In this paper, we introduce weighted Morrey-Herz spaces M˙Kα,λq,p(⋅)(w p(⋅)) with variable exponent p(⋅). Then we prove the boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and weighted Morrey-Herz spaces with variable exponents.
Citation: Yueping Zhu, Yan Tang, Lixin Jiang. Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents[J]. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652
[1] | Carlo Ciliberto, Massimiliano Pontil, Dimitrios Stamos . Reexamining low rank matrix factorization for trace norm regularization. Mathematics in Engineering, 2023, 5(3): 1-22. doi: 10.3934/mine.2023053 |
[2] | Karishma, Harendra Kumar . A novel hybrid model for task scheduling based on particle swarm optimization and genetic algorithms. Mathematics in Engineering, 2024, 6(4): 559-606. doi: 10.3934/mine.2024023 |
[3] | Hyunjin Ahn . On the multi-cluster flocking of the fractional Cucker–Smale model. Mathematics in Engineering, 2024, 6(4): 607-647. doi: 10.3934/mine.2024024 |
[4] | Andrea Manzoni, Alfio Quarteroni, Sandro Salsa . A saddle point approach to an optimal boundary control problem for steady Navier-Stokes equations. Mathematics in Engineering, 2019, 1(2): 252-280. doi: 10.3934/mine.2019.2.252 |
[5] | Zeljko Kereta, Valeriya Naumova . On an unsupervised method for parameter selection for the elastic net. Mathematics in Engineering, 2022, 4(6): 1-36. doi: 10.3934/mine.2022053 |
[6] | Giorgia Franchini, Valeria Ruggiero, Federica Porta, Luca Zanni . Neural architecture search via standard machine learning methodologies. Mathematics in Engineering, 2023, 5(1): 1-21. doi: 10.3934/mine.2023012 |
[7] | Piermarco Cannarsa, Rossana Capuani, Pierre Cardaliaguet . C1;1-smoothness of constrained solutions in the calculus of variations with application to mean field games. Mathematics in Engineering, 2019, 1(1): 174-203. doi: 10.3934/Mine.2018.1.174 |
[8] | Iakovidis Isidoros, Nicola Arcozzi . Improved convergence rates for some kernel random forest algorithms. Mathematics in Engineering, 2024, 6(2): 305-338. doi: 10.3934/mine.2024013 |
[9] | Alberto Bressan, Yucong Huang . Globally optimal departure rates for several groups of drivers. Mathematics in Engineering, 2019, 1(3): 583-613. doi: 10.3934/mine.2019.3.583 |
[10] | Giovanni Di Fratta, Alberto Fiorenza, Valeriy Slastikov . On symmetry of energy minimizing harmonic-type maps on cylindrical surfaces. Mathematics in Engineering, 2023, 5(3): 1-38. doi: 10.3934/mine.2023056 |
In this paper, we introduce weighted Morrey-Herz spaces M˙Kα,λq,p(⋅)(w p(⋅)) with variable exponent p(⋅). Then we prove the boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and weighted Morrey-Herz spaces with variable exponents.
Studying the behavior of pluricanonical maps of projective varieties has been one of the fundamental tasks in birational geometry. For varieties of general type, an interesting and critical problem is to find a positive integer
The first partial result concerning the explicit bound of
In this paper, we go on studying this question and prove the following theorem:
Theorem 1.1. Let
(1)
(2)
Remark 1.2. As pointed out by Brown and Kasprzyk [3], the requirement on
1.
2.
3.
4.
5.
6.
Moreover, the following two hypersurfaces has
(1)
(2)
Throughout this paper, all varieties are defined over an algebraically closed field
Let
For an arbitrary linear system
Keep the above settings. We say that
A nonsingular projective surface
Fix an effective divisor
(ⅰ)
(ⅱ) the moving part of
g1=φ1,Y∘π:Y′→¯φ1,Y(Y)⊆Ppg(Y)−1 |
is a non-trivial morphism;
(ⅲ) the union of
Take the Stein factorization of
Y′f1→Γs→¯φ1,Y(Y), |
and hence the following diagram commutes:
Y′f1→Γs→¯φ1,Y(Y), |
We may write
KY′=π∗(KY)+Eπ, |
where
π∗(KY)∼M1+E1, |
where
If
If
Denote by
θ1=θ1,|M1|={b,if dim(Γ)=1;1,if dim(Γ)≥2. |
So we naturally get
π∗(KY)≡θ1T′+E1. |
Pick a generic irreducible element
Set
φt1,T∘πT:T′j→Γ′⟶¯φt1,T(T). |
Denote by
at1,T={c,if dim(Γ′)=1;1,if dim(Γ′)≥2, |
where
t1π∗T(KT)≡at1,TS+EN, |
where
Suppose that
Set
β=β(t1,|N|,|H|)=sup{˜β|˜β>0s.t.π∗T(KT)|S≥˜βC}ξ=ξ(t1,|N|,|H|)=(π∗T(KT)⋅C)T′. |
We will use the following theorem which is a special form of Kawamata's extension theorem (see [15,Theorem A]).
Theorem 2.1. (cf. [12,Theorem 2.2]) Let
H0(Z,m(KZ+D))⟶H0(D,mKD) |
is surjective for any integer
In particular, when
If
π∗(KY)|T′=π∗T(KT). | (1) |
If
|n(1θ1+1)KY′|≽|n(KY′+T′)| |
and the homomorphism
H0(Y′,n(KY′+T′))→H0(T′,nKT′) |
is surjective. By [17,Theorem 3.3], Mov
Mov|nKT′|=|nπ∗T(KT)|. |
It follows that
n(1θ1+1)π∗(KY)|T′≥Mn(1θ1+1)|T′≥nπ∗T(KT), |
where the latter inequality holds by [7,Lemma 2.7]. Together with (1), we get the canonical restriction inequality:
π∗(KY)|T′≥θ11+θ1π∗T(KT). | (2) |
Similarly, one has
π∗T(KT)|S≥at1,Tt1+at1,Tσ∗(KS0). | (3) |
We will tacitly use the following type of birationality principle.
Theorem 2.2. (cf. [5,2.7]) Let
(i)
(ii)
The following results on surfaces will be used in our proof.
Lemma 2.3. (see [6,Lemma 2.5]) Let
Lemma 2.4. ([10,Lemma 2.5]) Let
(1)
(2)
Then
As an overall discussion, we keep the same settings as in 2.2 and 2.3.
Lemma 3.1. Let
Proof. Suppose
H1(KY′+⌜(m−2)π∗(KY)⌝+M1−T1−T2)=0, |
and the surjective map
H0(Y′,KY′+⌜(m−2)π∗(KY)⌝+M1)⟶H0(T1,(KY′+⌜(m−2)π∗(KY)⌝+M1)|T1) | (4) |
⊕H0(T2,(KY′+⌜(m−2)π∗(KY)⌝+M1)|T2). | (5) |
Since
Lemma 3.2. Let
m≥2t1+4. |
Proof. Suppose
For (i), one has
|mKY′|≽|2(t1+1)KY′|≽|(t1+1)(KY′+T′)|. |
By Theorem 2.1, one has
|(t1+1)(KY′+T′)||T′≽|(t1+1)KT′|. |
As
For (ii), it holds that
|mKY′|≽|2(t1+2)KY′|≽|(t1+2)(KY′+T′)|. |
Using Theorem 2.1 again, one gets
|(t1+2)(KY′+T′)||T′≽|(t1+2)KT′|≽|2KT′+N|≽|KT′+⌜π∗T(KT)⌝+(N−S1−S2)+S1+S2|, |
where
H0(T′,KT′+⌜π∗T(KT)⌝+N)→H0(S1,(KT′+⌜π∗T(KT)⌝+N)|S1) | (6) |
⊕H0(S2,(KT′+⌜π∗T(KT)⌝+N)|S2), | (7) |
where we note that
Lemma 3.3. Let
|H|={Mov|KS|,if(K2S0,pg(S))=(1,2) or (2,3);Mov|2KS|,otherwise. |
Then
Proof. Similar to the proof of Lemma 3.2, we have
|mKY′||T′≽|4(t1+1)KY′||T′≽|2(t1+1)KT′|. |
Since
|2(t1+1)KT′||S≽|2(KT′+S)||S≽|2KS|≽|H|. |
As
Proposition 3.4. Let
m>(2√2+1)(t1at1,T+1)(1+1θ1). |
Proof. Suppose
(m−1)π∗(KY)−T′−1θ1E1≡(m−1−1θ1)π∗(KY) |
is nef and big, and it has simple normal crossing support, Kawamata-Viehweg vanishing theorem implies
|mKY′||T′≽|KY′+⌜(m−1)π∗(KY)−1θ1E1⌝||T′≽|KT′+⌜((m−1)π∗(KY)−T′−1θ1E1)|T′⌝|=|KT′+⌜Qm,T′⌝|, | (8) |
where
By the canonical restriction inequality (2), we may write
π∗(KY)|T′≡θ11+θ1π∗T(KT)+E1,T′, |
where
Qm,T′−(m−1−1θ1)E1,T′−S−1at1,TEN≡((m−1−1θ1)⋅θ11+θ1−t1at1,T)π∗T(KT) |
is nef and big and has simple normal crossing support. So by Kawamata-Viehweg vanishing theorem, one has
|mKY′||S≽|KT′+⌜Qm,T′−(m−1−1θ1)E1,T′−1at1,TEN⌝||S≽|KS+⌜(Qm,T′−(m−1−1θ1)E1,T′−S−1at1,TEN)|S⌝|=|KS+⌜Um,S⌝|, | (9) |
where
Um,S=(Qm,T′−(m−1−1θ1)E1,T′−S−1at1,TEN)|S≡((m−1−1θ1)⋅θ11+θ1−t1at1,T)π∗T(KT)|S. |
By (3), we have
π∗T(KT)|S≡at1,Tt1+at1,Tσ∗(KS0)+Et1,S |
for some effective
U2m,S=(((m−1−1θ1)⋅θ11+θ1−t1at1,T)π∗T(KT)|S)2≥(((m−θ1+1θ1)⋅θ1θ1+1−t1at1,T)⋅at1,Tt1+at1,T)2⋅K2S0>8, |
where
Proposition 3.5. Let
m≥6(t1+1). |
Proof. Suppose
|mKY′|≽|3(t1+1)(KY′+T′)| |
and
|mKY′||T′≽|3(t1+1)KT′|. |
Furthermore, one has
|mKY′||S≽|3(t1+1)KT′||S≽|3(KT′+S)||S=|3KS|. |
By virtue of Bombieri's result in [2] that
We follow Chen-Chen's approach in [6,Theorem 8.2] to deal with the case of
Theorem 3.6. ([6,Theorem 8.2]) Let
Proof. By Theorem 2.2, we may just consider
π∗(KY)|T′≥12π∗T(KT). | (10) |
Pick a generic irreducible element
π∗(KY)|T′≥M1|T′≥S. |
Modulo
KT′≥(π∗(KY)+T′)|T′≥2S. | (11) |
Using Theorem 2.1, we get
π∗T(KT)|S≥23σ∗(KS0). | (12) |
Thus, combining (10) and (12), one gets
π∗(KY)|S≥13σ∗(KS0). |
By (8), we already have
|mKY′||T′≽|KT′+⌜Qm,T′⌝|, |
where
Qm,T′−S−ES≡(m−3)π∗(KY)|T′ |
is nef and big, Kawamata-Viehweg vanishing theorem implies
|mKY′||S≽|KT′+⌜Qm,T′−ES⌝||S≽|KS+⌜R′m,S⌝|, |
where
R′m,S=(Qm,T′−S−ES)|S≡(m−3)π∗(KY)|S. |
Since
Since
Theorem 3.7. Let
Proof. We have
As an overall discussion, we study the linear system
|mKY′||S≽|KS+⌜Um,S⌝|, |
where
|mKY′||C≽|KS+⌜Um,S−1βEH⌝||C=|KC+⌜Um,S−C−1βEH⌝|C|=|KC+Dm|, | (13) |
where
degDm≥((m−1−1θ1)θ1θ1+1−t1at1,T−1β)(π∗T(KT)|S⋅C). |
Thus, whenever
Therefore, by Lemma 3.2, Lemma 3.3 and Theorem 2.2,
m≥4t1+4andm>4ξ+2t1at1,T+2β+2. |
Now we study this problem according to the value of
Case 1.
Clearly, we may take
So
Case 2.
According to [6,Corollary 4.10],
For Type (i), we have
For Type (ii), we have
In conclusion,
Theorem 3.8. Let
Proof. We have
Recall that
Vol(Y)≥θ1(π∗(KY))3⋅T′=θ1(π∗(KY)|T′)3. |
As we also have (2) and
Vol(Y)≥θ1⋅(θ11+θ1)3(π∗T(KT))3≥θ1⋅(θ11+θ1)3⋅at1,Tt1(S⋅(π∗T(KT))2)=θ1⋅(θ11+θ1)3⋅at1,Tt1(π∗T(KT)|S)2. |
By (3) and
Vol(Y)≥θ1⋅(θ11+θ1)3⋅at1,Tt1⋅(at1,Tt1+at1,T)2K2S0 |
and
Vol(Y)≥θ1⋅(θ11+θ1)3⋅at1,Tt1⋅β(π∗T(KT)|S⋅C)=θ1⋅(θ11+θ1)3⋅at1,Tt1⋅βξ. |
Now we estimate the canonical volume according to the same classification of
(Ⅰ) The case of
Remember that in this case,
(Ⅱ) The case of
Subcase (Ⅱ-1).
As in Theorem 3.7, Case 1,
Subcase (Ⅱ-2).
We follow the same classification of
Recall that for Type (ⅰ), we have
For Type (ⅱ), we have
So we have shown
Proof. Theorem 3.6, Theorem 3.7 and Theorem 3.8 directly implies Theorem 1.1.
The author would like to express her gratitude to Meng Chen for his guidance over this paper and his encouragement to the author. The author would also like to thank Dr. Yong Hu for pointing out the nonexistence of a kind of fibration in Subcase(Ⅱ-2) in the previous version, which improves her result in the previous version. The author would also like to thank the referees for valuable suggestions which improve the result of the lower bound of the canonical volume and make the paper more well-organized.
[1] |
L. Grafakos, R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 165 (2002), 124-164. doi: 10.1006/aima.2001.2028
![]() |
[2] |
G. P. Curbera, J. García-Cuerva, J. M. Martell, C. Pérez, Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals, Adv. Math., 203 (2006), 256-318. doi: 10.1016/j.aim.2005.04.009
![]() |
[3] |
C. Pérez, R. H. Torres, Sharp maximal function estimates for multinear singular integrals, Contemp. Math., 320 (2003), 1-9. doi: 10.1090/conm/320/05594
![]() |
[4] | X. X. Tao, H. H. Zhang, On the boundedness of multilinear operators on weighted Herz-Morrey spaces, Taiwan. J. Math., 15 (2011), 1527-1543. |
[5] |
O. Kováčik, J. Rákosník, On spaces L p(x) and Wk,p(x), Czech. Math. J., 41 (1991), 592-618. doi: 10.21136/CMJ.1991.102493
![]() |
[6] | D. Cruz-Uribe, L. A. D. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Am. Math. Soc., 369 (2017), 1205-1235. |
[7] |
M. Izuki, T. Noi, Boundedness of fractional integral on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016 (2016), 199. doi: 10.1186/s13660-016-1142-9
![]() |
[8] |
D. C. Yang, C. Q. Zhuo, W. Yuan, Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 269 (2015), 1840-1898. doi: 10.1016/j.jfa.2015.05.016
![]() |
[9] |
D. C. Yang, C. Q. Zhuo, W. Yuan, Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal., 9 (2015), 146-202. doi: 10.15352/bjma/09-4-9
![]() |
[10] |
X. J. Yan, D. C. Yang, W. Yuan, C. Q. Zhuo, Variable weak Hardy spaces and their applications, J. Funct. Anal., 271 (2016), 2822-2887. doi: 10.1016/j.jfa.2016.07.006
![]() |
[11] |
L. W. Wang, L. S. Shu, Higher order commutators of fractional integrals on Morrey type spaces with variable exponents, Math. Nachr., 291 (2018), 1437-1449. doi: 10.1002/mana.201600438
![]() |
[12] |
A. W. Huang, J. S. Xu, Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chin. Univ., 25 (2010), 69-77. doi: 10.1007/s11766-010-2167-3
![]() |
[13] |
X. X. Tao, X. Yu, H. H. Zhang, Multilinear Calderón Zygmund operators on variable exponent Morrey spaces over domains, Appl. Math. J. Chin. Univ., 26 (2011), 187-197. doi: 10.1007/s11766-011-2704-8
![]() |
[14] |
Z. W. Fu, S. Z. Lu, H. B. Wang, L. G. Wang, Singular integral operators with rough kernels on central Morrey spaces with variable exponent, Ann. Acad. Sci. Fenn. Math., 44 (2019), 505-522. doi: 10.5186/aasfm.2019.4431
![]() |
[15] |
Y. Lu, Y. P. Zhu, Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces with variable exponents, Acta Math. Sin.-English Ser., 30 (2014), 1180-1194. doi: 10.1007/s10114-014-3410-2
![]() |
[16] |
D. Cruz-Uribe, L. Diening, P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fractional Calculus Appl. Anal., 14 (2011), 361-374. doi: 10.2478/s13540-011-0023-7
![]() |
[17] |
D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744-760. doi: 10.1016/j.jmaa.2012.04.044
![]() |
[18] |
A. Lerner, On a dual property of the maximal operator on weighted variable Lp spaces, Contemp. Math., 693 (2017), 283-300. doi: 10.1090/conm/693/13932
![]() |
[19] | L. Diening, P. Hästö, Muckenhoupt weights in variable exponent spaces, 2008. Available from: https://www.researchgate.net/publication/228779582. |
[20] | M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponent, 2016. Available from: https://arXiv.org/abs/1606.01019. |
[21] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc., 165 (1972), 207-226. doi: 10.1090/S0002-9947-1972-0293384-6
![]() |
[22] |
M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461-472. doi: 10.1007/s12215-010-0034-y
![]() |
[23] |
M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 199-213. doi: 10.1007/s12215-010-0015-1
![]() |
[24] | M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343-355. |
1. | Jianshi Yan, On the pluricanonical map and the canonical volume of projective 4-folds of general type, 2024, 52, 0092-7872, 2706, 10.1080/00927872.2024.2304597 |