Processing math: 100%
Research article Special Issues

Long-time stability of the quantum hydrodynamic system on irrational tori

  • Received: 18 May 2021 Accepted: 26 July 2021 Published: 09 August 2021
  • We consider the quantum hydrodynamic system on a d-dimensional irrational torus with d=2,3. We discuss the behaviour, over a "non-trivial" time interval, of the Hs-Sobolev norms of solutions. More precisely we prove that, for generic irrational tori, the solutions, evolving form ε-small initial conditions, remain bounded in Hs for a time scale of order O(ε11/(d1)+), which is strictly larger with respect to the time-scale provided by local theory. We exploit a Madelung transformation to rewrite the system as a nonlinear Schrödinger equation. We therefore implement a Birkhoff normal form procedure involving small divisors arising form three waves interactions. The main difficulty is to control the loss of derivatives coming from the exchange of energy between high Fourier modes. This is due to the irrationality of the torus which prevents to have "good separation'' properties of the eigenvalues of the linearized operator at zero. The main steps of the proof are: (i) to prove precise lower bounds on small divisors; (ii) to construct a modified energy by means of a suitable high/low frequencies analysis, which gives an a priori estimate on the solutions.

    Citation: Roberto Feola, Felice Iandoli, Federico Murgante. Long-time stability of the quantum hydrodynamic system on irrational tori[J]. Mathematics in Engineering, 2022, 4(3): 1-24. doi: 10.3934/mine.2022023

    Related Papers:

    [1] Mogtaba Mohammed, Mamadou Sango . Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14(2): 341-369. doi: 10.3934/nhm.2019014
    [2] Catherine Choquet, Ali Sili . Homogenization of a model of displacement with unbounded viscosity. Networks and Heterogeneous Media, 2009, 4(4): 649-666. doi: 10.3934/nhm.2009.4.649
    [3] Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353
    [4] Liselott Flodén, Jens Persson . Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks and Heterogeneous Media, 2016, 11(4): 627-653. doi: 10.3934/nhm.2016012
    [5] Erik Grandelius, Kenneth H. Karlsen . The cardiac bidomain model and homogenization. Networks and Heterogeneous Media, 2019, 14(1): 173-204. doi: 10.3934/nhm.2019009
    [6] Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343
    [7] Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049
    [8] Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010
    [9] Didier Georges . Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285. doi: 10.3934/nhm.2009.4.267
    [10] Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1
  • We consider the quantum hydrodynamic system on a d-dimensional irrational torus with d=2,3. We discuss the behaviour, over a "non-trivial" time interval, of the Hs-Sobolev norms of solutions. More precisely we prove that, for generic irrational tori, the solutions, evolving form ε-small initial conditions, remain bounded in Hs for a time scale of order O(ε11/(d1)+), which is strictly larger with respect to the time-scale provided by local theory. We exploit a Madelung transformation to rewrite the system as a nonlinear Schrödinger equation. We therefore implement a Birkhoff normal form procedure involving small divisors arising form three waves interactions. The main difficulty is to control the loss of derivatives coming from the exchange of energy between high Fourier modes. This is due to the irrationality of the torus which prevents to have "good separation'' properties of the eigenvalues of the linearized operator at zero. The main steps of the proof are: (i) to prove precise lower bounds on small divisors; (ii) to construct a modified energy by means of a suitable high/low frequencies analysis, which gives an a priori estimate on the solutions.



    Homogenization theory has become an important tool in the investigation of processes taking place in highly heterogenous media ranging from soil to the most advanced aircraft the construction of which uses composite materials. So far, the problems solved by means of homogenization have mainly involved deterministic partial differential equations (PDEs) and the homogenization of PDEs with randomly oscillating coefficients; the great wealth of results obtained over several decades on problems of diverse classes and methodologies can be found for instance in [9,6,40,41,23,34,22,49,31,17,4,32,36,46,50,33], for the deterministic case and [13,14,18,20,24,37,19,47,48]. for the random case. Fundamental methods were subsequently developed such as the method of asymptotic expansions ([9], [6], [40], [41]), the two scale-convergence ([4], [32]), Tartar method of oscillating test functions and H-convergence ([49]), the asymptotic method for non periodically perforated domains ([23], [46]), G-convergence ([36]) and Γ-convergence developed by De Giorgi and his students; relevant extensions of some of these methods, including their random counterparts, have also emerged in recent times. One rapidly developping important branch of homogenization is that of numerical homogenization; see [1], [2].

    However physical processes under random fluctuations are better modelled by stochastic partial differential equations (SPDEs). It was therefore natural to consider homogenization of this very important class of PDEs. Research in this direction is still at its infancy, despite the importance of such problems in both applied and fundamental sciences. Some relevant interesting work have recently been undertaken, mainly for parabolic SPDEs; see for instance [3,8,10,11,21,43,44]. We also note the closely related work [3,25,15,16] dealing with stochastic homogenization for SPDEs with small parameters. The list of references is of course not exhaustive, but a representation of the main trends in the field.

    The homogenization of hyperbolic SPDEs was initiated in [27], [28,29], [30] where the authors studied the homogenization of Dirichlet problems for linear hyperbolic equation with rapidly oscillating coefficients using the method of the two-scale convergence pioneered by Nguetseng in [32] and developed by Allaire in [4] and [5]; they also dealt with the linear Neumann problem by means of Tartar's method and obtained the corresponding corrector results within these settings; [30] deals with a semilinear hyperbolic SPDE by Tartar's method.

    In the present work, following the two-scale convergence method, we investigate the homogenization of a non-linear hyperbolic equation with nonlinear damping, where the intensity of the noise is also nonlinear and is assumed to satisfy Lipschitz's condition. Our investigation relies on crucial compactness results of analytic (Aubin-Lions-Simon's type) and probabilistic (Prokhorov and Skorokhod fundamental theorems) nature. It should be noted that these methods extend readily to the case when Lipschitz condition on the intensity of the noise is replaced by a mere continuity. In contrast to the linear and the semilinear cases considered in previous papers, the type of nonlinear damping and nonlinear noise in the present paper leads to new challenges in obtaining uniform a priori estimates as well as in the passage to the limit. It should be noted that the process of damping in mechanical systems is a crucial stabilizing factor when the system is subjected to very extreme tasks; mathematically this translates in some regularizing effects on the solution of the governing equations.

    We are concerned with the homogenization of the initial boundary value problem with oscillating data, referred to throughout the paper as problem (Pϵ):

    duϵtdiv(Aϵ(x)uϵ)dt+B(t,uϵt)dt=f(t,x,x/ε,uϵ)dt+g(t,x,x/ε,uϵt)dW in (0,T)×Quϵ=0 on(0,T)×Q,uϵ(0,x)=aϵ(x), uϵt(0,x)=bϵ(x) in Q,

    where uϵt denotes the partial derivative uϵ/t of uϵ with respect to t, ϵ>0 is a sufficiently small parameter which ultimately tends to zero, T>0, Q is an open and bounded (at least Lipschitz) subset of Rn, W=(W(t))(t[0,T]) an m-dimensional standard Wiener process defined on a given filtered complete probability space (Ω,F,P,(Ft)0tT); E denotes the corresponding mathematical expectation. For a physical motivation, we refer to [27,28], where the authors discussed real life processes of vibrational nature subjected to random fluctuations; for instance the nonlinear term B(t,uϵt) stands for damping effects, the term f(t,x,x/ε,uϵ) is the oscillating regular part of the force acting on the system and depending linearly on uϵ, while the term g(t,x,x/ε,uϵt)dW represents the oscillating random component of the force; it depends on uεt. More precise assumptions on the data will be provided shortly.

    Few words about the difference between the current work and previous works by the authors on homogenization of SPDEs. Compared to [27,28,29,30], the structure of problem (Pε) is dominated by nonlinear terms such as the damping B(t,uϵt), leading to Lp(Q)-like norms whose combination with the predominently L2-like norms coming from the other terms requires special care, both in the derivation of the a priori estimates, as well as in the passage to the limit. Though, two-scale convergence method is also used in the paper [27], the model there is essentially linear. The works [43,44] deal with stochastic parabolic equations in domains with fine grained boundaries, where no conditions of periodicity hold and the methodology implemented there is a stochastic counterpart of Kruslov-Marchenko's [23] and Skrypnik's [46] homogenization theories based on potiential theory; for instance the homogenized problems in [43,44] involve an additional term of capacitary type. The investigation of a hyperbolic counterpart of these works has still not been undertaken and is somehow overdue. Finally, compared with the above mentioned works, the current paper involves a simpler proof of the convergence of the stochastic nonlinear term (its integral) thanks to a blending of two-scale convergence with a regularizing argument and a result on convergence of stochastic integrals due to Rozovskii [39,Theorem 4,P 63].

    We now introduce some functions spaces needed in the sequel.

    For 2p, we define the Sobolev space

    W1,p(Q)={ϕ:ϕLp(Q),ϕxjLp(Q),j=1,...,n},

    where the derivatives exist in the weak sense, and Lp(Q) is the usual Lebesgue space. For p=2,W1,2(Q) is denoted by H1(Q). By W1,p0(Q) we denote the space of elements ψW1,p(Q) such that ψ|Q=0 with the W1,p(Q)-norm. By (ϕ,ψ) we denote the inner product in L2(Q) and by .,. we denote the duality pairing between W1,p0(Q) and W1,p(Q) (1p+1p = 1). We also consider the following spaces, H(Q)={uH1(Q)|MQ(u)=0} where MQ(u) is the mean value of u over Q, Cper(Y) the subspace of C(Rn) of Y- periodic functions where Y=(0,l1)×...×(0,ln). Let H1per(Y) be the closure of Cper(Y) in the H1-norm, and Hper(Y) the subspace of H1per(Y) with zero mean on Y.

    For a Banach space X, and 1p, we denote by Lp(0,T;X) the space of measurable functions ϕ:t[0,T]ϕ(t)X and p-integrable with the norm

    ||ϕ||Lp(0,T;X)=(T0||ϕ||pXdt)1p,0p<.

    When p=, L(0,T;X) is the space of all essentially bounded functions on the closed interval [0,T] with values in X equipped with the norm

    ϕL(0,T;X)=esssup[0,T]ϕX<.

    For 1q,p<, Lq(Ω,F,P,Lp(0,T;X)) ((Ω,F,P) is a probability space with a filtration {Ft}t[0,T]) consists of all random functions ϕ:(ω,t)Ω×[0,T]ϕ(ω,t,)X such that ϕ(ω,t,x) is progressively measurable with respect to (ω,t). We endow this space with the norm

    ||ϕ||Lq(Ω,F,P;Lp(0,T;X))=(E||ϕ||qLp(0,T;X))1/q.

    When p=, the norm in the space Lq(Ω,F,P,L(0,T;X)) is given by

    ||ϕ||Lq(Ω,F,P;L(0,T;X))=(E||ϕ||qL(0,T;X))1/q.

    It is well known that under the above norms, Lq(Ω,F,P,Lp(0,T;X)) is a Banach space.

    We now impose the following hypotheses on the data.

    (A1) Aϵ(x)=A(xϵ)=(ai,j(xϵ))1i,jn is an n×n symmetric matrix, the components ai,j, are Yperiodic and there exists a constant α>0 such that

    ni,j=1ai,jξiξjαni=1ξ2i for, ξRn,ai,jL(Rn),i,j=1,,n.

    (A2) B(t,):uW1,p0(Q)W1,p(Q) such that

    (ⅰ) B(t,) is a hemicontinuous operator, i.e. λB(t,u+λv),w is a continuous operator for all t(0,T) and all u,v,wW1,p0(Q);

    (ⅱ) There exists a constant γ>0 such that B(t,u),uγupW1,p0(Q) for a.e.t(0,T) and all uW1,p0(Q);

    (ⅲ) There exists a positive constant β such that B(t,u)W1,p(Q)βup1W1,p0(Q) for a.e.t(0,T) and all uW1,p0(Q);

    (ⅳ) B(t,u)B(t,v),uv0, for a.e.t(0,T) and all u,vW1,p0(Q);

    (ⅴ) The map tB(t,u) is Lebesgue measurable in (0,T) with values in W1,p(Q) for all uW1,p0(Q).

    (A3) We assume that f(t,x,y,w) is measurable with respect to (x,y) for any (t,w)(0,T)×Rn, continuous with respect to (t,w) for almost every (x,y)Q×Y, and Y-periodic with respect to y. Also there exists an Rn-valued function F=(Fi(t,x,y))1in such that f(t,x,y,w)=F(t,x,y)w. Furthermore,

    ||f(t,x,xε,w)||L2(Q)C||w||L2(Q), 

    for any (t,w,ε)(0,T)×L2(Q)×(0,), with the constant C independent of ε and t. A sufficient requirement for this condition to hold is that Fi(t,)L(Q×Y) for any t(0,T).

    (A4) aϵ(x)H10(Q), bϵ(x)L2(Q), for any ϵ>0.

    (A5) g(t,x,y,ϕ) is an m-dimensional vector-function whose components gj(t,x, y,ϕ) satisfy the following conditions:

    ● gj(t,x,y,ϕ) is Y-periodic with respect to y, measurable with respect to x and y for almost all t(0,T) and for all ϕL2(Q),

    ●  gj(t,x,y,ϕ) is continuous with respect to ϕ for almost all (t,x,y)(0,T)×Q×Y, and there exists a positive constant C independent of t, x and y, such that

    ||gj(t,x,y,ϕ)||L2(Q)C(1+||ϕ||L2(Q)), (1)

    and

    ● gj(t,x,y,) satisfies Lipschitz's condition

    |gj(t,x,y,s1)gj(t,x,y,s2)|L|s1s2|, (2)

    with the constant L independent of t, x and y.

    If ||gj(t,x,y,0)||L2(Q×Y)< for any i=1,...,m and any t(0,T), the condition (1) is redundant since it follows from the Lipschitz condition (2).

    From now on we use the following oscillating functions

    fϵ(t,x,w)=f(t,x,xε,w), gεj(t,x,ϕ)=gi(t,x,xε,ϕ).

    We now introduce our notion of solution; namely the strong probabilistic one.

    Definition 1.1. We define the strong probabilistic solution of the problem (Pϵ) on the prescribed filtered probability space (Ω,F,P,{Ft}t[0,T]) as a process

    uϵ:Ω×[0,T]H10(Q),

    satisfying the following conditions:

    (1) uϵ,uϵt are Ftmeasurable,

    (2)

    uϵL2(Ω,F,P;C(0,T;H10(Q)))uϵtL2(Ω,F,P;C(0,T;L2(Q)))Lp(Ω,F,P;Lp(0,T;W1,p0(Q))),

    (3) t[0,T], uϵ(t,.) satisfies the identity

    (uϵt(t,.),ϕ)(uϵt(0,.),ϕ)+t0(Aϵuϵ(s,.),ϕ)ds+t0Bϵ(s,uϵt),ϕds=t0(fϵ(s,.,uϵ),ϕ)ds+(t0gϵ(s,.,uϵt)dW(s),ϕ),ϕCc(Q).

    The problem of existence and uniqueness of a strong probabilistic solution of (Pϵ) was dealt with in [38]. The relevant result is

    Theorem 1.2. Suppose that the assumptions (A1)(A5) hold and let p2. Then for fixed ϵ>0, the problem (Pϵ) has a unique strong probabilistic solution uϵ in the sense of Definition 1.1.

    Our goal is to show that as ϵ tends to zero the sequence of solutions (uϵ) converge in a suitable sense to a solution u of the following SPDE

    (P){dutdivA0udt+B(t,ut)dt=˜f(t,x,u)dt+˜g(t,x,ut)d˜W in Q×(0,T),u=0 onQ×(0,T),u(0,x)=a(x)H10(Q),ut(0,x)=b(x)L2(Q),

    where A0 is a constant elliptic matrix defined by

    A0=1|Y|Y(A(y)A(y)χ(y))dy,

    χ(y)Hper(Y) is the unique solution of the following boundary value problem:

    {divy(A(y)yχ(y))=yA(y)inYχisYperiodic,

    for any λRn and Y=(0,l1)×...×(0,ln),

    ˜f(t,x,u)=1|Y|YF(t,x,y)[xu(t,x)+yu1(t,x,y)]dy,˜g(t,x,ut)=1|Y|Yg(t,x,y,ut)dy,

    a and b are suitable limits of the oscillating initial conditions aϵ and bϵ, respectively, ˜W is an m-dimensional Wiener process

    Here and in the sequel, C will denote a constant independent of ϵ. In the following lemma, we obtain the energy estimates associated to problem (Pϵ).

    Lemma 2.1. Under the assumptions (A1)-(A5), the solution uϵ of (Pϵ) satisfies the following estimates:

    Esup0tTuϵ(t)2H10(Q)C,Esup0tTuϵt(t)2L2(Q)C, (3)

    and

    ET0uϵt(t)pW1,p0(Q)C. (4)

    Proof. The following arguments are used modulo appropriate stopping times. Itˆo's formula and the symmetry of A give

    d[uϵt2L2(Q)+(Aϵuϵ,uϵ)]+2B(t,uϵt),uϵt)dt=2(fϵ(t,x,uϵ)),uϵt)dt+2(gϵ(t,x,uϵt),uϵt)dW+mj=0gϵj(t,x,uϵt)2L2(Q)dt.

    Integrating over (0,t),tT, we get

    uϵt(t)2L2(Q)+(Aϵuϵ(t),uϵ(t))+2t0B(s,uϵt(s)),uϵt(s))ds=uϵ12L2(Q)+(Aϵuϵ0,uϵ0)+2t0(fϵ(s,x,uϵ),uϵt)ds+2t0(gϵ(s,x,uϵt),uϵt)dW+mj=0t0gϵj(s,x,uϵt)2L2(Q)ds.

    Using the assumptions (A1), (A2)(ii), (A5) and taking the supremum over t[0,T] and the expectation on both sides of the resulting relation, we have

    E[sup0tTuϵt(t)2L2(Q)+sup0tTuϵ(t)2H10(Q)+2γt0uϵt(s)pW1,p0(Q)ds]C[C1+t0uϵt(t)2L2(Q)dt+2t0|(fϵ(s,x,uϵ),uϵt)|ds+2sup0st|s0(gϵ(σ,x,uϵt),uϵt)dW|], (5)

    where

    C1=C(T)+uϵ12L2(Q)+uϵ02H10(Q).

    Using assumptions (A3), thanks to Cauchy-Schwarz's and Young's inequalities, we have

    ET0|(fϵ(s,x,uϵ),uϵt)|dtET0uϵL2(Q)uϵtL2(Q)dtEsup0tTuϵt(t)L2(Q)T0uϵL2(Q)dtϱEsup0tTuϵt(t)2L2(Q)+C(ϱ)T(T0uϵ2L2(Q)dt), (6)

    where ϱ>0. Thanks to Burkholder-Davis-Gundy's inequality, followed by Cauchy-Schwarz's inequality, the last term in 5 can be estimated as

    Esup0st|s0(gϵ(σ,x,uϵt(σ)),uϵt(σ))dW(σ)|CE(t0(gϵ(σ,x,uϵt(σ)),uϵt(σ))2dσ)12CE(sup0stuϵt(s)L2(Q)t0gϵ(σ,x,uϵt(σ))2L2(Q)dσ)12.

    Again using Young's inequality and the assumptions (A5), we get

    2Esup0st|s0(gϵ(σ,x,uϵt(σ)),uϵt(σ))dW|ϱEsup0stuϵt(s)2L2(Q)+C(ϱ)T0gϵ(σ,uϵt(σ))2L2(Q)dσϱEsup0stuϵt(s)2L2(Q)+C(ϱ)(T)+C(ϱ)T0uϵt(σ)2L2(Q)dσ, (7)

    for ϱ>0. Combining the estimates 6, 7, 5 and assumption (A5) and taking ϱ sufficiently small, we infer that

    Esup0tTuϵt(t)2L2(Q)+Esup0tTuϵ(t)2H10(Q)+CEt0uϵt(s)pW1,p0(Q)dsC(T,C1,C2)+CEt0[uϵt(s)2L2(Q)+uϵ(s)2H10(Q)]dt, (8)

    Using Gronwall's inequality, we have

    E[sup0tTuϵt(t)2L2(Q)+sup0tTuϵ(t)2H10(Q)]C,

    and subsequently

    Et0uϵt(s)pW1,p0(Q)dsC.

    The proof is complete.

    The following lemma will be of great importance in proving the tightness of probability measures generated by the solution of problem (Pϵ) and its time derivative.

    Lemma 2.2. Let the conditions of Lemma 2.1 be satisfied and let p2. Then there exists a constant C>0 such that

    Esup|θ|δT0uϵt(t+θ)uϵt(t)pW1,p(Q)dtCδp/p,

    for any ϵ>0 and 0<δ<1.

    Proof..   We consider that div(Aϵϕ) has been restricted to the space W1,p(Q) and that the restriction induces a bounded mapping from W1,p0(Q) to W1,p(Q).

    Assume that uϵt is extended by zero outside the interval [0,T] and that θ>0. We write

    uϵt(t+θ)uϵt(t)=t+θtdiv(Aϵuϵ)dst+θtB(s,uϵt(s))ds+t+θtfϵ(s,x,uϵ)ds+t+θtgϵ(s,uϵt(s))dW(s).

    Then

    uϵt(t+θ)uϵt(t)W1,p(Q)t+θtdiv(Aϵuϵ)dsW1,p(Q)+t+θtB(s,uϵt(s))dsW1,p(Q)+t+θtfϵ(s,x,uϵ)dsW1,p(Q)+t+θtgϵ(s,uϵt(s))dW(s)W1,p(Q). (9)

    Firstly, thanks to assumption (A1), we have

    t+θtdiv(Aϵuϵ)dsW1,p(Q)supϕW1,p0(Q):ϕ=1|t+θtdiv(Aϵuϵ)ds,ϕW1,p(Q),W1,p0(Q)|=supϕW1,p0(Q):ϕ=1Qt+θtAϵuϵϕdxdsCsupϕW1,p0(Q):ϕ=1t+θtuϵLp(Q)ϕLp(Q)dsCt+θtuϵL2(Q)dsCθ1/2(t+θtuϵ2L2(Q)ds)1/2, (10)

    where we have used the fact that p2.

    Secondly, we use assumption (A2)(iii), estimate 4 and H¨older's inequality to get

    t+θtB(s,uϵt(s))dsW1,p(Q)supϕW1,p0(Q):ϕ=1|t+θtB(s,uϵt(s))ds,ϕW1,p(Q),W1,p0(Q)|supϕW1,p0(Q):ϕ=1t+θtB(s,uϵt(s))W1,p(Q)ϕW1,p0(Q)dsCθ1/p(t+θtuϵtpW1,p0(Q)ds)1/p. (11)

    Thirdly,

    t+θtfϵ(s,x,uϵ)dsW1,p(Q)t+θtfϵ(s,x,uϵ)dsL2(Q)Ct+θtuϵL2(Q)θ1/2(t+θtuϵ2L2(Q)ds)1/2, (12)

    where we have used assumption (A3).

    Using 10, 11 and 12 in 9 raised to the power p, for fixed δ>0, we get

    Esup0<θδT0uϵt(t+θ)uϵt(t)pW1,p(Q)dtCEsup0<θδθp/2T0(t+θtuϵ2L2(Q)ds)p/2dt+CEsup0<θδθp/pT0t+θtuϵtpW1,p0(Q)dsdt+Esup0<θδT0t+θtgϵ(s,uϵt(s)dW(s)pW1,p(Q)dt. (13)

    We now estimate the term involving the stochastic integral.

    We use the embedding

    W1,p0(Q)L2(Q)W1,p(Q)

    to get the estimate

    Esup0<θδT0||t+θtgϵ(s,uϵt(s)dW(s)||pW1,pdtEsup0<θδT0||t+θtgϵ(s,uϵt(s)dW(s)||pL2(Q)dt. (14)

    Thanks to Fubini's theorem and H¨older's inequality, we have

    ET0sup0<θδ||t+θtgϵ(s,uϵt(s)dW(s)||pL2(Q)dtT0(QEsup0<θδ(t+θtgϵ(s,uϵt(s))dW(s))2dx)p/2dtT0(Et+δt||gϵ(s,uϵt(s)||2L2(Q)ds)p/2dt, (15)

    where we have used Burkholder-Davis-Gundy's inequality. We now invoke assumption (A5) and estimate 3 to deduce from 14 and 15 that

    Esup0<θδT0||t+θtgϵ(s,uϵt(s)dW(s)||pW1,pdtT0[Et+δt(1+||uϵt(s)||2L2(Q))ds]p/2dtCTδp/2. (16)

    For the first term in the right-hand side of 13, we use Fubini's theorem, H¨older's inequality and estimate 3 to get

    Esup0<θδθp/2T0(t+θtuϵ2L2(Q)ds)p/2δp/2T0(Et+δtuϵ2L2(Q)ds)p/2CTδp. (17)

    The second term on the right hand side of 13 is estimated using 4 and we get

    Esup0<θδθp/pT0t+θtuϵtpW1,p0(Q)dsdtδp/pT0ET0uϵtpW1,p0(Q)dsdtCδp/p. (18)

    Combining 13, 16, 17 and 18, and taking into account the fact that the similar estimates hold for θ<0, we conclude that

    Esup|θ|δT0uϵt(t+θ)uϵt(t)pW1,p(Q)dtCδp/p.

    This completes the proof.

    The following Lemmas are needed in the proof of the tightness and the study of the properties of the probability measures generated by the sequence (W,uϵ,uϵt).

    We have from [45]

    Lemma 3.1. Let B0,  B and B1 be some Banach spaces such that B0B B1 and the injection B0B is compact. For any 1p,q, and 0<s1 let E be a set bounded in Lq(0,T;B0)Ns,p(0,T;B1), where

    Ns,p(0,T;B1)={vLp(0,T;B1):suph>0hsv(t+h)v(t)Lp(0,Tθ,B1)<}.

    Then E is relatively compact in Lp(0,T;B)

    The following two lemmas are collected from [12]. Let S be a separable Banach space and consider its Borel σ-field to be B(S). We have

    Lemma 3.2. (Prokhorov) A sequence of probability measures (Πn)nN on (S,B(S)) is tight if and only if it is relatively compact.

    Lemma 3.3. (Skorokhod) Suppose that the probability measures (μn)nN on (S,B(S)) weakly converge to a probability measure μ. Then there exist random variables ξ,ξ1,ξn,, defined on a common probability space (Ω,F,P), such that L(ξn)=μn and L(ξ)=μ and

    limnξn=ξ,Pa.s.;

    the symbol L() stands for the law of .

    Let us introduce the space Z=Z1×Z2, where

    Z1={ϕ:sup0tTϕ(t)2H10(Q)C1,sup0tTϕ(t)2L2(Q)C1},

    and

    Z2={ψ:sup0tTψ(t)2L2(Q)C3,T0ψ(t)pW1,p0(Q)dtC4,T0ψ(t+θ)ψ(t)pW1,p(Q)C5θ1/p}.

    We endow Z with the norm

    (ϕ,ψ)Z=ϕZ1+ψZ2=sup0tTϕ(t)L2(Q)+sup0tTϕH10(Q)+sup0tTψ(t)2L2(Q)+(T0ψ(t)pW1,p0(Q)dt)1p+(supθ>01θ1/pT0ψ(t+θ)ψ(t)pW1,p(Q))1p.

    Lemma 3.4. The above constructed space Z is a compact subset of L2(0,T;L2(Q))×L2(0,T;L2(Q)).

    Proof. Lemma 3.1 together with suitable arguments due to Bensoussan [7] give the compactness of Z1 and Z2 in L2(0,T;L2(Q)).

    We now consider the space X=C(0,T;Rm)×L2(0,T;L2(Q))×L2(0,T;L2(Q)) and B(X) the σalgebra of its Borel sets. Let Ψϵ be the (X,B(X))-valued measurable map defined on (Ω,F,P) by

    Ψϵ:ω(W(ω),uϵ(ω),uϵt(ω)).

    Define on (X,B(X)) the family of probability measures (Πϵ) by

    Πϵ(A)=P(Ψ1ϵ(A))for allAB(X).

    Lemma 3.5. The family of probability measures {Πϵ:ϵ>0} is tight in (X,B(X)).

    Proof. We carry out the proof following a long the lines of the proof of [27,lemma 7]. For δ>0, we look for compact subsets

    WδC(0,T;Rm),DδL2(0,T;L2(Q)),EδL2(0,T;L2(Q))

    such that

    Πϵ{(W,uϵ,uϵt)Wδ×Dδ×Eδ}1δ.

    This is equivalent to

    P{ω:W(,ω)Wδ,uϵ(,ω)Dδ,uϵt)(,ω)Eδ}1δ,

    which can be proved if we can show that

    P{ω:W(,ω)Wδ}δ,P{uϵ(,ω)Dδ}δ,P{uϵt)(,ω).Eδ}δ.

    Let Lδ be a positive constant and nN. Then we deal with the set

    Wδ={W()C(0,T;Rm):supt,s[0,T]n|W(s)W(t)|Lδ:|st|Tn1}.

    Using Arzela's theorem and the fact that Wδ is closed in C(0,T;Rm), we ensure the compactness of Wδ in C(0,T;Rm). From Markov's inequality

    P(ω:η(ω)α)E|η(ω)|kαk, (19)

    where η is a nonnegative random variable and k a positive real number, we have

    P{ω:W(,ω)Wδ}P[n=1(supt,s[0,T]|W(s)W(t)|Lδn:|st|Tn1)]n=0P[n6j=1(supTjn6tT(j+1)n6|W(s)W(t)|Lδn)].

    But

    E(Wi(t)Wi(s))2k=(2k1)!!(ts)k,k=1,2,3,,

    where (2k1)!!=13(2k1) and Wi denotes the i-th component of W.

    For k=4, we have

    P{ω:W(.,ω)Wδ}n=0n6j=1(nLδ)4E(supTjn6tT(j+1)n6|W(t)W(jTn6)|4)Cn=0n6j=1(nLδ)4(Tn6)2=CT2(Lδ)4n=0n2.

    Choosing (Lδ)4=(n2)13CT2δ, we have

    P{ω:W(.,ω)Wδ}δ3.

    Now, let Kδ,Mδ be positive constants. We define

    Dδ={z:sup0tTz(t)2H10(Q)Kδ,sup0tTz(t)2L2(Q)Mδ}.

    Lemma 3.4 shows that Dδ is compact subset of L2(0,T;L2(Q)), for any δ>0. It is therefore easy to see that

    P{uϵDδ}P{sup0tTuϵ(t)2H10(Q)Kδ}+P{sup0tTuϵt(t)2L2(Q)Mδ}.

    Markov's inequality 19 gives

    P{uϵDδ}1KδEsup0tTuϵ(t)2H10(Q)+1MδEsup0tTuϵt(t)2L2(Q)CKδ+CMδ=δ3.

    for Kδ=Mδ=6Cδ.

    Similarly, we let μn,νm be sequences of positive real numbers such that μn,νn0 as n, nμp/pnνn< (for the series to converge we can choose νn=1/n2, μn=1/nα, with αp/p>4) and define

    Bδ={v:sup0tTv(t)2L2(Q)Kδ,T0v(t)pW1,p0(Q)dtLδ,supθμnT0v(t+θ)v(t)pW1,p(Q)dtνnMδ}.

    Owing to Proposition 3.1 in [7], Bδ is a compact subset of L2(0,T;L2(Q)) for any δ>0. We have

    P{uϵtBδ}P{sup0tTuϵt(t)2L2(Q)Kδ}+P{T0uϵt(t)pW1,p0(Q)dtLδ}+P{supθμnT0uϵt(t+θ)uϵt(t)pW1,p(Q)dtνnMδ}.

    Again thanks to 19, we obtain

    P{uϵtBδ}1KδEsup0tTuϵt(t)2L2(Q)+1LδET0uϵt(t)pW1,p0(Q)dt+n=01νnMδE{supθμnT0uϵt(t+θ)uϵt(t)pW1,p(Q)dt}CKδ+CLδ+CMδμp/pnνn=δ3δ,

    for Kδ=9Cδ, Lδ=9Cδ and Mδ=9Cμp/pnνnδ. This completes the proof.

    From Lemmas 3.2 and 3.5, there exist a subsequence {Πϵj} and a measure Π such that

    ΠϵjΠ

    weakly. From lemma 3.3, there exist a probability space (˜Ω,˜F,˜P) and X-valued random variables (Wϵj,uϵj,uϵjt),(˜W,u,ut) such that the probability law of (Wϵj,uϵj,uϵjt) is Πϵj and that of (˜W,u,ut) is Π. Furthermore, we have

    (Wϵj,uϵj,uϵjt)(˜W,u,ut)inX,˜Pa.s.. (20)

    Let us define the filtration

    ~Ft=σ{˜W(s),u(s),ut(s)}0st.

    We show that ˜W(t) is an ~Ft-wiener process following [7] and [42]. Arguing as in [42], we get that (Wϵj,uϵj,uϵjt) satisfies ˜Pa.s. the problem (Pϵj) in the sense of distributions.

    In this section, we state some key facts about the powerful two-scale convergence invented by Nguetseng [32].

    Definition 4.1. A sequence {vϵ} in Lp(0,T;Lp(Q))(1<p<) is said to be two-scale converge to v=v(t,x,y), vLp(0,T;Lp(Q×Y)), as ϵ0 if for any ψ=ψ(t,x,y)Lp((0,T)×Q;Cper(Y)), one has

    limϵ0T0Qvϵψϵdxdt=1|Y|T0Q×Yv(t,x,y)ψ(t,x,y)dydxdt, (21)

    where ψϵ(t,x)=ψ(t,x,xϵ). We denote this by {vϵ}v2-s inLp(0,T;Lp(Q)).

    The following result deals with some of the properties of the test functions which we are considering; it is a modification of Lemma 9.1 from [17,p.174].

    Lemma 4.2. (i) Let ψLp((0,T)×Q;Cper(Y)),1<p<. Then ψ(,,ϵ)Lp(0,T;Lp(Q)) with

    ψ(,,ϵ)Lp(0,T;Lp(Q))ψ(,,)Lp((0,T)×Q;Cper(Y)) (22)

    and

    ψ(,,ϵ)1|Y|Yψ(,,y)dyweakly inLp(0,T;Lp(Q)).

    Furthermore if ψL2((0,T)×Q;Cper(Y)), then

    limϵ0T0Q[ψ(t,x,xϵ)]2dxdt=1|Y|T0Q×Y[ψ(t,x,y)]2dtdxdy. (23)

    (ii) If ψ(t,x,y)=ψ1(t,x)ψ2(y), ψ1Lp(0,T;Ls(Q)),ψ2Lrper(Y),1s,r< are such that

    1r+1s=1p,

    then ψ(,,ϵ)Lp(0,T;Lp(Q)) and

    ψ(,,ϵ)ψ1(,)|Y|Yψ2(y)dyweakly inLp(0,T;Lp(Q)).

    The following theorems are of great importance in obtaining the homogenization result; for their proofs, we refer to [4], [17] and [26].

    Theorem 4.3. Let {uϵ} be a sequence of functions in L2(0,T;L2(Q)) such that

    uϵL2(0,T;L2(Q))<. (24)

    Then up to a subsequence uϵ is two-scale convergent in L2(0,T;L2(Q)).

    Theorem 4.4. Let {uϵ} be a sequence satisfying the assumptions of Theorem 4.3. Furthermore, let {uϵ}L2(0,T;H10(Q)) be such that

    uϵL2(0,T;H10(Q))<.

    Then, up to a subsequence, there exists a couple of functions (u,u1) with uL2(0,T;H10(Q)) and u1L2((0,T)×Q;Hper(Y)) such that

    uϵu 2s inL2(0,T;L2(Q)), (25)
    uϵxu+yu1  2s inL2(0,T;L2(Q)). (26)

    The following lemma is crucial in obtaining the convergence of the stochastic integral in the next section

    Lemma 4.5. The oscillating data given in (A5) satisfies the following convergence

    g(t,x,xε,uεt)˜g(t,x,ut)=:1|Y|Yg(t,x,y,ut)dy  weakly in L2((0,T)×Q),  ˜Pa.s.. (27)

    Proof. Test with ψ(t,x,xε), where ψ(t,x,y)L2((0,T)×Q,Cper(Y)), as follows:

    T0Qg(t,x,xε,uεt)ψ(t,x,xε)dxdt=Iε1+Iε2,

    where

    Iε1=T0Q[g(t,x,xε,uεjt)g(t,x,xε,ut)]ψ(t,x,xε)dxdt,Iε2=T0Qg(t,x,xε,ut)ψ(t,x,xε)dxdt.

    Then

    Iε1||ψ(t,x,xε)||L2((0,T)×Q)||g(t,x,xε,uεt)g(t,x,xε,ut)||L2((0,T)×Q)C||uεtut||L2((0,T)×Q),

    thanks to the Lipschitz condition on g(t,x,). Now due to the strong convergence 20 of uεtut to zero in L2((0,T)×Q), ˜P-a.s., we get that Iε10, ˜Pa.s.

    Now we can apply 2-scale convergence for the limit of Iε2 and indeed

    limε0Iε2=T0QYg(t,x,y,ut)ψ(t,x,y)dxdt,˜Pa.s.

    Therefore

    g(t,x,xε,uεt)2sg(t,x,y,ut), ˜Pa.s. (28)

    and this implies the result.

    Remark 1. From the assumption (A5), 28 and 23, we have the following strong convergence

    limϵ0T0Q[g(t,x,xϵ,uϵt)]2dxdt=1|Y|T0Q×Y[g(t,x,y,ut)]2dtdxdy. (29)

    We will now study the asymptotic behaviour of the problem (Pϵj), when ϵj0.

    Theorem 5.1. Suppose that the assumptions on the data are satisfied. Let

    aϵja,weakly inH10(Q), (30)
    bϵjb,weakly inL2(Q). (31)

    Then there exist a probability space (˜Ω,˜F,˜P,(˜Ft)0tT) and random variables (uϵj,uϵjt,Wϵj) and (u,ut,˜W) such that the convergences 20 and 26 hold. Furthermore (u,ut,˜W) satisfies the homogenized problem (P).

    Proof. From estimates 3 and 4 and assumption (A2)(iii), we have the following convergences

    uϵjuweakly inL(0,T;H10(Q))ˆPa.s, (32)
    uϵjtutweakly inL(0,T;L2(Q))ˆPa.s, (33)
    uϵjtutweakly inLp(0,T;W1,p0(Q))ˆPa.s, (34)
    B(t,uϵjt)χweakly inLp(0,T;W1,p(Q))ˆPa.s.. (35)

    Now let us identify the limit in 35. By arguing as in [38,Lemma 2.6,p. 51], we get

    t0B(s,uϵjt),uϵjtdst0χ,utds,weakly inL1(Ω), t[0,T]. (36)

    Having this in hand, let vLp(0,T;W1,p0(Q)) and define

    χϵj=ˆET0B(t,uϵjt)B(t,v),uϵjtvdt. (37)

    From the monotonicity assumption (A2)(iv), we have χϵj0. Now using 34, 35 and 36 to pass to the limit in 37, we get

    ˆET0χB(t,v),utvdt0.

    For λ>0 and wLp(0,T;W1,p0(Q)), we can chose v(t)=ut(t)λw(t). Hence

    ˆET0χB(t,ut(t)λw(t)),w(t)dt0. (38)

    Using the hemicontinuty assumption (A2)(i), we have

    χB(t,ut(t)λw(t)),w(t)χB(t,ut(t)),w(t),  as λ0, ˆPa.s..

    Now, from assumptions (A2)(ii) and (A2)(v), we use the Lebesgue dominated convergence theorem to pass to the limit in 38. This implies

    ˆET0χB(t,ut(t)),w(t)dt0. (39)

    But the inequality 39 is true for all w(t)Lp(0,T;W1,p0(Q))). Therefore

    χ=B(t,ut(t),ˆPa.s..

    Testing problem (Pϵj) by the function ΦCc((0,T)×Q) and integrating the first term in the right-hand side by parts, we have

    T0QuϵjtΦt(t,x)dxdt+T0QAϵjuϵjΦdxdt+T0QBϵj(t,uϵjt),Φdxdt=T0Qfϵj(t,x,uϵj)Φdxdt+T0Qgϵj(t,x,uϵjt)ΦdxdWϵj, (40)

    Using estimate 3, the convergence 20 and Theorems 4.3 and 4.4, we show the two-scale convergence

    uϵjxu+yu1 2-s in,L2(0,T;L2(Q)).

    Let Φϵj(t,x)=ϕ(t,x)+ϵjϕ1(t,x,xϵj), where ϕCc((0,T)×Q) and ϕ1Cc((0,T)×Q;Cper(Y)). Then we can still consider Φϵj as test function in 40. Thus

    T0Quϵjt(t,x)[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt+T0QAϵj(x)uϵj(x,t)[xϕ(t,x)+ϵjxϕ1(t,x,xϵj)+yϕ1(t,x,xϵj)]dxdt+T0QB(t,uϵjt),[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt=T0Qfϵj(t,x,uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt+T0Qgϵj(t,uϵjt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj. (41)

    Let us deal with these terms one by one, when ϵj0. Thanks to estimate 22 and convergence 33, we have

    limϵj0T0Quϵjt(t,x)[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt=limϵj0T0Quϵjt(t,x)ϕt(t,x)dxdt+limϵj0ϵjT0Quϵjt(t,x)ϕ1t(t,x,xϵj)dxdt=T0Qut(t,x)ϕt(t,x)dxdt,˜Pa.s..

    The second term can be written as follows,

    limϵj0T0Quϵj(x,t)Aϵj[xϕ(t,x)+yϕ1(t,x,xϵj)]dxdt+limϵj0ϵjT0QAϵjuϵj(x,t)xϕ1(t,x,xϵj)dxdt. (42)

    Since AϵjL(Y) and xϕ(t,x)+yϕ1(t,x,y)L2per(Y;C(Q×(0,T))), we regard Aϵj[xϕ(t,x)+yϕ1(t,x,xϵj)] as a test function in the two-scale limit of the gradient in the first term in 42. Therefore

    limϵj0T0Quϵj(x,t)Aϵj[xϕ(t,x)+yϕ1(t,x,xϵj)]dxdt=1|Y|T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)+yϕ1(t,x,y)]dydxdt.

    Thanks to H¨older inequality, 22 and the fact that Aϵjuϵj is bounded in L(0,T;L2(Q), we have

    limϵj0ϵjT0QAϵjuϵj(x,t)xϕ1(t,x,xϵj)dxdt=0,˜Pa.s..

    Again, thanks to estimate 22 and convergence 35, we have

    limϵj0T0QB(t,uϵjt),[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt=limϵj0T0QB(t,uϵjt),ϕt(t,x)dxdt+limϵj0ϵjT0QB(t,uϵjt),ϕ1t(t,x,xϵj)dxdt=T0QB(t,ut),ϕt(t,x)dxdt,˜Pa.s..

    Let us write

    limϵj0T0Qfϵj(t,x,uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt=limϵj0T0QFϵj(t,x)uϵj[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt=limϵj0T0QFϵj(t,x)uϵjϕ(t,x)dxdt+limϵj0ϵjT0QFϵj(t,x).uϵjϕ1(t,x,xϵj)dxdt, (43)

    where we have used the assumption (A3). It is easy to see that the second term in 43, converges to zero. For the first term in the right-hand side of 43, we readily have

    limϵj0T0QFϵj(t,x)uϵjϕ(t,x)dxdt=1|Y|T0Q×YF(t,x,y)[xu+yu1]ϕ(t,x)dxdydt,˜Pa.s.. (44)

    Concerning the stochastic integral, we have

    ˜ET0Qgϵj(t,x,uϵjt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj=˜ET0Qgϵj(t,x,uϵjt)ϕ(t,x)dxdWϵj+˜EϵjT0Qgϵj(t,x,uϵjt)ϕ1(t,x,xϵj)dxdWϵj. (45)

    We deal with the term involving ϕ(t,x). We have

    ˜ET0Qϕ(t,x)g(t,x,xε,uεt)dWεt=˜ET0Qϕ(t,x)g(t,x,xε,uεt)d(Wεt˜Wt)+˜ET0Qϕ(t,x)g(t,x,xε,uεt)d˜Wt. (46)

    In view of the unbounded variation of Wεt˜Wt, the convergence of the first term on the right-hand side of 46 needs appropriate care, in order to take advantage of the ˜P a.s. uniform convergence of Wεt to ˜Wt in C([0,T]). We adopt the idea of regularization of g(t,x,xε,uεt) with respect to the variable t, by means of the following sequence

    gελ(uε)(t)=1λT0ρ(tsλ)g(s,x,xε,uεs(s))ds for λ>0, (47)

    where ρ is a standard mollifier.

    We have that gελ(uε)(t) is a differentiable function of t and satisfies the relations

    ˜ET0||gελ(uε)(t)||2L2(Q)dt˜ET0||g(t,x,xε,uεt(t))||2L2(Q)dt, for any λ>0, (48)

    and for any ε>0

    gελ(uε)(t)gε(t,x,uεt(t)) strongly in L2(˜Ω,˜F,˜P,L2((0,T)×Q)) as λ0. (49)

    We split the first term in the right-hand side of 46 as

    ˜ET0Qϕ(t,x)gε(t,x,uεt(t))dxd(Wεt˜Wt)=˜ET0Qϕ(t,x)gελ(uε)(t)dxd(Wεt˜Wt)+˜ET0Qϕ(t,x)[gε(t,x,uεt(t))gελ(uε)(t)]dxd(Wεt˜Wt). (50)

    Owing to 49, and Burkholder-Davis-Gundy's inequality, it readily follows that the second term in 50 is bounded by a function σ1(λ) which converges to zero as λ0. In the first term in the same relation, we take advantage of the differentiability of gελ with respect to t in order to integrate by parts. As a result we get

    ˜ET0Qϕ(t,x)gελ(uε)(t)d(Wεt˜Wt)=˜ET0Q(Wεt˜Wt)t[ϕ(t,x)gελ(uε)(t)]dt+˜EQϕ(T,x)gελ(uε)(T)(WεT˜WT). (51)

    Thanks to the conditions on ϕ and g and the uniform convergence obtained from the application of Skorokhod's compactness result, namely

    Wεt˜Wt uniformly in C([0,T]), ˜Pa.s., (52)

    we get that both terms on the right-hand side of 51 are bounded by the product σ2(λ)η1(ε) such that σ2(λ) is finite and η1(ε) vanishes as ε tends to zero. Summarizing these facts, we deduce from 50 that

    |˜ET0Qϕ(t,x)gε(t,x,uεt(t))dxd(Wεt˜Wt)|σ1(λ)+σ2(λ)η1(ε). (53)

    Thus, we infer from 46 that

    |˜ET0Qϕ(t,x)g(t,x,xε,uεt)dxdWεt˜ET0Qϕ(t,x)g(t,x,xε,uεt)d˜Wt|σ1(λ)+σ2(λ)η1(ε) (54)

    Taking the limit in 54 as ε0, we get

    limε0|˜ET0Qϕ(t,x)g(t,x,xε,uεt)dxdWεt˜ET0Qϕ(t,x)g(t,x,xε,uεt)d˜Wt|σ1(λ);

    but the left-hand side of this relation being independent of λ, we can pass to the limit on both sides as λ0, to arrive at the crucial statement

    limε0˜ET0Qϕ(t,x)g(t,x,xε,uεt)dxdWεt=limε0˜ET0Qϕ(t,x)g(t,x,xε,uεt)d˜Wt. (55)

    Owing to 27; that is

    g(t,x,xε,uεt)˜g(t,x,ut) weakly in L2((0,T)×Q), ˜Pa.s.,

    we can call upon the convergence theorem for stochastic integrals due to Rozovskii [39,Theorem 4,p. 63] to claim that

    ˜ET0Qϕ(t,x)g(t,x,xε,uεt)dWt˜ET0Qϕ(t,x)˜g(t,x,ut)d˜Wt.

    Hence, we deduce from 55 that,

    T0Qϕ(t,x)g(t,x,xε,uεt)dWεtT0Qϕ(t,x)˜g(t,x,ut)d˜Wt, ˜Pa.s.. (56)

    For the second term in 45, thanks to Burkholder-Davis-Gundy's inequality, the assumptions on gϵj and 22, we have

    limϵj0ϵj˜Esupt[0,T]|t0Qϕ1(t,x,xε)g(t,x,xε,uεt)dxdWϵjt|Climϵj0ϵj˜E(T0(Qϕ1(t,x,xε)g(t,x,xε,uεt)dx)2dt)12Climϵj0ϵj˜E(T0g(t,x,xε,uεt)L2(Q)ϕ1(t,x,xϵj)L2(Q)dt)12Climϵj0ϵj(T0g(t,x,xε,uεt)L2(Q)dt)120,˜Pa.s.

    Combining the above convergences, we obtain

    T0Qut(t,x)ϕt(t,x)dxdt+1|Y|T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)+yϕ1(t,x,y)]dydxdt+T0QB(t,ut),ϕ(t,x)dxdt=1|Y|T0Q×YF(t,x,y).[xu(t,x)+yu1(t,x,y)]ϕ(t,x)dxdydt+T0Q˜g(t,x,ut)ϕ(t,x)˜Wdx. (57)

    Choosing in the first stage ϕ=0 and after ϕ1=0, the problem 57 is equivalent to the following system of integral equations

    T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][yϕ1(t,x,y)]dydxdt=0, (58)

    and

    T0Qut(t,x)ϕt(t,x)dxdt+T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)]dydxdt+T0QB(t,ut),ϕ(t,x)dxdt=1|Y|T0Q×YF(t,x,y).[xu(t,x)+yu1(t,x,y)]ϕ(t,x)dxdydt+T0Q˜g(t,x,ut)ϕ(t,x)d˜Wdx. (59)

    By standard arguments (see [17]), equation 58 has a unique solution given by

    u1(t,x,y)=χ(y)xu(t,x)+~u1(t,x), (60)

    where χ(y), known as the first order corrector, is the unique solution to the following equation:

    {divy(A(y)yχ(y))=yA(y),inY,χisYperiodic. (61)

    As for the uniqueness of the solution of 59, we prove it as follows. Using 60 in 59, one obtains that 59 is the weak formulation of the equation

    dutA0Δudt+B(t,ut)dt=˜f(t,x,u)dt+˜g(t,x,ut)d˜W, (62)

    where

    A0=1|Y|Y(A(y)A(y)yχ(y))dy,˜f(t,x,u)=1|Y|YF(t,x,y)[xu(t,x)+yu1(t,x,y)]dy, (63)

    and

    ˜g(t,x,ut)=1|Y|Yg(t,x,y,ut)dy.

    But the initial boundary value problem corresponding to 62 has a unique solution by [38]. It remains to show that u(x,0)=a(x) and ut(x,0)=b(x). Notice that equation 40 is valid for Φϵj(t,x)=ϕ(t,x)+ϵjϕ1(t,x,xϵj) where ϕCc((0,T)×Q) and ϕ1Cc((0,T)×Q;Cper(Y)), such that ϕ(0,x)=v(x) and ϕ(T,x)=0. Thus, we have

    T0Quϵjt(t,x)[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt+T0QAϵj(x)uϵj(x,t)[xϕ(t,x)+ϵjxϕ1(t,x,xϵj)+yϕ1(t,x,xϵj)]dxdt+T0QB(t,uϵt),[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt=T0Qfϵj(t,x,uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt+T0Qgϵj(t,x,uϵt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj+Quϵjt(x,0)v(x)dx,

    where we pass to the limit, to get

    T0Qut(t,x)ϕt(t,x)dxdt+T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)+yϕ1(t,x,y)]dydxdt+T0QB(t,ut),ϕ(t,x)dxdt=1|Y|T0Q×YF(t,x,y)[xu(t,x)+yu1(t,x,y)]ϕ(t,x)dxdydt+T0Q˜g(t,x,ut)ϕ(t,x)˜Wdxdt+Qb(x)v(x)dx.

    The integration by parts, in the first term gives

    T0Qdut(t,x)ϕ(t,x)dx+Qut(x,0)v(x)dx+T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)+yϕ1(t,x,y)]dydxdt+T0QB(t,ut),ϕ(t,x)dxdt=1|Y|T0Q×YF(t,x,y)[xu(t,x)+yu1(t,x,y)]ϕ(t,x)dxdydt+T0Q˜g(t,x,ut)ϕ(t,x)˜Wdxdt+Qb(x)v(x)dx.

    In view of equation 57, we deduce that

    Qut(x,0)v(x)dx=Qb(x)v(x)dx,

    for any vCc(Q). This implies that ut(x,0)=b(x). For the other initial condition, we consider Φϵj(t,x)=ϕ(t,x)+ϵjϕ1(t,x,xϵj) as a test function in 40, where ϕCc((0,T)×Q) and ϕ1Cc((0,T)×Q;Cper(Y)), such that ϕ(0,x)=0,ϕt(0,x)=v(x) and ϕ(T,x)=0=ϕt(T,x). Integration by parts in the first term of 40, gives

    T0Quϵj(t,x)[ϕtt(t,x)+ϵjϕ1tt(t,x,xϵj)]dxdt+T0QAϵj(x)uϵj(x,t)[xϕ(t,x)+ϵjxϕ1(t,x,xϵj)+yϕ1(t,x,xϵj)]dxdt+T0QB(t,uϵt),[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt=T0Qfϵj(t,x,uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt+T0Qgϵj(t,x,uϵt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵjQuϵj(x,0)v(x)dx.

    Passing to the limit in this equation, we obtain

    T0Qu(t,x)ϕtt(t,x)dxdt+T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)+yϕ1(t,x,y)]dydxdt+T0QB(t,ut),ϕ(t,x)dxdt=1|Y|T0Q×,YF(t,x,y)[xu(t,x)+yu1(t,x,y)]ϕ(t,x)dxdydt+T0Q˜g(t,x,ut)ϕ(t,x)˜WdxdtQa(x)v(x)dx.

    We integrate by parts again to obtain

    T0Qut(t,x)ϕt(t,x)dxdtQu(x,0)v(x)dx+T0Q×YA(y)[xu(t,x)+yu1(t,x,y)][xϕ(t,x)+yϕ1(t,x,y)]dydxdt+T0QB(t,ut),ϕ(t,x)dxdt=1|Y|T0Q×YF(t,x,y)[xu(t,x)+yu1(t,x,y)]ϕ(t,x)dxdydt+T0Q˜g(t,x,ut)ϕ(t,x)˜WdxdtQa(x)v(x)dx.

    Using the same argument as before, we show that u(x,0)=a(x). We note the triple (˜W,u,ut) is a probabilistic weak solution of (P) which is unique. Thus by the infinite dimensional version of Yamada-Watanabe's theorem (see [35]), we get that (W,u,ut) is the unique strong solution of (P). Thus up to distribution (probability law) the whole sequence of solutions of (Pϵ) converges to the solution of problem (P). Thus the proof of Theorem 5.1 is complete.

    Let us introduce the energies associated with the problems (Pϵj) and (P), as follows:

    Eϵj(uϵj)(t)=12˜Euϵjt(t)2L2(Q)+12˜EQAϵjuϵj(x,t)uϵj(x,t)dx+˜Et0B(s,uϵjt),uϵjtdsE(u)(t)=12˜Eut(t)2L2(Q)+12˜EQA0u(x,t)u(x,t)dx+˜Et0B(s,ut),utds.

    But from Itˆo's formula, we have

    12˜Euϵjt(t)2L2(Q)+12˜EQAϵjuϵj(t)uϵj(t)dx+˜Et0B(s,uϵjt),uϵjtds=˜E[12uϵj12L2(Q)+12QAϵjuϵj0uϵj0dx+t0(fϵj(s,x,uϵj),uϵjt)ds+12t0gϵj(s,uϵjt)2L2(Q)ds+t0(gϵj(s,uϵjt),uϵjt)dWϵj].

    Thus

    Eϵj(uϵj)(t)=12˜Euϵj12L2(Q)+12˜EQAϵjuϵj0uϵj0dx+˜Et0(fϵj(s,x,uϵj),uϵjt)ds+12˜Et0gϵj(s,uϵjt)2L2(Q)ds, (64)
    E(u)(t)=12˜Eu12L2(Q)+12˜EQA0u0u0dx+˜Et0(˜f(s,x,u),ut)ds+12˜Et0˜g(s,x,ut)2L2(Q)ds. (65)

    The vanishing of the expectation of the stochastic integrals is due to the fact that (gϵ(uϵt),˜uϵt) and (g(u),ut) are square integrable in time. We want to prove that the energy associated with the problem (Pϵj), uniformly converges to that of the corresponding homogenized problem (P). For this purpose we need to assume some stronger assumptions on the initial data. We have the following result

    Theorem 6.1. Assume that the assumptions of Theorem 5.1 are fulfilled and

    div(Aϵjaϵj)div(A0a),strongly inH1(Q), (66)
    bϵjb, strongly inL2(Q). (67)

    Then

    Eϵj(uϵj)(t)E(u)(t)inC([0,T]),

    where u is the solution of the homogenized problem.

    Proof. Thanks to the convergences 20, 44, 29, 66 and 67, we show that

    Eϵj(uϵj)(t)E(u)(t),t[0,T].

    Now we need to show that (Eϵj(uϵj)(t)), is uniformly bounded and equicontinuous on [0,T] and hence Arzela-Ascoli's theorem concludes the proof. We have

    |Eϵj(uϵj)(t)|12˜Ebϵj2L2(Q)+α2˜EaϵjH10+˜Et0|(fϵj(s,x,uϵj),uϵjt)|ds+12t0gϵj(s,uϵjt)2L2(Q)ds.

    Thanks to the assumptions on the data (A3),(A4) and (A5), the a priori estimates 3 and 4, we show that

    |Eϵj(uϵj)(t)|C,t[0,T].

    For any h>0 and t[0,T], we get

    |Eϵj(uϵj)(t+h)Eϵj(uϵj)(t)|˜Et+ht|(fϵj(s,x,uϵj),uϵjt)|ds+12˜Et+htgϵj(s,uϵjt)2L2(Q)ds.

    Again assumptions (A3), (A5) and Cauchy-Schwarz's inequality, give

    |Eϵj(uϵj)(t+h)Eϵj(uϵj)(t)|C(h+h12).

    This implies the equicontinuity of the sequence {Eϵj(uϵj)(t)}ϵj, and therefore the proof is complete.

    In this section, we establish a corrector result stated in the following

    Theorem 7.1. Let the assumptions of Theorems 5.1 and 6.1 be fulfilled. Assume that yχ(y)[Lr(Y)]n and uL2(0,T;[Ls(Y)]n) with 1r,s< such that

    1r+1s=12.

    Then

    uϵjtutϵju1t(,,ϵj)0 strongly inL2(0,T;L2(Q))˜Pa.s., (68)
    uϵjuϵju1(,,ϵj)0 strongly inL2(0,T;H1(Q))˜Pa.s.. (69)

    Proof. It is easy to see that

    limϵj0ϵju1t(,,ϵj)0inL2(0,T;L2(Q))˜Pa.s..

    Then convergence 20 gives

    uϵjtutϵju1t(,,.ϵj)0inL2(0,T;L2(Q))˜Pa.s..

    Thus 68 holds. Similarly we show that

    uϵjuϵju1(,,ϵj)0strongly inL2(0,T;L2(Q))˜Pa.s..

    It remains to show that

    (uϵjuϵju1(,,ϵj))0strongly inL2(0,T;[L2(Q)]n)˜Pa.s..

    We have

    (uϵjuϵju1(,,ϵj))=uϵjuyu1(,,ϵj))ϵju1(,,ϵj)).

    Again

    limϵj0ϵju1(,,ϵj)0inL2(0,T;[L2(Q)]n),˜Pa.s..

    Now from the ellipticity assumption on the matrix A, we have

    αET0uϵjuyu1(,,ϵj)2L2(Q)dtET0QA(xϵj)(uϵjuyu1(,,ϵj))(uϵjuyu1(,,ϵj))dxdt=ET0QAϵjuϵjuϵjdxdt2ET0QuϵjA(xϵj)(u+yu1(,,ϵj))dxdt+ET0QA(xϵj)(u+yu1(,,ϵj))(u+yu1(,,ϵj))dxdt. (70)

    Let us pass to the limit in this inequality. We start with

    EQAϵjuϵjuϵjdx.

    From the convergence of the energies in Theorem 6.1 and using 63 and 60, we have

    limϵj0EQAϵjuϵjuϵjdx=EQ×YA(y)[xu(t,x)+yu1(t,x,y)][xu(t,x)+yu1(t,x,y)]dydx. (71)

    Next, using the two-scale convergence of uϵj, with the test function A(y)(u(t,x)+yu1(t,x,y)), we obtain

    limϵj0T0Quϵj(t,x)A(xϵj)(u+yu1(t,x,xϵj))dxdt=T0Q×Y(u(t,x)+yu1(t,x,y))A(y)(u(t,x)+yu1(t,x,y))dxdydt. (72)

    Now, let us write

    ψ(t,x,y)=A(y)(u(t,x)+yu1(t,x,y))(u(t,x)+yu1(t,x,y))=A(y)u(t,x)u(t,x)+2A(y)u(t,x)yu1(t,x,y)+A(y)yu1(t,x,y)yu1(t,x,y).

    For u1 given by 60, we have

    ψ(t,x,y)=A(y)u(t,x)u(t,x)2A(y)u(t,x)y[χ(y)xu(t,x)]+A(y)y[χ(y)xu(t,x)]y[χ(y)xu(t,x)].

    Now using (ii) of Lemma 4.2, for p=2, we obtain

    limϵj0T0QA(xϵj)(u(t,x)+yu1(t,x,xϵj))(u(t,x)+yu1(t,x,yϵj))dxdt=T0Q×YA(y)(u(t,x)+yu1(t,x,y))(u(t,x)+yu1(t,x,y))dxdydt. (73)

    Combining 71, 72 and 73 with 70, we deduce that

    limϵj0ET0uϵjuyu1(.,.,.ϵj)2L2(Q)dt=0˜Pa.s..

    Thus the proof is complete.

    As a closing remark, we note that our results can readily be extended to the case of infinite dimensional Wiener processes taking values in appropriate Hilbert spaces; for instance cylindrical Wiener processes.

    The authors express their deepest gratitude to the reviewers for their careful reading of the paper and their insightful comments which have improved the paper. Part of this work was conducted when the first author visited the African Institute for Mathematical Sciences (AIMS), South Africa, he is grateful to the generous hospitality of AIMS.



    [1] P. Antonelli, L. E. Hientzsch, P. Marcati, Analysis of acoustic oscillations for a class of hydrodynamic systems describing quantum fluids, 2020, arXiv: 2011.13435.
    [2] P. Antonelli, L. E. Hientzsch, P. Marcati, H. Zheng, On some results for quantum hydrodynamical models, In: Mathematical analysis in fluid and gas dynamics, RIMS Publishing, 107–129.
    [3] P. Antonelli, P. Marcati, On the finite energy weak solutions to a system in Quantum Fluid Dynamics, Commun. Math. Phys., 287 (2009), 657–686. doi: 10.1007/s00220-008-0632-0
    [4] C. Audiard, B. Haspot, Global well-posedness of the Euler–Korteweg system for small irrotational data, Commun. Math. Phys., 351 (2017), 201–247. doi: 10.1007/s00220-017-2843-8
    [5] D. Bambusi, Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys., 234 (2003), 253–285. doi: 10.1007/s00220-002-0774-4
    [6] D. Bambusi, J. M. Delort, B. Grébert, J. Szeftel, Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Commun. Pure Appl. Math., 60 (2007), 1665–1690. doi: 10.1002/cpa.20181
    [7] D. Bambusi, B. Grébert, Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., 135 (2006), 507–567.
    [8] D. Bambusi, B. Langella, R. Montalto, On the spectrum of the Schrödinger operator on Td: a normal form approach, Commun. Part. Diff. Eq., 45 (2020), 303–320. doi: 10.1080/03605302.2019.1670677
    [9] D. Bambusi, B. Langella, R. Montalto, Growth of Sobolev norms for unbounded perturbations of the Laplacian on flat tori, 2020, arXiv: 2012.02654.
    [10] D. Bambusi, B. Langella, R. Montalto, Spectral asymptotics of all the eigenvalues of Schrödinger operators on flat tori, 2020, arXiv: 2007.07865v2.
    [11] S. Benzoni-Gavage, R. Danchin, S. Descombes, On the well-posedness for the Euler-Korteweg model in several space dimensions, Indiana U. Math. J., 56 (2007), 1499–1579. doi: 10.1512/iumj.2007.56.2974
    [12] J. Bernier, R. Feola, B. Grébert, F. Iandoli, Long-time existence for semi-linear beam equations on irrational tori, J. Dyn. Diff. Equat., 2021, 10.1007/s10884-021-09959-3.
    [13] M. Berti, A. Maspero, F. Murgante, Local well posedness of the Euler-Korteweg equations on Td, J. Dyn. Diff. Equat., 2021, 10.1007/s10884-020-09927-3.
    [14] M. Berti, J. M. Delort, Almost global solutions of capillary-gravity water waves equations on the circle, UMI Lecture Notes, 2017.
    [15] J. M. Delort, On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus, JAMA, 107 (2009), 161–194. doi: 10.1007/s11854-009-0007-2
    [16] E. Faou, L. Gauckler, C. Lubich, Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus, Commun. Part. Diff. Eq., 38 (2013), 1123–1140. doi: 10.1080/03605302.2013.785562
    [17] R. Feola, B. Grébert, F. Iandoli, Long time solutions for quasi-linear Hamiltonian perturbations of Schrödinger and Klein-Gordon equations on tori, 2020 arXiv: 2009.07553.
    [18] R. Feola, F. Iandoli, Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori, 2020, arXiv: 2003.04815.
    [19] R. Feola, F. Iandoli, Long time existence for fully nonlinear NLS with small Cauchy data on the circle. Ann. Scuola Norm. Sci., 22 (2021), 109–182.
    [20] R. Feola, F. Iandoli, A non-linear Egorov theorem and Poincaré-Birkhoff normal forms for quasi-linear pdes on the circle, 2020, arXiv: 2002.12448.
    [21] R. Feola, R. Montalto, Quadratic lifespan and growth of Sobolev norms for derivative Schrödinger equations on generic tori, 2021, arXiv: 2103.10162.
    [22] S. Gustafson, K. Nakanishi, T. P. Tsai, Scattering for the Gross-Pitaevskiiequation, Math. Res. Lett., 13 (2006), 273–285. doi: 10.4310/MRL.2006.v13.n2.a8
    [23] A. D. Ionescu, F. Pusateri, Long-time existence for multi-dimensional periodic water waves, Geom. Funct. Anal., 29 (2019), 811–870. doi: 10.1007/s00039-019-00490-8
    [24] E. Madelung, Quanten theorie in Hydrodynamischer Form, Z. Physik, 40 (1927), 322–326. doi: 10.1007/BF01400372
    [25] J. Moser, A rapidly convergent iteration method and non-linear partial differential equations – I, Ann. Scuola Norm. Sci., 20 (1966), 265–315.
    [26] C. Procesi, M. Procesi, Reducible quasi-periodic solutions of the non linear Schrödinger equation, Boll. Unione Mat. Ital., 9 (2016), 189–236. doi: 10.1007/s40574-016-0066-0
  • This article has been cited by:

    1. Hermano Frid, Kenneth H. Karlsen, Daniel Marroquin, Homogenization of stochastic conservation laws with multiplicative noise, 2022, 283, 00221236, 109620, 10.1016/j.jfa.2022.109620
    2. Mogtaba Mohammed, Well-Posedness for Nonlinear Parabolic Stochastic Differential Equations with Nonlinear Robin Conditions, 2022, 14, 2073-8994, 1722, 10.3390/sym14081722
    3. Mogtaba Mohammed, Homogenization of nonlinear hyperbolic problem with a dynamical boundary condition, 2023, 8, 2473-6988, 12093, 10.3934/math.2023609
    4. Mogtaba Mohammed, Noor Ahmed, Homogenization and correctors of Robin problem for linear stochastic equations in periodically perforated domains, 2020, 120, 18758576, 123, 10.3233/ASY-191582
    5. Chigoziem Emereuwa, Mogtaba Mohammed, Homogenization of a stochastic model of a single phase flow in partially fissured media, 2022, 129, 18758576, 413, 10.3233/ASY-211735
    6. Mogtaba Mohammed, Waseem Asghar Khan, Homogenization and Correctors for Stochastic Hyperbolic Equations in Domains with Periodically Distributed Holes, 2021, 12, 1756-9737, 10.1142/S1756973721500086
    7. Hakima Bessaih, Mogtaba Mohammed, Ismail M. Tayel, Homogenization and corrector results for a stochastic coupled thermoelastic model, 2024, 0, 1078-0947, 0, 10.3934/dcds.2024168
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2794) PDF downloads(118) Cited by(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog