023, 15, 2073-8994, 868, 10.3390/sym15040868 | |
6. | Tingsong Du, Yun Long, The multi-parameterized integral inequalities for multiplicative Riemann–Liouville fractional integrals, 2025, 541, 0022247X, 128692, 10.1016/j.jmaa.2024.128692 | |
7. | Yu Peng, Tingsong Du, Fractional Maclaurin-type inequalities for multiplicatively convex functions and multiplicatively P-functions, 2023, 37, 0354-5180, 9497, 10.2298/FIL2328497P | |
8. | Muhammad Ali, On Simpson’s and Newton’s type inequalities in multiplicative fractional calculus, 2023, 37, 0354-5180, 10133, 10.2298/FIL2330133A | |
9. | Abdul Mateen, Serap Özcan, Zhiyue Zhang, Bandar Bin-Mohsin, On Newton–Cotes Formula-Type Inequalities for Multiplicative Generalized Convex Functions via Riemann–Liouville Fractional Integrals with Applications to Quadrature Formulas and Computational Analysis, 2024, 8, 2504-3110, 541, 10.3390/fractalfract8090541 | |
10. | Mohammed Bakheet Almatrafi, Wedad Saleh, Abdelghani Lakhdari, Fahd Jarad, Badreddine Meftah, On the multiparameterized fractional multiplicative integral inequalities, 2024, 2024, 1029-242X, 10.1186/s13660-024-03127-z | |
11. | YU PENG, TINGSONG DU, ON MULTIPLICATIVE (s,P)-CONVEXITY AND RELATED FRACTIONAL INEQUALITIES WITHIN MULTIPLICATIVE CALCULUS, 2024, 32, 0218-348X, 10.1142/S0218348X24500488 | |
12. | Jianqiang Xie, Ali Muhammad, Sitthiwirattham Thanin, Some new midpoint and trapezoidal type inequalities in multiplicative calculus with applications, 2023, 37, 0354-5180, 6665, 10.2298/FIL2320665X | |
13. | Tingsong Du, Yu Peng, Hermite–Hadamard type inequalities for multiplicative Riemann–Liouville fractional integrals, 2024, 440, 03770427, 115582, 10.1016/j.cam.2023.115582 | |
14. | Meriem Merad, Badreddine Meftah, Abdelkader Moumen, Mohamed Bouye, Fractional Maclaurin-Type Inequalities for Multiplicatively Convex Functions, 2023, 7, 2504-3110, 879, 10.3390/fractalfract7120879 | |
15. | Yu Peng, Serap Özcan, Tingsong Du, Symmetrical Hermite–Hadamard type inequalities stemming from multiplicative fractional integrals, 2024, 183, 09600779, 114960, 10.1016/j.chaos.2024.114960 | |
16. | Lulu Zhang, Yu Peng, Tingsong Du, On multiplicative Hermite–Hadamard- and Newton-type inequalities for multiplicatively (P,m)-convex functions, 2024, 534, 0022247X, 128117, 10.1016/j.jmaa.2024.128117 | |
17. | Wen Sheng Zhu, Badreddine Meftah, Hongyan Xu, Fahd Jarad, Abdelghani Lakhdari, On parameterized inequalities for fractional multiplicative integrals, 2024, 57, 2391-4661, 10.1515/dema-2023-0155 | |
18. | Assia Frioui, Badreddine Meftah, Ali Shokri, Abdelghani Lakhdari, Herbert Mukalazi, Parametrized multiplicative integral inequalities, 2024, 2024, 2731-4235, 10.1186/s13662-024-03806-7 | |
19. | Ziyi Zhou, Tingsong Du, Analytical properties and related inequalities derived from multiplicative Hadamard k-fractional integrals, 2024, 189, 09600779, 115715, 10.1016/j.chaos.2024.115715 | |
20. | Muhammad Aamir Ali, Michal Fečkan, Chanon Promsakon, Thanin Sitthiwirattham, A new Approach of Generalized Fractional Integrals in Multiplicative Calculus and Related Hermite–Hadamard-Type Inequalities with Applications, 2024, 74, 0139-9918, 1445, 10.1515/ms-2024-0105 | |
21. | Dawood Khan, Saad Ihsan Butt, Youngsoo Seol, Properties and integral inequalities of P-superquadratic functions via multiplicative calculus with applications, 2024, 2024, 1687-2770, 10.1186/s13661-024-01978-5 | |
22. | YUN LONG, TINGSONG DU, ANALYSIS ON MULTIPLICATIVE k-ATANGANA–BALEANU FRACTIONAL INTEGRALS WITH APPLICATION TO VARIOUS MERCER-TYPE INEQUALITIES, 2025, 33, 0218-348X, 10.1142/S0218348X25500033 | |
23. | Artion Kashuri, Arslan Munir, Hüseyin Budak, Fatih Hezenci, Novel generalized tempered fractional integral inequalities for convexity property and applications, 2025, 75, 0139-9918, 113, 10.1515/ms-2025-0009 | |
24. | Hüseyin Budak, Büşra Betül Ergün, On multiplicative conformable fractional integrals: theory and applications, 2025, 2025, 1687-2770, 10.1186/s13661-025-02026-6 | |
25. | Abdelghani Lakhdari, Djaber Chemseddine Benchettah, Badreddine Meftah, Fractional multiplicative Newton-type inequalities for multiplicative s-convex positive functions with application, 2025, 465, 03770427, 116600, 10.1016/j.cam.2025.116600 | |
26. | Xiaohua Zhang, Yu Peng, Tingsong Du, (k,s)-fractional integral operators in multiplicative calculus, 2025, 195, 09600779, 116303, 10.1016/j.chaos.2025.116303 | |
27. | DAWOOD KHAN, SAAD IHSAN BUTT, YOUNGSOO SEOL, ANALYSIS ON MULTIPLICATIVELY (P,m)-SUPERQUADRATIC FUNCTIONS AND RELATED FRACTIONAL INEQUALITIES WITH APPLICATIONS, 2025, 33, 0218-348X, 10.1142/S0218348X24501299 |