Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Nutrition, supplementation and weight reduction in combat sports: a review

  • Received: 12 May 2021 Accepted: 29 June 2021 Published: 06 July 2021
  • Nutrition is the aspect closely connected to physical activity and may affect body composition, sports performance and post-workout regeneration. Using an appropriate diet plan is a proven method to optimize performance improvements in combat sports. In the majority of combat sports athletes are classified according to their body mass in order to minimize differences between competitors. Many athletes induce weight loss in order to gain an advantage over their opponents. The review was undertaken to provide safe, evidence-based protocols helping athletes in weight reduction without negative effects on sports performance. The nutritional requirements for combat sports athletes, sports supplements, gradual and rapid weight reduction strategies are discussed in this review.

    Citation: Paulina Januszko, Ewa Lange. Nutrition, supplementation and weight reduction in combat sports: a review[J]. AIMS Public Health, 2021, 8(3): 485-498. doi: 10.3934/publichealth.2021038

    Related Papers:

    [1] Ling Zhu, Zhengjie Sun . Refinements of Huygens- and Wilker- type inequalities. AIMS Mathematics, 2020, 5(4): 2967-2978. doi: 10.3934/math.2020191
    [2] Ling Zhu . New inequalities of Wilker’s type for circular functions. AIMS Mathematics, 2020, 5(5): 4874-4888. doi: 10.3934/math.2020311
    [3] Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541
    [4] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
    [5] Ling Zhu . New inequalities of Wilker's type for hyperbolic functions. AIMS Mathematics, 2020, 5(1): 376-384. doi: 10.3934/math.2020025
    [6] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [7] Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807
    [8] Sarah Elahi, Muhammad Aslam Noor . Integral inequalities for hyperbolic type preinvex functions. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597
    [9] Artion Kashuri, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Eman Al-Sarairah, Nejmeddine Chorfi . Novel inequalities for subadditive functions via tempered fractional integrals and their numerical investigations. AIMS Mathematics, 2024, 9(5): 13195-13210. doi: 10.3934/math.2024643
    [10] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
  • Nutrition is the aspect closely connected to physical activity and may affect body composition, sports performance and post-workout regeneration. Using an appropriate diet plan is a proven method to optimize performance improvements in combat sports. In the majority of combat sports athletes are classified according to their body mass in order to minimize differences between competitors. Many athletes induce weight loss in order to gain an advantage over their opponents. The review was undertaken to provide safe, evidence-based protocols helping athletes in weight reduction without negative effects on sports performance. The nutritional requirements for combat sports athletes, sports supplements, gradual and rapid weight reduction strategies are discussed in this review.



    The idea of statistical convergence was given by Zygmund [1] in the first edition of his monograph published in Warsaw in 1935. The concept of statistical convergence was introduced by Steinhaus [2] and Fast [3] and then reintroduced independently by Schoenberg [4]. Over the years and under different names, statistical convergence has been discussed in the Theory of Fourier Analysis, Ergodic Theory, Number Theory, Measure Theory, Trigonometric Series, Turnpike Theory and Banach Spaces. Later on it was further investigated from the sequence spaces point of view and linked with summability theory by Bilalov and Nazarova [5], Braha et al. [6], Cinar et al. [7], Colak [8], Connor [9], Et et al. ([10,11,12,13,14]), Fridy [15], Isik et al. ([16,17,18]), Kayan et al. [19], Kucukaslan et al. ([20,21]), Mohiuddine et al. [22], Nuray [23], Nuray and Aydın [24], Salat [25], Sengul et al. ([26,27,28,29]), Srivastava et al. ([30,31]) and many others.

    The idea of statistical convergence depends upon the density of subsets of the set N of natural numbers. The density of a subset E of N is defined by

    δ(E)=limn1nnk=1χE(k),

    provided that the limit exists, where χE is the characteristic function of the set E. It is clear that any finite subset of N has zero natural density and that

    δ(Ec)=1δ(E).

    A sequence x=(xk)kN is said to be statistically convergent to L if, for every ε>0, we have

    δ({kN:|xkL|ε})=0.

    In this case, we write \newline

    xkstatLaskorSlimkxk=L.

    In 1932, Agnew [32] introduced the concept of deferred Cesaro mean of real (or complex) valued sequences x=(xk) defined by

    (Dp,qx)n=1qnpnqnk=pn+1xk,n=1,2,3,

    where p=(pn) and q=(qn) are the sequences of non-negative integers satisfying

    pn<qnandlimnqn=. (1)

    Let K be a subset of N and denote the set {k:k(pn,qn],kK} by Kp,q(n).

    Deferred density of K is defined by

    δp,q(K)=limn1(qnpn)|Kp,q(n)|, provided the limit exists

    where, vertical bars indicate the cardinality of the enclosed set Kp,q(n). If qn=n, pn=0, then the deferred density coincides with natural density of K.

    A real valued sequence x=(xk) is said to be deferred statistically convergent to L, if for each ε>0

    limn1(qnpn)|{k(pn,qn]:|xkL|ε}|=0.

    In this case we write Sp,q-limxk=L. If qn=n, pn=0, for all nN, then deferred statistical convergence coincides with usual statistical convergence [20].

    In this section, we give some inclusion relations between statistical convergence of order α, deferred strong Cesàro summability of order α and deferred statistical convergence of order α in general metric spaces.

    Definition 1. Let (X,d) be a metric space, (pn) and (qn) be two sequences as above and 0<α1. A metric valued sequence x=(xk) is said to be Sd,αp,q-convergent (or deferred d-statistically convergent of order α) to x0 if there is x0X such that

    limn1(qnpn)α|{k(pn,qn]:xkBε(x0)}|=0,

    where Bε(x0)={xX:d(x,x0)<ε} is the open ball of radius ε and center x0. In this case we write Sd,αp,q-limxk=x0 or xkx0(Sd,αp,q). The set of all Sd,αp,q-statistically convergent sequences will be denoted by Sd,αp,q. If qn=n and pn=0, then deferred d-statistical convergence of order α coincides d -statistical convergence of order α denoted by Sd,α. In the special cases qn=n,pn=0 and α=1 then deferred d -statistical convergence of order α coincides d-statistical convergence denoted by Sd.

    Definition 2. Let (X,d) be a metric space, (pn) and (qn) be two sequences as above and 0<α1. A metric valued sequence x=(xk) is said to be strongly wd,αp,q-summable (or deferred strongly d-Ces àro summable of order α) to x0 if there is x0X such that

    limn1(qnpn)αqnk=pn+1d(xk,x0)=0.

    In this case we write wd,αp,q-limxk=x0 or xkx0(wd,αp,q). The set of all strongly wd,αp,q-summable sequences will be denoted by wd,αp,q. If qn=n and pn=0, for all nN, then deferred strong d-Cesàro summability of order α coincides strong d-Cesàro summability of order α denoted by wd,α. In the special cases qn=n,pn=0 and α=1 then deferred strong d-Cesàro summability of order α coincides strong d-Ces àro summability denoted by wd.

    Theorem 1. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1), (X,d) be a linear metric space and x=(xk),y=(yk) be metric valued sequences, then

    (i) If Sd,αp,q-limxk=x0 and Sd,αp,q-limyk=y0, then Sd,αp,q-lim(xk+yk)=x0+y0,

    (ii)If Sd,αp,q-limxk=x0 and cC, then Sd,αp,q-lim(cxk)=cx0,

    (iii) If Sd,αp,q-limxk=x0,Sd,αp,q-limyk=y0 and x,y(X), then Sd,αp,q-lim(xkyk)=x0y0.

    Proof. Omitted.

    Theorem 2. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α and β be two real numbers such that 0<αβ1. If a sequence x=(xk) is deferred strongly d-Cesàro summable of order α to x0, then it is deferred d-statistically convergent of order β to x0, but the converse is not true.

    Proof. First part of the proof is easy, so omitted. For the converse, take X=R and choose qn=n,pn=0 (for all nN),d(x,y)=|xy| and define a sequence x=(xk) by

    xk={3n,k=n20,kn2.

    Then for every ε>0, we have

    1(qnpn)α|{k(pn,qn]:xkBε(0)}|[n]nα0, as n,

    where 12<α1, that is xk0(Sd,αp,q). At the same time, we get

    1(qnpn)αqnk=pn+1d(xk,0)[n][3n]nα1

    for α=16 and

    1(qnpn)αqnk=pn+1d(xk,0)[n][3n]nα

    for 0<α<16, i.e., xk0(wd,αp,q) for 0<α16.

    From Theorem 2 we have the following results.

    Corollary 1. ⅰ) Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α be a real number such that 0<α1. If a sequence x=(xk) is deferred strongly d-Cesàro summable of order α to x0, then it is deferred d-statistically convergent of order α to x0, but the converse is not true.

    ⅱ) Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α be a real number such that 0<α1. If a sequence x=(xk) is deferred strongly d-Cesàro summable of order α to x0, then it is deferred d-statistically convergent to x0, but the converse is not true.

    ⅲ) Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1). If a sequence x=(xk) is deferred strongly d-Cesàro summable to x0, then it is deferred d-statistically convergent to x0, but the converse is not true.

    Remark Even if x=(xk) is a bounded sequence in a metric space, the converse of Theorem 2 (So Corollary 1 i) and ii)) does not hold, in general. To show this we give the following example.

    Example 1. Take X=R and choose qn=n,pn=0 (for all nN),d(x,y)=|xy| and define a sequence x=(xk) by

    xk={1k,kn30,k=n3n=1,2,....

    It is clear that x and it can be shown that xSd,αwd,α for 13<α<12.

    In the special case α=1, we can give the followig result.

    Theorem 3. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and x=(xk) is a bounded sequence in a metric space. If a sequence x=(xk) is deferred d-statistically convergent to x0, then it is deferred strongly d-Cesàro summable to x0.

    Proof. Let x=(xk) be deferred d-statistically convergent to x0 and ε>0 be given. Then there exists x0X such that

    limn1(qnpn)|{k(pn,qn]:xkBε(x0)}|=0,

    Since x=(xk) is a bounded sequence in a metric space X, there exists x0X and a positive real number M such that d(xk,x0)<M for all kN. So we have

    1(qnpn)qnk=pn+1d(xk,x0)=1(qnpn)qnk=pn+1d(xk,x0)εd(xk,x0)+1(qnpn)qnk=pn+1d(xk,x0)<εd(xk,x0)M(qnpn)|{k(pn,qn]:xkBε(x0)}|+ε

    Takin limit n, we get wdp,q-limxk=x0.

    Theorem 4. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α be a real number such that 0<α1. If liminfnqnpn>1, then Sd,αSd,αp,q.

    Proof. Suppose that liminfnqnpn>1; then there exists a ν>0 such that qnpn1+ν for sufficiently large n, which implies that

    (qnpnqn)α(ν1+ν)α1qαnνα(1+ν)α1(qnpn)α.

    If xkx0(Sd,α), then for every ε>0 and for sufficiently large n, we have

    1qαn|{kqn:xkBε(x0)}|1qαn|{k(pn,qn]:xkBε(x0)}|να(1+ν)α1(qnpn)α|{k(pn,qn]:xkBε(x0)}|.

    This proves the proof.

    Theorem 5. Let (pn) and (qn) be sequences of non-negative integers satisfying the condition (1) and α and β be two real numbers such that 0<αβ1. If limn(qnpn)αqβn=s>0, then Sd,αSd,βp,q.

    Proof. Let limn(qnpn)αqβn=s>0. Notice that for each ε>0 the inclusion

    {kqn:xkBε(x0)}{k(pn,qn]:xkBε(x0)}

    is satisfied and so we have the following inequality

    1qαn|{kqn:xkBε(x0)}|1qαn|{k(pn,qn]:xkBε(x0)}|1qβn|{k(pn,qn]:xkBε(x0)}|=(qnpn)αqβn1(qnpn)α|{k(pn,qn]:xkBε(x0)}|(qnpn)αqβn1(qnpn)β|{k(pn,qn]:xkBε(x0)}|.

    Therefore Sd,αSd,βp,q.

    Theorem 6. Let (pn),(qn),(pn) and (qn) be four sequences of non-negative real numbers such that

    pn<pn<qn<qn for all nN, (2)

    and α,β be fixed real numbers such that 0<αβ1, then

    (i) If

    limn(qnpn)α(qnpn)β=a>0 (3)

    then Sd,βp,qSd,αp,q,

    (ii) If

    limnqnpn(qnpn)β=1 (4)

    then Sd,αp,qSd,βp,q.

    Proof. (i) Let (3) be satisfied. For given ε>0 we have

    {k(pn,qn]:xkBε(x0)}{k(pn,qn]:xkBε(x0)},

    and so

    1(qnpn)β|{k(pn,qn]:xkBε(x0)}|(qnpn)α(qnpn)β1(qnpn)α|{k(pn,qn]:xkBε(x0)}|.

    Therefore Sd,βp,qSd,αp,q.

    (ii) Let (4) be satisfied and x=(xk) be a deferred d-statistically convergent sequence of order α to x0. Then for given ε>0, we have

    1(qnpn)β|{k(pn,qn]:xkBε(x0)}|1(qnpn)β|{k(pn,pn]:xkBε(x0)}|+1(qnpn)β|{k(qn,qn]:xkBε(x0)}|+1(qnpn)β|{k(pn,qn]:xkBε(x0)}|pnpn+qnqn(qnpn)β+1(qnpn)β|{k(pn,qn]:xkBε(x0)}|=(qnpn)(qnpn)(qnpn)β+1(qnpn)β|{k(pn,qn]:xkBε(x0)}|(qnpn)(qnpn)β(qnpn)β+1(qnpn)β|{k(pn,qn]:xkBε(x0)}|(qnpn(qnpn)β1)+1(qnpn)α|{k(pn,qn]:xkBε(x0)}|

    Therefore Sd,αp,qSd,βp,q.

    Theorem 7. Let (pn),(qn),(pn) and (qn) be four sequences of non-negative integers defined as in (2) and α,β be fixed real numbers such that 0<αβ1.

    (i) If (3) holds then wd,βp,qwd,αp,q,

    (ii) If (4) holds and x=(xk) be a bounded sequence, then wd,αp,qwd,βp,q.

    Proof.

    i) Omitted.

    ii) Suppose that wd,αp,q-limxk=x0 and (xk)(X). Then there exists some M>0 such that d(xk,x0)<M for all k, then

    1(qnpn)βqnk=pn+1d(xk,x0)=1(qnpn)β[pnk=pn+1+qnk=pn+1+qnk=qn+1]d(xk,x0)pnpn+qnqn(qnpn)βM+1(qnpn)βqnk=pn+1d(xk,x0)(qnpn)(qnpn)β(qnpn)βM+1(qnpn)αqnk=pn+1d(xk,x0)=(qnpn(qnpn)β1)M+1(qnpn)αqnk=pn+1d(xk,x0)

    Theorem 8. Let (pn),(qn),(pn) and (qn) be four sequences of non-negative integers defined as in (2) and α,β be fixed real numbers such that 0<αβ1. Then

    (i) Let (3) holds, if a sequence is strongly wd,βp,q-summable to x0, then it is Sd,αp,q-convergent to x0,

    (ii) Let (4) holds and x=(xk) be a bounded sequence in (X,d), if a sequence is Sd,αp,q-convergent to x0 then it is strongly wd,βp,q-summable to x0.

    Proof. (i) Omitted.

    (ii) Suppose that Sd,αp,q-limxk=x0 and (xk). Then there exists some M>0 such that d(xk,x0)<M for all k, then for every ε>0 we may write

    1(qnpn)βqnk=pn+1d(xk,x0)=1(qnpn)βqnpnk=qnpn+1d(xk,x0)+1(qnpn)βqnk=pn+1d(xk,x0)(qnpn)(qnpn)(qnpn)βM+1(qnpn)βqnk=pn+1d(xk,x0)(qnpn)(qnpn)β(qnpn)βM+1(qnpn)βqnk=pn+1d(xk,x0)(qnpn(qnpn)β1)M+1(qnpn)βqnk=pn+1d(xk,x0)εd(xk,x0)+1(qnpn)βqnk=pn+1d(xk,x0)<εd(xk,x0)(qnpn(qnpn)β1)M+M(qnpn)α|{k(pn,qn]:d(xk,x0)ε}|+qnpn(qnpn)βε.

    This completes the proof.

    The authors declare that they have no conflict of interests.



    Conflict of interest



    The authors declare no conflicts of interest.

    [1] Barley OR, Chapman DW, Guppy SN, et al. (2019) Considerations When Assessing Endurance in Combat Sport Athletes. Front Physiol 10: 205. doi: 10.3389/fphys.2019.00205
    [2] Franchini E, Brito CJ, Artioli GG (2012) Weight loss in combat sports: physiological, psychological and performance effects. J Int Soc Sports Nutr 9: 52. doi: 10.1186/1550-2783-9-52
    [3] Artioli G, Solis MY, Tritto AC, et al. (2019) Nutrition in Combat sports. Nutrition and enhanced sports performance London: Academic Press, 109-122. doi: 10.1016/B978-0-12-813922-6.00009-6
    [4] Hoffman JR, Maresh CM (2011) Nutrition and Hydration Issues for Combat Sport Athletes. Strength Cond J 6: 10-17. doi: 10.1519/SSC.0b013e318237247e
    [5] Kerksick CM, Wilborn CD, Roberts MD, et al. (2018) ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 15: 38. doi: 10.1186/s12970-018-0242-y
    [6] Ivy J, Ferguson-Stegall L (2013) Nutrient Timing: The Means to Improved Exercise Performance. Recovery Train Adapt Am J Lifestyle Med 8: 246-259. doi: 10.1177/1559827613502444
    [7] Iraki J, Fitschen P, Espinar S, et al. (2019) Nutrition Recommendations for Bodybuilders in the Off-Season: A Narrative Review. Ports (Basel) 7: 154.
    [8] Murray B, Rosenblooom C (2018) Fundamentals of glycogen metabolism. Nutr Rev 76: 243-259. doi: 10.1093/nutrit/nuy001
    [9] Bean A (2005)  Żywienie w sporcie Kompletny przewodnik, Poznań: Wydawnictwo Zysk I S-ka, Available from: https://www.amazon.com/Zywienie-w-sporcie/dp/8375062219/ref=sr_1_1?dchild=1&keywords=9788375062212&linkCode=qs&qid=1625312545&s=books&sr=1-1#detailBullets_feature_div.
    [10] Hearris M, Hammond KM, Fell JM, et al. (2018) Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations. Nutrients 10: 298. doi: 10.3390/nu10030298
    [11] Foskett A, Williams C, Boobis L, et al. (2008) Carbohydrate availability and muscle energy metabolism during intermittent running. Med Sci Sports Exerc 40: 96-103. doi: 10.1249/mss.0b013e3181586b2c
    [12] Miller SL, Wolfe FR (1999) Physical exercise as a modulator of adaptation to low and high carbohydrate and low and high fat intakes. Eur J Clin Nutr 53: 112-119. doi: 10.1038/sj.ejcn.1600751
    [13] Chryssanthopoulos C, Williams C, Nowitz A, et al. (2002) The effect of a high carbohydrate meal on endurance running capacity. Int J Sport Nutr Exerc Metab 12: 157-171. doi: 10.1123/ijsnem.12.2.157
    [14] Coyle EF, Coggan AR, Hemmert MK, et al. (1985) Substrate usage during prolonged exercise following a preexercise meal. J Appl Physiol 59: 429-433. doi: 10.1152/jappl.1985.59.2.429
    [15] Stevenson E, Williams C, McComb G, et al. (2015) Improved recovery from prolonged exercise following the consumption of Iow glycaemic index carbohydrate meals. Int J Sport Nutr Exerc Metab 15: 333-349. doi: 10.1123/ijsnem.15.4.333
    [16] Wallis G, Rowlands D, Shaw D, et al. (2005) Oxidation of Combined Ingestion of Maltodextrins and Fructose during Exercise. Med Sci Sports Exerc 37: 426-432. doi: 10.1249/01.MSS.0000155399.23358.82
    [17] Hofman D, Vincent J, Fred J, et al. (2015) Nutrition, Health, and Regulatory Aspects of Digestible Maltodextrins. Crit Rev Food Sci Nutr 56: 2091-2100. doi: 10.1080/10408398.2014.940415
    [18] Cermak NM, Loon LJ (2013) The use of carbohydrates during exercise as an ergogenic aid. Sports Med 43: 1139-1155. doi: 10.1007/s40279-013-0079-0
    [19] Jeukendrup A (2014) A Step Towards Personalized Sports Nutrition: Carbohydrate Intake During Exercise. Sports Med 44: 25-33. doi: 10.1007/s40279-014-0148-z
    [20] Tang JE, Phillips SM (2009) Maximizing muscle protein anabolism: the role of protein quality. Curr Opin Clin Nutr Metab Care 12: 66-71. doi: 10.1097/MCO.0b013e32831cef75
    [21] Martinez I, Skinner S, Burd N (2019) Protein Intake for Optimal Sports Performance. Nutrition and enhanced sports performance London: Academic Press, 461-470. doi: 10.1016/B978-0-12-813922-6.00039-4
    [22] Hector AJ, Phillips SM (2018) Protein Recommendations for Weight Loss in Elite Athletes: A Focus on Body Composition and Performance. Int J Sport Nutr Exerc Metab 28: 170-177. doi: 10.1123/ijsnem.2017-0273
    [23] Kerksick CM, Arent S, Schoenfeld BJ (2017) International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr 29: 14-33.
    [24] Dangin M, Boirie Y, Guillet C, et al. (2002) Influence of the protein digestion rate on protein turnover in young and elderly subjects. J Nutr 132: 3228-3233. doi: 10.1093/jn/131.10.3228S
    [25] Wilkinson SB, Tarnopolsky MA, Macdonald MJ, et al. (2007) Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr 85: 1031-1040. doi: 10.1093/ajcn/85.4.1031
    [26] Puglisi M (2019) Dietary Fat and Sports Performance. Nutrition and enhanced sports performance London: Academic Press, 555-569. doi: 10.1016/B978-0-12-813922-6.00047-3
    [27] Gammone MA, Riccioni G, Parrinello G, et al. (2019) Omega-3 Polyunsaturated Fatty Acids: Benefits and Endpoints in Sport. Nutrients 11: 46. doi: 10.3390/nu11010046
    [28] Smith G, Atherton P, Reeds D, et al. (2011) Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia–hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci 121: 267-278. doi: 10.1042/CS20100597
    [29] Hoffmann J (2002)  Physiological Aspects of Sport Training and Performance United States: Human Kinetics Publishers, 29-35.
    [30] Jarosz M, Wierzejska R, Mojska H, et al. (2009) Zawartość kofeiny w produktach spożywczych. Bromatologia i Chemia Toksykologiczna 3: 776-781.
    [31] Barley OR, Chapman DW, Abbiss CR (2019) The Current State of Weight-Cutting in Combat Sports-Weight-Cutting in Combat Sports. Sports 7: 123. doi: 10.3390/sports7050123
    [32] Dymkowska-Malesa M, Walczak Z (2011) Suplementacja w sporcie. Nowiny Lekarskie 80: 199-204.
    [33] Duvillard SP, Arciero PJ, Tietjen-Smith T, et al. (2008) Sports Drinks, Exercise Training, and Competition. Curr Sports Med Rep 7: 202-208. doi: 10.1249/JSR.0b013e31817ffa37
    [34] Rivera-Brown AM, Ramírez-Marrero F, Frontanés J, et al. (2018) Sweating and core temperature in athletes training in continuous and intermittent sports in tropical climate. Arch Med Deporte 36: 86-91.
    [35] Carvil P, Cronin J (2010) Magnesium and Implications on Muscle Function. Strength Cond J 32: 48-54. doi: 10.1519/SSC.0b013e3181c16cdc
    [36] Stefanovsky M, Clarys P, Cierna D, et al. (2019) Hydration status of youth Judo athletes during an off-season training camp. “IDO MOVEMENT FOR CULTURE”. J Martial Arts Anthropol 19: 56-62.
    [37] Pettersson S, Berg CM (2014) Hydration Status in Elite Wrestlers, Judokas, Boxers, and Taekwondo Athletes on Competition Day. Int J Sport Nutr Exerc Metab 24: 267-275. doi: 10.1123/ijsnem.2013-0100
    [38] Szewczyk P, Poniewierka E (2015) Kreatyna–zastosowanie w sporcie i medycynie. Pielęgniarstwo i Zdrowie Publiczne 5: 409-416.
    [39] Skare OC, Skadberg RM, Wisnes AR (2001) Creatine supplementation improves sprint performance in male sprinters. Scand J Med Sci Sports 11: 96-102. doi: 10.1034/j.1600-0838.2001.011002096.x
    [40]  The AIS Sports Suplements Framework. 2019 Available from: https://ais.gov.au/nutrition/supplements.
    [41] World Anti Doping Agency Prohibited List Documents (2021) .Available from: https://www.wada-ama.org/en/resources/science-medicine/prohibited-list-documents.
    [42] Campbell B, La Bounty P, Wilborn CD (2011) Dietary Supplements Used in Combat Sports. Strengh Cond J 6: 50-59. doi: 10.1519/SSC.0b013e31823a4e90
    [43] López-González LM, Sánchez-Oliver AJ, Mata F, et al. (2018) Acute caffeine supplementation in combat sports: a systematic review. J Int Soc Sports Nutr 15: 60. doi: 10.1186/s12970-018-0267-2
    [44] Crowe MJ, Leicht AS, Spinks WL (2006) Physiological and cognitive responses to caffeine during repeated, high-intensity exercise. Int J Sport Nutr Exerc Metab 16: 528-544. doi: 10.1123/ijsnem.16.5.528
    [45] Lopes-Silva JP, Felippe LJ, Silva-Cavalcante M, et al. (2014) Caffeine ingestion after rapid weight loss in judo athletes reduces perceived effort and increases plasma lactate concentration without improving performance. Nutrients 6: 2931-2945. doi: 10.3390/nu6072931
    [46] Hadzic M, Eckstein ML, Schugardt M (2019) The Impact of Sodium Bicarbonate on Performance in Response to Exercise Duration in Athletes: A Systematic Review. J Sports Sci Med 18: 271-281.
    [47] Artioli G, Gualano B, Coelho DF, et al. (2007) Does sodium-bicarbonate ingestion improve simulated judo performance? Int J Sport Nutr Exerc Metab 17: 206-217. doi: 10.1123/ijsnem.17.2.206
    [48] Lopes-Silva JP, Santos JF, Artioli GG, et al. (2018) Sodium bicarbonate ingestion increases glycolytic contribution and improves performance during simulated taekwondo combat. Eur J Sport Sci 18: 431-440. doi: 10.1080/17461391.2018.1424942
    [49] Mc Naughton L, Thompson D (2001) Acute versus chronic sodium bicarbonate ingestion and anaerobic work and power output. J Sports Med Phys Fit 41: 456-462.
    [50] West DW, Burd NA, Coffey VG, et al. (2011) Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. Am J Clin Nutr 94: 795-803. doi: 10.3945/ajcn.111.013722
    [51] Stellingwerff T, Decombaz J, Harris R, et al. (2012) Optimizing human in vivo dosing and delivery of β-alanine supplements for muscle carnosine synthesis. Amino Acids 43: 57-65. doi: 10.1007/s00726-012-1245-7
    [52] Church DD, Hoffman JR, Varanoske AN, et al. (2017) Comparison of two beta-alanine dosing protocols on muscle carnosine elevations. J Am Coll Nutr 36: 608-616. doi: 10.1080/07315724.2017.1335250
    [53] Zoeller RF, Stout JR, O'kroy JA, et al. (2007) Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids 33: 505-510. doi: 10.1007/s00726-006-0399-6
    [54] Kratz C, Painelli V, Nemezio KM, et al. (2017) Beta-alanine supplementation enhances judo-related performance in highly-trained athletes. J Sci Med Sport 20: 403-408. doi: 10.1016/j.jsams.2016.08.014
    [55] Clark J (1997) Creatine and phosphocreatine: a review of their use in exercise and sport. J Athl Train 32: 45-51.
    [56] Butts J, Jacobs B, Silvis M (2018) Creatine Use in Sports. Sports Health 10: 31-34. doi: 10.1177/1941738117737248
    [57] Radovanovic D, Bratic M, Milovanovic D (2008) Effects of creatine monohydrate supplementation and training on anaerobic capacity and body composition in Judo athletes. Acta Fac Med Naissensis 25: 115-120.
    [58] Harris Rc, Soderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 83: 367-374. doi: 10.1042/cs0830367
    [59] Yfanti C, Akerstrom T, Nielsen S, et al. (2010) Antioxidant Supplementation Does Not Alter Endurance Training Adaptation. Med Sci Sports Exerc 42: 1388-1395. doi: 10.1249/MSS.0b013e3181cd76be
    [60] Samaras A, Tsarouhas K, Paschalidis E, et al. (2014) Effect of a special carbohydrate–protein bar and tomato juice supplementation on oxidative stress markers and vascular endothelial dynamics in ultra-marathon runners. Food Chem Toxicol 69: 231-236. doi: 10.1016/j.fct.2014.03.029
    [61] Chou CC, Sung YC, Davison G, et al. (2018) Short-Term High-Dose Vitamin C and E Supplementation Attenuates Muscle Damage and Inflammatory Responses to Repeated Taekwondo Competitions: A Randomized Placebo-Controlled Trial. Int J Med Sci 15: 1217-1226. doi: 10.7150/ijms.26340
    [62] Gomez-Cabrera MC, Domenech E, Romagnoli M, et al. (2008) Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 87: 142-149. doi: 10.1093/ajcn/87.1.142
    [63] Paulsen G, Cumming KT, Holden G, et al. (2014) Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol 592: 1887-901. doi: 10.1113/jphysiol.2013.267419
    [64] Martin J, Ronis K, Pedersen B, et al. (2018) Adverse effects of nutraceuticals and dietary supplements. Annu Rev Pharmacol Toxicol 58: 583-601. doi: 10.1146/annurev-pharmtox-010617-052844
    [65] Tsarouhas K, Kioukia-Fougia N, Papalexis P, et al. (2018) Use of nutritional supplements contaminated with banned doping substances by recreational adolescent athletes in Athens, Greece. Food Chem Toxicol 115: 447-450. doi: 10.1016/j.fct.2018.03.043
    [66] Outram S, Stewart B (2015) Doping through Supplement Use: A Review of the Available Empirical Data. Int J Sport Nutr Exerc Metab 25: 54-59. doi: 10.1123/ijsnem.2013-0174
    [67] Albano G, Amico F, Cocimano G, et al. (2021) Adverse Effects of Anabolic-Androgenic Steroids: A Literature Review. Healthcare 9: 97. doi: 10.3390/healthcare9010097
    [68] Watanabe M, Risi R, Masi D (2020) Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients 12: 2873. doi: 10.3390/nu12092873
    [69] U.S. Department of Health and Human Services U.S. FOOD & DRUG ADMINISTRATION (2020) .Available from: https://www.accessdata.fda.gov/cms_ia/importalert_144.html.
    [70] Boozer CN, Daly PA, Homel P, et al. (2002) Meredith Herbal ephedra=caffeine for weight loss: a 6-monthrandomized safety and efficacy trial. Int J Obes 26: 593-604. doi: 10.1038/sj.ijo.0802023
    [71] Saper R, Eisenberg D, Phillips R (2004) Common Dietary Supplements for Weight Loss. Am Fam Physician 70: 1731-1738.
    [72] García-Cortés M, Robles-Díaz M, Ortega-Alonso A, et al. (2016) Hepatotoxicity by Dietary Supplements: A Tabular Listing and Clinical Characteristics. Int J Mol Sci 17: 537. doi: 10.3390/ijms17040537
    [73] Navarro V, Lucena I (2014) Hepatotoxicity Induced by Herbal and Dietary Supplements. Semin Liver 34: 172-193. doi: 10.1055/s-0034-1375958
    [74] Bonkovsky H (2006) Hepatotoxicity Associated with Supplements Containing Chinese Green Tea (Camellia sinensis). Ann Intern Med 144: 68-71. doi: 10.7326/0003-4819-144-1-200601030-00020
    [75] Stickel F, Droz S, Patsenker E, et al. (2009) Severe hepatotoxicity following ingestion of Herbalife nutritional supplements contaminated with Bacillus subtilis. J Hepatol 50: 111-117. doi: 10.1016/j.jhep.2008.08.017
    [76] Fong TL, Klontz KC, Canas-Coto A, et al. (2010) Hepatotoxicity due to hydroxycut: a case series. Am J Gastroenterol 105: 1561-1566. doi: 10.1038/ajg.2010.5
    [77] Langan-Evans C, Close GL, Morton J (2011) Making weight in combat sports. Strengh Cond J 33: 25-39. doi: 10.1519/SSC.0b013e318231bb64
    [78] Artioli G, Saunders B, Iglesias RT, et al. (2016) It's time to ban rapid weight loss from combat sports. Sports Med 46: 1579-1584. doi: 10.1007/s40279-016-0541-x
    [79] Reale R, Slater G, Burke M (2017) Acute-Weight-Loss Strategies for Combat Sports and Applications to Olympic Success. Int J Sports Physiol Perform 12: 142-150. doi: 10.1123/ijspp.2016-0211
    [80] Kordi R, Ziae V, Rostami M, et al. (2011) Patterns of weight loss and supplement consumption of male wrestlers in Tehran. Sports Med Arthroscopy Rehabil Ther Technol 3: 4. doi: 10.1186/1758-2555-3-4
    [81] Reale R, Slater G, Cox GR, et al. (2018) The Effect of Water Loading on Acute Weight Loss Following Fluid Restriction in Combat Sports Athletes. Int J Sport Nutr Exer Metab 28: 565-573. doi: 10.1123/ijsnem.2017-0183
    [82] Sawka MN, Cheuvront CN, Carter I (2005) Human Water Needs. Nutr Rev 63: 30-39. doi: 10.1301/nr.2005.jun.S30-S39
    [83] Amatori S, Barley OR, Gobbi E (2020) Factors Influencing Weight Loss Practices in Italian Boxers: A Cluster Analysis. Int J Environ Res Public Health 17: 8727. doi: 10.3390/ijerph17238727
    [84] Fernández-Elías VE, Ortega J, Nelson R, et al. (2015) Relationship between muscle water and glycogen and glycogen recovery after prolonged exercise in the heat in humans. Eur J Appl Physiol 115: 1919-1926. doi: 10.1007/s00421-015-3175-z
    [85] Haff G, Whitley A (2002) Low Carbohydrate diets and High Intensity Anaerobic Exercise. Strengh Cond J 24: 42-53. doi: 10.1519/00126548-200208000-00013
    [86] Lambert E, Speechly D, Dennis S, et al. (1994) Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. Eur J Appl Physiol 69: 287-293. doi: 10.1007/BF00392032
    [87] Symons JD (1989) High-intensity exercise performance is not impaired by low intramuscular glycogen. Med Sci Sports Exerc 21: 550-557. doi: 10.1249/00005768-198910000-00009
  • This article has been cited by:

    1. Yiting Wu, Gabriel Bercu, New refinements of Becker-Stark and Cusa-Huygens inequalities via trigonometric polynomials method, 2021, 115, 1578-7303, 10.1007/s13398-021-01030-6
    2. Ling Zhu, Wilker inequalities of exponential type for circular functions, 2021, 115, 1578-7303, 10.1007/s13398-020-00973-6
    3. Yogesh J. Bagul, Christophe Chesneau, Marko Kostić, On the Cusa–Huygens inequality, 2021, 115, 1578-7303, 10.1007/s13398-020-00978-1
    4. Lina Zhang, Xuesi Ma, Dimitri Mugnai, Some New Results of Mitrinović–Cusa’s and Related Inequalities Based on the Interpolation and Approximation Method, 2021, 2021, 2314-4785, 1, 10.1155/2021/5595650
    5. Yogesh J. Bagul, Bojan Banjac, Christophe Chesneau, Marko Kostić, Branko Malešević, New Refinements of Cusa-Huygens Inequality, 2021, 76, 1422-6383, 10.1007/s00025-021-01392-8
    6. Ling Zhu, High Precision Wilker-Type Inequality of Fractional Powers, 2021, 9, 2227-7390, 1476, 10.3390/math9131476
    7. Wei-Dong Jiang, New sharp inequalities of Mitrinovic-Adamovic type, 2023, 17, 1452-8630, 76, 10.2298/AADM210507010J
    8. Yogesh J. Bagul, Christophe Chesneau, Sharp Extensions of a Cusa-Huygens Type Inequality, 2024, 1829-1163, 1, 10.52737/18291163-2024.16.14-1-12
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7211) PDF downloads(540) Cited by(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog