In the first part of the paper we continue the study of solutions to Schrödinger equations with a time singularity in the dispersive relation and in the periodic setting. In the second we show that if the Schrödinger operator involves a Laplace operator with variable coefficients with a particular dependence on the space variables, then one can prove Strichartz estimates at the same regularity as that needed for constant coefficients. Our work presents a two dimensional analysis, but we expect that with the obvious adjustments similar results are available in higher dimensions.
Citation: Serena Federico, Gigliola Staffilani. Sharp Strichartz estimates for some variable coefficient Schrödinger operators on R×T2[J]. Mathematics in Engineering, 2022, 4(4): 1-23. doi: 10.3934/mine.2022033
[1] | Yiping Tan, Yongli Cai, Zhihang Peng, Kaifa Wang, Ruoxia Yao, Weiming Wang . Dynamics of a stochastic HBV infection model with drug therapy and immune response. Mathematical Biosciences and Engineering, 2022, 19(8): 7570-7585. doi: 10.3934/mbe.2022356 |
[2] | Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341 |
[3] | Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358 |
[4] | Jiazhe Lin, Rui Xu, Xiaohong Tian . Threshold dynamics of an HIV-1 model with both viral and cellular infections, cell-mediated and humoral immune responses. Mathematical Biosciences and Engineering, 2019, 16(1): 292-319. doi: 10.3934/mbe.2019015 |
[5] | Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014 |
[6] | Ran Zhang, Shengqiang Liu . Global dynamics of an age-structured within-host viral infection model with cell-to-cell transmission and general humoral immunity response. Mathematical Biosciences and Engineering, 2020, 17(2): 1450-1478. doi: 10.3934/mbe.2020075 |
[7] | Khalid Hattaf, Noura Yousfi . Dynamics of SARS-CoV-2 infection model with two modes of transmission and immune response. Mathematical Biosciences and Engineering, 2020, 17(5): 5326-5340. doi: 10.3934/mbe.2020288 |
[8] | Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006 |
[9] | Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022 |
[10] | Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139 |
In the first part of the paper we continue the study of solutions to Schrödinger equations with a time singularity in the dispersive relation and in the periodic setting. In the second we show that if the Schrödinger operator involves a Laplace operator with variable coefficients with a particular dependence on the space variables, then one can prove Strichartz estimates at the same regularity as that needed for constant coefficients. Our work presents a two dimensional analysis, but we expect that with the obvious adjustments similar results are available in higher dimensions.
[1] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107–156. doi: 10.1007/BF01896020
![]() |
[2] | J. Bourgain, Problems in Hamiltonian PDE's, In: Visions in Mathematics, Birkhäuser Basel, 2000, 32–56. |
[3] | J. Bourgain, C. Demeter, The proof of the ℓ2 decoupling conjecture, Ann. Math., 182 (2015), 351–389. |
[4] |
N. Burq, P. Gérard, N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Am. J. Math., 126 (2004), 569–605. doi: 10.1353/ajm.2004.0016
![]() |
[5] |
Y. M. Chen, S. H. Ma, Z. Y. Ma, Solitons for the cubic-quintic nonlinear Schrödinger equation with varying coefficients, Chinese Phys. B, 21 (2012), 050510. doi: 10.1088/1674-1056/21/5/050510
![]() |
[6] |
M. Cicognani, M. Reissig, Well-posedness for degenerate Schrödinger equations, Evol. Equ. Control The., 3 (2014), 15–33. doi: 10.3934/eect.2014.3.15
![]() |
[7] | C. Fan, Y. Ou, G. Staffilani, H. Wang, 2D-defocusing nonlinear Schrödinger equation with random data on irrational tori, Stoch. Partial Differ., 9 (2021), 142–206. |
[8] | S. Federico, M. Ruzhansky, Smoothing and strichartz estimates for degenerate Schrödinger-type equations, 2020, arXiv: 2005.01622. |
[9] |
S. Federico, G. Staffilani, Smoothing effect for time-degenerate Schrödinger operators, J. Differ. Equations, 298 (2021), 205–247. doi: 10.1016/j.jde.2021.07.006
![]() |
[10] |
Z. Hani, A bilinear oscillatory integral estimate and bilinear refinements to Strichartz estimates on closed manifolds, Anal. PDE, 5 (2012), 339–363. doi: 10.2140/apde.2012.5.339
![]() |
[11] |
C. E. Kenig, G. Ponce, C. Rolvung, L. Vega, Variable coefficient Schrödinger flows for ultrahyperbolic operators, Adv. Math., 196 (2005), 373–486. doi: 10.1016/j.aim.2004.02.002
![]() |
[12] | C. E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1–21. |
[13] |
C. E. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Am. Math. Soc., 9 (1996), 573–603. doi: 10.1090/S0894-0347-96-00200-7
![]() |
[14] |
B. Li, X. F. Zhang, Y. Q. Li, W. M. Liu, Propagation and interaction of matter-wave solitons in Bose-Einstein condensates with time-dependent scattering length and varying potentials, J. Phys. B At. Mol. Opt., 44 (2011), 175301. doi: 10.1088/0953-4075/44/17/175301
![]() |
[15] |
J. Marzuola, J. Metcalfe, D. Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal., 255 (2008), 1497–1553. doi: 10.1016/j.jfa.2008.05.022
![]() |
[16] |
H. Mizutani, N. Tzvetkov, Strichartz estimates for non-elliptic Schrödinger equations on compact manifolds, Commun. Part. Diff. Eq., 40 (2015), 1182–1195. doi: 10.1080/03605302.2015.1010211
![]() |
[17] |
D. Salort, The Schrödinger equation type with a nonelliptic operator, Commun. Part. Diff. Eq., 32 (2007), 209–228. doi: 10.1080/03605300601128074
![]() |
[18] |
G. Staffilani, D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Commun. Part. Diff. Eq., 27 (2002), 1337–1372. doi: 10.1081/PDE-120005841
![]() |
[19] |
H. Wang, B. Li, Solitons for a generalized variable-coefficient nonlinear Schrödinger equation, Chinese Phys. B, 20 (2011), 040203. doi: 10.1088/1674-1056/20/4/040203
![]() |
[20] |
C. L. Zheng, Y. Li, Exact projective solutions of a generalized nonlinear Schrödinger system with variable parameters, Chinese Phys. B, 21 (2012), 70305. doi: 10.1088/1674-1056/21/7/070305
![]() |
1. | Caterina Balzotti, Maya Briani, Estimate of traffic emissions through multiscale second order models with heterogeneous data, 2022, 17, 1556-1801, 863, 10.3934/nhm.2022030 | |
2. | Mohamed Benyahia, Massimiliano D. Rosini, A macroscopic traffic model with phase transitions and local point constraints on the flow, 2017, 12, 1556-181X, 297, 10.3934/nhm.2017013 | |
3. | Mauro Garavello, Benedetto Piccoli, Boundary coupling of microscopic and first order macroscopic traffic models, 2017, 24, 1021-9722, 10.1007/s00030-017-0467-5 |