Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Hydrogeochemical assessment of mine water discharges from mining activity. Case of the Haut Beht mine (central Morocco)

  • The rocks are likely to give a geochemical signature to the groundwater circulating there. Therefore the hydro geochemistry of the mine's water is influenced by the mining method. The continuous pumping of the mine water gives discharges that induce harmful impacts on the environment. The Sebou basin is subjected to strong industrial and urban pollution, but in the literature, the evaluation of the mining impact on this area is neglected. This paper is dedicated to this issue and as part of the evaluation of the mining impact on the Sebou watershed, the haut Beht mine was chosen among the four mines which include the watershed, and then we proceeded, as the purpose of this work, to evaluate the physicochemical quality of this mine's water discharges and their metallic trace elements (MTE) load (As, Pb, Cd, Zn, and Cu) through monitoring of four locations during two analysis campaigns in 2014 and 2015. This monitoring was performed by ICP-MS analysis. The results showed absenteeism of the acidic nature of mine's water, characterizing acid mine drainage (AMD). The majority of the analyzed water presents important concentrations of sulfate. During the 2014 campaign, the examination of trace metal element concentrations showed, at station 2, contamination of Iron, Aluminum, Manganese and, Arsenic. However, the concentrations of Pb, Cd, Zn, and Cu elements remain conform and very low compared to the limit of standards. The monitoring of the overtake elements made it possible to identify the degree of contamination of the mine's water discharges and to note an improvement in time in the mine water discharges quality.

    Citation: Maryem EL FAHEM, Abdellah BENZAOUAK, Habiba ZOUITEN, Amal SERGHINI, Mohamed FEKHAOUI. Hydrogeochemical assessment of mine water discharges from mining activity. Case of the Haut Beht mine (central Morocco)[J]. AIMS Environmental Science, 2021, 8(1): 60-85. doi: 10.3934/environsci.2021005

    Related Papers:

    [1] Pensiri Yosyingyong, Ratchada Viriyapong . Global dynamics of multiple delays within-host model for a hepatitis B virus infection of hepatocytes with immune response and drug therapy. Mathematical Biosciences and Engineering, 2023, 20(4): 7349-7386. doi: 10.3934/mbe.2023319
    [2] Suxia Zhang, Hongbin Guo, Robert Smith? . Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences and Engineering, 2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060
    [3] Abulajiang Aili, Zhidong Teng, Long Zhang . Dynamical behavior of a coupling SEIR epidemic model with transmission in body and vitro, incubation and environmental effects. Mathematical Biosciences and Engineering, 2023, 20(1): 505-533. doi: 10.3934/mbe.2023023
    [4] Tingting Xue, Long Zhang, Xiaolin Fan . Dynamic modeling and analysis of Hepatitis B epidemic with general incidence. Mathematical Biosciences and Engineering, 2023, 20(6): 10883-10908. doi: 10.3934/mbe.2023483
    [5] Pengfei Liu, Yantao Luo, Zhidong Teng . Role of media coverage in a SVEIR-I epidemic model with nonlinear incidence and spatial heterogeneous environment. Mathematical Biosciences and Engineering, 2023, 20(9): 15641-15671. doi: 10.3934/mbe.2023698
    [6] Liqiong Pu, Zhigui Lin . A diffusive SIS epidemic model in a heterogeneous and periodically evolvingenvironment. Mathematical Biosciences and Engineering, 2019, 16(4): 3094-3110. doi: 10.3934/mbe.2019153
    [7] Xiaoqin Wang, Yiping Tan, Yongli Cai, Kaifa Wang, Weiming Wang . Dynamics of a stochastic HBV infection model with cell-to-cell transmission and immune response. Mathematical Biosciences and Engineering, 2021, 18(1): 616-642. doi: 10.3934/mbe.2021034
    [8] Yongli Cai, Yun Kang, Weiming Wang . Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1071-1089. doi: 10.3934/mbe.2017056
    [9] Zongwei Ma, Hongying Shu . Viral infection dynamics in a spatial heterogeneous environment with cell-free and cell-to-cell transmissions. Mathematical Biosciences and Engineering, 2020, 17(3): 2569-2591. doi: 10.3934/mbe.2020141
    [10] Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141
  • The rocks are likely to give a geochemical signature to the groundwater circulating there. Therefore the hydro geochemistry of the mine's water is influenced by the mining method. The continuous pumping of the mine water gives discharges that induce harmful impacts on the environment. The Sebou basin is subjected to strong industrial and urban pollution, but in the literature, the evaluation of the mining impact on this area is neglected. This paper is dedicated to this issue and as part of the evaluation of the mining impact on the Sebou watershed, the haut Beht mine was chosen among the four mines which include the watershed, and then we proceeded, as the purpose of this work, to evaluate the physicochemical quality of this mine's water discharges and their metallic trace elements (MTE) load (As, Pb, Cd, Zn, and Cu) through monitoring of four locations during two analysis campaigns in 2014 and 2015. This monitoring was performed by ICP-MS analysis. The results showed absenteeism of the acidic nature of mine's water, characterizing acid mine drainage (AMD). The majority of the analyzed water presents important concentrations of sulfate. During the 2014 campaign, the examination of trace metal element concentrations showed, at station 2, contamination of Iron, Aluminum, Manganese and, Arsenic. However, the concentrations of Pb, Cd, Zn, and Cu elements remain conform and very low compared to the limit of standards. The monitoring of the overtake elements made it possible to identify the degree of contamination of the mine's water discharges and to note an improvement in time in the mine water discharges quality.



    There has been some work in the study of the relationship between persistent infection with hepatitis B virus and immune responses (see, e.g., [2]). Hepatitis B virus (HBV) is a major cause of various liver diseases around the world. Except acute and chronic hepatitis, it causes liver fibrosis and even hepatocellular carcinoma. When an adult gets first infected with the hepatitis B virus during the early period of six months, it is called an acute infection. On the other hand, innate immune responses on persons may drive huge effector immune cells (CD8 T cells, help T cells, B cells) against infection. It is probably due to such immune system, in clinical observations, only 5–10 percent of healthy adults will develop a chronic hepatitis B infection after they get infection. This motivates researchers to investigate the topic that whether antibodies against hepatitis B play a central role in virus clearance (see, e.g., [1,2]).

    It is practically difficult to obtain experimental results in the study of the antibody response to hepatitis B virus (HBV) infection. Thus, developing suitable mathematical models is an alternative way since it can be used to estimate some crucial factors for the viral infection, and to explore possible mechanisms of protection and viral infection process (see, e.g., [1,2,3,4,5,6,7] and the references therein). We first mention a model of virus infection in the absence of antibody responses, namely, the following model consists of three compartments of populations, corresponding to target hepatocytes (T), infected hepatocytes (I), and virus (V).

    {dT(t)dt=rT(1T+ITm)βVT+ρI,dI(t)dt=βVTδIρI,dV(t)dt=πIcV. (1.1)

    The growth of target cells (T) in system (1.1) is described by a logistic term with carrying capacity Tm and and maximal growth rate r (see, e.g., [8,9]); target cells (T) also get infected at a rate βVT. Infected cells (I) are gained at rate βVT, and die at rate δ. Infected cells (I) produce virus (V) at rate π, and virus clearance rate is denoted by c. Further, system (1.1) also assumes that infected class (I) can get recovery and move back into the target class at rate ρ.

    In order to incorporate antibody response, the authors in [1] ignore the curing of infected cells by setting ρ=0, and introduce two additional classes, free antibody (A) and virus-antibody complexes (X), into system (1.1). Then the governing system takes the following form:

    {dT(t)dt=rT(1T+ITm)βVT,dI(t)dt=βVTδI,dA(t)dt=pA(1+θ)V+rAA(1AAm)+(1+θ)kmX(1+θ)kpAVdAA,dX(t)dt=kmX+kpAVcAVX,dV(t)dt=πIcV+kmXkpAV. (1.2)

    The free antibody (A) is produced at rate pA proportional to the viral and subviral concentrations, and is degraded at rate dA. Without virus, we also introduce a logistic term with maximum growth rate rA and carrying capacity Am for the antibody maintenance. In system (1.2), for simplicity, we have imposed the assumption that the concentration of subviral particles is proportional to the concentration of free virus V, and θ is a constant proportionality. Antigen clearance is caused by the constitution of antigen-antibody complexes. The binding rate with antigen-antibody is kp that causes the free antibody population to descend; km represents the disassociation rate for antibody reacting to viral particles. The complexes (X) are produced by a productive combination rate kp and it decreases at a disassociation rate km and a degradation rate cAV. During infection, free virus (V) are gained at a rate π and binding rate km with complexes, and are degraded by a rate c and binding rate kp with antibody.

    In [1], the authors also mention that it can be a further topic in the investigation of spatial effects in HBV infection. In fact, spatial clustering of infected cells has recently been observed for hepatitis C virus (HCV) infection (see, e.g., [10]). The effects of spatial heterogeneity was also added to within-host HIV models, see [11,12]. Motivated by those previous works, we intend to consider system (1.2) with spatial variations. For this purpose, we add diffusion terms DAΔA, DXΔX and DVΔV into the model, which reflects the spatial variations of free antibody (A), virus-antibody complexes (X) and free virus (V), respectively. Then the modified version of system (1.2) is as follows

    {Tt=rT(1T+ITm)βVT, xΩ, t>0,It=βVTδI, xΩ, t>0,At=DAΔA+pA(1+θ)V+rA(x)A(1AAm)+(1+θ)kmX             (1+θ)kpAVdA(x)A, xΩ, t>0,Xt=DXΔXkmX+kpAVcAVX, xΩ, t>0,Vt=DVΔV+πIcV+kmXkpAV, xΩ, t>0,Aν=Xν=Vν=0, xΩ, t>0,u(x,0)=u0(x), u=T,I,A,X,V, xΩ. (1.3)

    Here, we consider a general bounded domain ΩR3 where virus and cells stay and interact, and pose zero-flux condition on the boundary of Ω (i.e., homogeneous Neumann boundary condition). The notation ν denotes the differentiation along the outward normal ν to Ω. The location dependent parameters are continuous and strictly positive functions on ˉΩ.

    The dynamics of system (1.3) is challenging since there are no diffusion terms in the first two equations, resulting in the loss of compactness of the solution maps. In order to determine the disease-free steady state of system (1.3), we also need to investigate the following system:

    {Tt=rT(1TTm), xΩ, t>0,T(x,0)=T0(x), xΩ. (1.4)

    It is easy to see that T=0 and T=Tm are two steady states of (1.4). However, the global dynamics of system(1.4) is still open to us, due to the loss of compactness of the solution maps. This stops us from using persistence theory in the investigation of the dynamics of system (1.3). Instead, we will focus on the study of the existence of the positive steady states of system (1.3), (ˆT(x),ˆI(x),ˆA(x),ˆX(x),ˆV(x)), which satisfies the following equations:

    {rˆT(1ˆT+ˆITm)βˆVˆT=0, xΩ,βˆVˆTδˆI=0, xΩ,DAΔˆA+pA(1+θ)ˆV+rA(x)ˆA(1ˆAAm)+(1+θ)kmˆX             (1+θ)kpˆAˆVdA(x)ˆA=0, xΩ,DXΔˆXkmˆX+kpˆAˆVcAVˆX=0, xΩ,DVΔˆV+πˆIcˆV+kmˆXkpˆAˆV=0, xΩ,ˆAν=ˆXν=ˆVν=0, xΩ. (1.5)

    In view of the first two equations of (1.5), it follows that

    ˆT+ˆI=Tm(1βrˆV), ˆI=βδˆVˆT. (1.6)

    Then

    {ˆT=Tm1βrˆV1+βδˆV,ˆI=βδTm(1βrˆV)ˆV1+βδˆV. (1.7)

    Substituting the second equality of (1.7) into the fifth equation of (1.5), we arrive at the following elliptic system

    {DAΔˆA+pA(1+θ)ˆV+rA(x)ˆA(1ˆAAm)+(1+θ)kmˆX             (1+θ)kpˆAˆVdA(x)ˆA=0, xΩ,DXΔˆXkmˆX+kpˆAˆVcAVˆX=0, xΩ,DVΔˆV+πβδTm1βrˆV1+βδˆVˆVcˆV+kmˆXkpˆAˆV=0, xΩ,ˆAν=ˆXν=ˆVν=0, xΩ. (1.8)

    The standard approach in seeking for the positive steady states of system (1.8) is the bifurcation argument. Here, we are going to adopt another approach, using the persistence theory, to study the following parabolic system associated with (1.8):

    {At=DAΔA+pA(1+θ)V+rA(x)A(1AAm)+(1+θ)kmX             (1+θ)kpAVdA(x)A, xΩ, t>0,Xt=DXΔXkmX+kpAVcAVX, xΩ, t>0,Vt=DVΔV+πf(V)VcV+kmXkpAV, xΩ, t>0,Aν=Xν=Vν=0, xΩ, t>0,A(x,0)=A0(x), X(x,0)=X0(x), V(x,0)=V0(x), xΩ, (1.9)

    where

    f(V)=βδTm1βrV1+βδV. (1.10)

    If one can show that system (1.9) is uniformly persistent, then (1.9) must admit a positive steady state (see, e.g., [13,CH1]). We point out that the dynamics of systems (1.3) and (1.9) may be different, but they admit the same positive steady states. Thus, we will focus on the search for positive steady state(s) of system (1.9) via the establishment of uniform persistence of system (1.9).

    Let Y:=C(ˉΩ,R3) be the Banach space with the supremum norm Y. Define Y+:=C(ˉΩ,R3+), then (Y,Y+) is a strongly ordered space. By the similar arguments in [14,Lemma 2.2] (see also [15]), together with [16,Corollary 4] (see also [17,Theorem 7.3.1]), we have the following result:

    Lemma 2.1. For every initial value function ϕY+, system (1.9) has a unique mild solution u(x,t,ϕ) on (0,τϕ) with u(,0,ϕ)=ϕ, where τϕ. Furthermore, u(,t,ϕ)Y+, t(0,τϕ) and u(x,t,ϕ) is a classical solution of (1.9).

    Next, we show that solutions of system (1.9) are ultimately bounded, and system (1.9) admits a compact attractor in Y+.

    Lemma 2.2. For every initial value function ϕY+, system (1.9) admits a unique solution u(x,t,ϕ) on [0,) with u(,0,ϕ)=ϕ. Furthermore,

    (ⅰ) u(x,t,ϕ) is ultimately bounded;

    (ⅱ) The semiflow Ψ(t):Y+Y+ generated by (1.9) is defined by Ψ(t)ϕ=u(,t,ϕ), t0, which admits a global compact attractor in Y+,  t0.

    Proof. In view of (1.10), it is not hard to see that

    f(V)VβδTmV1+βδVβδTmVβδV=Tm,  V>0.

    Thus,

    f(V)VTm,  V0. (2.1)

    Setting

    U(t)=Ω[X(x,t)+V(x,t)]dx.

    Then it follows from system (1.9) and (2.1) that

    dU(t)dt=Ωπf(V(x,t))V(x,t)dxΩ[cAVX(x,t)+cV(x,t)]dx       πTm|Ω|cminU(t),

    where cmin:=min{cAV,c}. Thus, we have

    U(t)U(0)ecmin t+πTm|Ω|cmin(1ecmin t). (2.2)

    Using (2.2) and the similar arguments to those in the end of [18,Proposition 2.3], we can show that X(,t,ϕ) and V(,t,ϕ) are ultimately bounded. Therefore, there exists ˆC>0 and t1>0 such that

    pA(1+θ)V(x,t)+(1+θ)kmX(x,t)ˆC,  x¯Ω, tt1. (2.3)

    In view of the first equation of system (1.9) and (2.3), it follows that

    {AtDAΔA+ˆC+rA(x)A(1AAm)dA(x)A,  xΩ, tt1,Aν=0, xΩ, tt1.

    Then

    lim suptA(x,t)ˆA,  x¯Ω,

    where ˆA>0 is a constant such that

    ˆC+rA(x)ˆA(1ˆAAm)dA(x)ˆA0,  xΩ.

    From the above discussions, we see that Ψ(t):Y+Y+ is point dissipative. Obviously, Ψ(t):Y+Y+ is compact,  t>0. It follows from [19,Theorem 3.4.8] that Ψ(t):Y+Y+, t0, admits a global compact attractor.

    Putting X=V=0 into (1.9), we see that

    {At=DAΔA+rA(x)A(1AAm)dA(x)A, xΩ, t>0,Aν=0, xΩ, t>0,A(x,0)=A0(x), xΩ. (2.4)

    It is easy to see that A=0 is the trivial steady state solution of system (2.4). The stability of the trivial steady state solution A=0 is determined by the following eigenvalue problem:

    {μφ(x)=DAΔφ(x)+(rA(x)dA(x))φ(x), xΩ,φ(x)ν=0, xΩ. (2.5)

    Assume that μ0 is the principal eigenvalue of system (2.5). By [20,Proposition 4.4], we see that μ0>0 if the following condition is satisfied

    Ω(rA(x)dA(x))dx>0. (2.6)

    Thus, trivial steady state solution A=0 is unstable for system (2.4) if condition (2.6) holds. If condition (2.6) is true, then one can use [13,Theorem 2.3.2] to show that system (2.4) admits a unique positive steady state A(x) which is globally attractive. Thus, two possible steady states of system (1.9) are as follows:

    E0(x)=(A,X,V)=(0,0,0),

    and

    E1(x)=(A,X,V)=(A(x),0,0).

    Note that E0(x) always exists, and E1(x) exists when (2.6) holds. Linearizing system (1.9) around E1(x), we get the following cooperative system for the infectious compartments:

    {Xt=DXΔXkmX+kpA(x)VcAVX, xΩ, t>0,Vt=DVΔV+πf(0)VcV+kmXkpA(x)V, xΩ, t>0,Xν=Vν=0, xΩ, t>0. (2.7)

    Substituting X(x,t)=eλtψX(x) and V(x,t)=eλtψV(x) into (2.7) and we get the associated eigenvalue problem:

    {λψX(x)=DXΔψX(x)(km+cAV)ψX(x)+kpA(x)ψV(x), xΩ,λψV(x)=DVΔψV(x)+kmψX(x)+(πf(0)ckpA(x))ψV(x), xΩ,ψX(x)ν=ψV(x)ν=0, xΩ. (2.8)

    It is not hard to see that the linear system (2.7) generates a strongly positive semigroup on C(¯Ω,R2+) (see, e.g., Section 4 of CH 7 in [17]). In addition, the semigroup associated with system (2.7) is compact. By a similar argument as in [17,Theorem 7.6.1], we have the following result which is related to the existence of the principal eigenvalue of (2.8):

    Lemma 2.3. The eigenvalue problem (2.8) admits a principal eigenvalue, denoted by λ0, which corresponds a strongly positive eigenfunction.

    Next, we shall adopt the theory developed in [21,Section 3] to define the basic reproduction number for system (1.9). For this purpose, we assume

    F(x)=(0kpA(x)kmπf(0)), (2.9)

    and

    V(x)=(km+cAV00c+kpA(x)). (2.10)

    Let w=(X,V)T, DΔw=(DXΔX,DVΔV)T, and S(t):C(¯Ω,R2)C(¯Ω,R2) be the C0-semigroup generated by the following system

    {wt=DΔwV(x)w, x¯Ω, t>0,Xν=Vν=0, xΩ, t>0. (2.11)

    Assume that the state variables are near the disease-free steady state E1(x) and the distribution of initial infection is described by φC(¯Ω,R2). Then S(t)φ(x) represents the distribution of those infectious cases as time evolves to time t, and hence, the distribution of new infection at time t is F(x)S(t)φ(x). Let L:C(¯Ω,R2)C(¯Ω,R2) be defined by

    L(φ)()=0F()(S(t)φ)()dt.

    It then follows that L(φ)() represents the distribution of accumulated infectious cases during the infection period, and hence, L is the next generation operator. By the idea of next generation operators (see, e.g., [21,22,23]), we define the spectral radius of L as the basic reproduction number for system (1.9), that is,

    R0:=r(L).

    From [24,Theorem 3.5] or [21,Theorem 3.1], the following observation holds.

    Lemma 2.4. R01 and λ0 have the same sign.

    Next, we are going to find an explicit formula for R0 when coefficients of system (1.9) are all positive constants. For this special case, we see that F(x)=F and V(x)=V, for all xˉΩ, and hence, R0=r(FV1) (see e. g., [21,Theorem 3.4]). By direct computations, it follows that

    FV1=(0kpAkmπf(0))(1km+cAV001c+kpA)=(0kpAc+kpAkmkm+cAVπf(0)c+kpA).

    Thus,

    R0=12[πf(0)c+kpA+(πf(0)c+kpA)2+4kpAc+kpAkmkm+cAV ]. (2.12)

    In the establishment of the persistence for (1.9), the following results will be necessary.

    Lemma 2.5. For every initial value function ϕY+, we assume that system (1.9) admits a unique solution u(x,t,ϕ) on [0,) with u(,0,ϕ)=ϕ.

    (ⅰ) If ϕ2()0 and ϕ3()0, then

    ui(x,t,ϕ)>0, for xˉΩ, t>0, and 1i3.

    (ⅱ) Assume that ϕi()0, for i=2,3. If there exists a σ1>0 such that

    lim inftX(x,t,ϕ)σ1 and lim inftV(x,t,ϕ)σ1, uniformly for xˉΩ. (2.13)

    Then there exists a σ>0 such that

    lim inftui(x,t,ϕ)σ, uniformly for xˉΩ, and 1i3. (2.14)

    Proof. Part (ⅰ). By the positivity of solutions (see Lemma 2.1), it follows that X(x,t)0,  x¯Ω, t0. Suppose, by contradiction, there exists x1¯Ω and t1(0,) such that X(x1,t1)=0. Let τ1>0 be such that t1<τ1. Then (x1,t1)¯Ω×[0,τ1] and X attains its minimum on ¯Ω×[0,τ1] at the point (x1,t1). In view of the second equation of (1.9), it follows that

    {XtDXΔX(km+cAV)X, xΩ, t(0,τ1],Xν=0, xΩ, t(0,τ1].

    In case x1Ω, we apply the Hopf boundary lemma (see, e.g., [25,p. 170,Theorem 3]) and we have X(x1,t1,ϕ)ν<0, which is impossible. In case where x1Ω, then the strong maximum principle (see [25,p. 174,Theorem 7]) implies that

    X(x,t,ϕ)X(x1,t1,ϕ)=0,  (x,t)¯Ω×[0,τ1],

    which contradicts the assumption that ϕ2()0. Thus, X(x,t,ϕ)>0,  xˉΩ, t>0. Similarly, we see that V(x,t)0,  x¯Ω, t0 (see Lemma 2.1). Suppose, by contradiction, there exists x2¯Ω and t2(0,) such that V(x2,t2)=0. Let τ2>0 be such that t2<τ2. Then (x2,t2)¯Ω×[0,τ2] and V attains its minimum on ¯Ω×[0,τ2] at the point (x2,t2). Using the third equation of (1.9) and (1.10), it follows that

    {VtDVΔVπ[βδTmβrV1+βδV+c+kpA]V, xΩ, t(0,τ2],Vν=0, xΩ, t(0,τ2]. (2.15)

    In case x2Ω, we apply the Hopf boundary lemma (see, e.g., [25,p. 170,Theorem 3]) and we have V(x2,t2,ϕ)ν<0, which is a contradiction. In case where x2Ω, then the strong maximum principle (see [25,p. 174,Theorem 7]) implies that

    V(x,t,ϕ)V(x2,t2,ϕ)=0,  (x,t)¯Ω×[0,τ2],

    which contradicts the assumption that ϕ3()0. Thus, V(x,t,ϕ)>0,  xˉΩ, t>0.

    Claim. A(x,t,ϕ)>0,  xˉΩ, t>0.

    By Lemma 2.1, it follows that A(x,t)0,  x¯Ω, t0. Suppose, by contradiction, there exists x3¯Ω and t3(0,) such that A(x3,t3)=0. Let τ3>0 be such that t3<τ3. Then (x3,t3)¯Ω×[0,τ3] and A attains its minimum on ¯Ω×[0,τ3] at the point (x3,t3). By the first equation of (1.9), it follows that

    {AtDAΔA[rA(x)AAm+(1+θ)kpV+dA(x)]A, xΩ, t(0,τ3],Aν=0, xΩ, t(0,τ3].

    In case x3Ω, we apply the Hopf boundary lemma (see, e.g., [25,p. 170,Theorem 3]) and we have A(x3,t3,ϕ)ν<0, which is a contradiction. In case where x3Ω, then the strong maximum principle (see [25,p. 174,Theorem 7]) implies that

    A(x,t,ϕ)A(x3,t3,ϕ)=0,  (x,t)¯Ω×[0,τ3].

    This together with the first equation of (1.9) imply that

    X(x,t,ϕ)0 and V(x,t,ϕ)0,  (x,t)¯Ω×[0,τ3],

    which is a contradiction. Thus, A(x,t,ϕ)>0,  xˉΩ, t>0.

    Part (ⅱ). From Lemma 2.2, we see that V(x,t) is ultimately bounded. This together with assumption (2.13) imply that there exists t4>0 and C>0 such that

    12σ1V(x,t)C, and X(x,t)12σ1,  ˉΩ, tt4.

    From the above inequalities and the first equation of (1.9), it follows that

    {AtDAΔA+12(1+θ)(pA+km)σ1+rA(x)A(1AAm)             [(1+θ)kpC+dA(x)]A, xΩ, tt4,Aν=0, xΩ, tt4. (2.16)

    Let A_>0 satisfy the following inequality

    12(1+θ)(pA+km)σ1+rA(x)A_(1A_Am)[(1+θ)kpC+dA(x)]A_0,  xΩ.

    By (2.16) and the standard parabolic comparison theorem (see, e.g., [17,Theorem 7.3.4]), we deduce that

    lim inftA(x,t,ϕ)A_,  xˉΩ.

    Let σ:=min{σ1,A_}. Then (2.14) holds.

    We show that R0 is an important index for the persistence of HBV in system (1.9).

    Theorem 2.1. Assume that (2.6) holds. For every initial value function u0()=(A0,X0,V0)()Y+, we assume that system (1.9) admits a unique solution

    u(x,t,u0):=(A(x,t),X(x,t),V(x,t))

    on [0,) with u(,0,u0)=u0. If R0>1, then system (1.9) admits at least one (componentwise) positive steady state ˆu(x) and there exists a σ>0 such that for any u0()Y+ with X0()0 and V0()0, we have

    lim inft w(x,t,u0())σ, for w=A,X,V, (2.17)

    uniformly for x¯Ω.

    Proof. Let

    W0={u0()=(A0,X0,V0)()Y+:X0()0 and V0()0},

    and

    W0=Y+W0={u0()=(A0,X0,V0)()Y+:X0()0 or V0()0}.

    Recall that the semiflow Ψ(t):Y+Y+ generated by (1.9) is defined in Lemma 2.2. By Lemma 2.5 (ⅰ), it follows that for any u0()W0, we have

    w(x,t,u0())>0, for xˉΩ, t>0, and w=A,X,V.

    In other words, Ψ(t)W0W0,  t0. Let

    M:={u0()W0:Ψ(t)u0()W0, t0},

    and ω(u0()) be the omega limit set of the orbit O+(u0()):={Ψ(t)u0():t0}.

    Claim 1. ω(v0()){E0(x)}{E1(x)},  v0()M.

    Since v0()M, we have Ψ(t)v0()M,  t0, that is, X(,t,v0())0 or V(,t,v0())0,  t0.

    In case where V(,t,v0())0,  t0. Then it follows from the third equation in system (1.9) that X(,t,v0())0,  t0. Thus, X(x,t,v0()) satisfies system (2.4), and hence,

    either limtA(x,t,v0)=0 or limtA(x,t,v0)=A(x), uniformly for xˉΩ.

    Thus,

    either limtu(x,t,v0)=E0(x) or limtu(x,t,v0)=E1(x), uniformly for all xˉΩ.

    In case where V(,ˆt0,v0())0, for some ˆt00. Then we can use similar arguments in Lemma 2.5 to show that V(x,t,v0)>0, for all xˉΩ and t>ˆt0, and hence, X(,t,v0)0, for all t>ˆt0. Then it follows from the second equation in system (1.9) that A(,t,v0())V(,t,v0())0,  t>ˆt0. From the above discussions, it follows that A(,t,v0())0,  t>ˆt0. Thanks to the first equation in system (1.9), it follows that V(,t,v0())0,  t>ˆt0. This is a contradiction, and hence, we cannot allow the possibility that V(,ˆt0,v0())0, for some ˆt00. Therefore, we complete the proof of Claim 1.

    Recall that μ0 is the principal eigenvalue of the eigenvalue problem (2.5), and μ0>0 since (2.6) holds. By continuity, there is a δ0>0 such that μδ0>0, where μδ0>0 is the principal eigenvalue of the following eigenvalue problem:

    {μφ(x)=DAΔφ(x)+[rA(x)(1δ0Am)(1+θ)kpδ0dA(x)]φ(x), xΩ,φ(x)ν=0, xΩ. (2.18)

    Claim 2. E0(x) is a uniform weak repeller for W0 in the sense that

    lim suptΨ(t)u0()E0()δ0,  u0()W0.

    Suppose, by contradiction, that there exists u0()W0 such that

    lim suptΨ(t)u0()E0()<δ0.

    Then there exists t0>0 such that

    0w(x,t,u0)<δ0,  tt0, xˉΩ, w=A,X,V.

    From the first equation of (1.9), we see that

    {AtDAΔA+[rA(x)(1δ0Am)(1+θ)kpδ0dA(x)]A, xΩ, tt0,Aν=0, xΩ, tt0. (2.19)

    Assume that φδ0(x) is the positive eigenfunction corresponding to μδ0, and there exists a C0>0 such that

    A(x,t0)C0φδ0(x),  xˉΩ,

    where we have used the fact that A(x,t0)>0,  xˉΩ (see Lemma 2.5). The comparison principle and the inequality (2.19) imply that

    A(x,t)C0eμδ0(tt0)φδ0(x),  tt0, xˉΩ.

    Since μδ0>0, it follows that A(x,t) is unbounded. This contradiction proves the Claim 2.

    Since R0>1, it follows from Lemma 2.4 that λ0>0. By continuity of the principal eigenvalue, we can find an ϵ1>0 such that λϵ1>0, where λϵ1 is the principal eigenvalue of the following eigenvalue problem:

    {λψX(x)=DXΔψX(x)(km+cAV)ψX(x)+kp[A(x)ϵ1]ψV(x), xΩ,λψV(x)=DVΔψV(x)+kmψX(x)                              +[π(f(0)ϵ1)ckp(A(x)+ϵ1)]ψV(x), xΩ,ψX(x)ν=ψV(x)ν=0, xΩ. (2.20)

    By continuity of f(V), we can choose a δ1 with 0<δ1ϵ1 such that

    f(V)>f(0)ϵ1,  V∣<δ1. (2.21)

    Claim 3. E1(x) is a uniform weak repeller for W0 in the sense that

    lim suptΨ(t)u0()E1()12δ1,  u0()W0.

    Suppose, by contradiction, there exists u0()W0 such that

    lim suptΨ(t)u0()E1(x)<12δ1.

    Then there exists t1>0 such that

    A(x)ϵ1<A(x)12δ1A(x,t,u0)<A(x)+12δ1<A(x)+ϵ1,  tt1, xˉΩ,

    and

    0w(x,t,u0)<12δ1<ϵ1,  tt1, xˉΩ, w=X,V.

    From the second and third equations in system (1.9), it follows that

    {XtDXΔXkmX+kp[A(x)ϵ1]VcAVX, xΩ, tt1,VtDVΔV+π[f(0)ϵ1]VcV+kmX                                         kp[A(x)+ϵ1]V, xΩ, tt1,Xν=Vν=0, xΩ, tt1. (2.22)

    Assume that (ψϵ1X(x),ψϵ1V(x)) is the positive eigenfunction corresponding to λϵ1, and there exists a C1>0 such that

    (X(x,t1),V(x,t1))C1(ψϵ1X(x),ψϵ1V(x)),  xˉΩ,

    where we have used the fact that X(x,t1)>0, V(x,t1)>0,  xˉΩ (see Lemma 2.5). The comparison principle and the inequality (2.22) imply that

    (X(x,t),V(x,t))C1eλϵ1(tt1)(ψϵ1X(x),ψϵ1V(x)),  tt1, xˉΩ.

    Since λϵ1>0, it follows that (X(x,t),V(x,t)) is unbounded. This contradiction proves Claim 3.

    Define a continuous function P:Y+[0,) by

    P(u0()):=min{minxˉΩX0(x), minxˉΩV0(x)},  u0()=(A0,X0,V0)()Y+.

    By Lemma 2.5 (ⅰ), it follows that P1(0,)W0 and P has the property that if P(u0())>0 or u0()W0 with P(u0())=0, then P(Ψ(t)u0())>0,  t>0. That is, P is a generalized distance function for the semiflow Ψ(t):Y+Y+ (see, e.g., [26]).

    From the above claims, it follows that any forward orbit of Ψ(t) in M converges to {E0(x)}{E1(x)}. For i=0,1, {Ei(x)} is isolated in Y+ and Ws({Ei(x)})W0=, where Ws({Ei(x)}) is the stable set of {Ei(x)} (see [26]). It is obvious that no subset of {E0(x)}{E1(x)} forms a cycle in W0. By Lemma 2.2, the semiflow Ψ(t):Y+Y+ has a global compact attractor in Y+,  t0. Then it follows from [26,Theorem 3] that there exists a σ1>0 such that

    minψω(u0())p(ψ)>σ1,  u0()W0.

    Hence,

    lim inftX(,t,u0())σ1 and lim inftV(,t,u0())σ1,  u0()W0.

    From Lemma 5 (ⅱ), there exists a σ>0 such that (2.17) is valid. Hence, the uniform persistence stated in the conclusion (ⅱ) hold. By [27,Theorem 3.7 and Remark 3.10], it follows that Ψ(t):W0W0 has a global attractor A0. Using [27,Theorem 4.7], we deduce that Ψ(t) admits a steady-state ˆu()W0. By Lemma 2.5 (ⅰ), we can further conclude that ˆu() is a positive steady state of (1.9). The proof of Part (ⅱ) is finished.

    In this section, we focus on the study of elimination of HBV with antibody. Due to technical reasons, we only consider a special case where we assume km=0 in system (1.9), and the coefficients in (1.9) are all positive constants. Then the equation of X in system (1.9) is decoupled from the other equations, and hence, it suffices to investigate the following system:

    {At=DAΔA+pA(1+θ)V+rAA(1AAm)             (1+θ)kpAVdAA, xΩ, t>0,Vt=DVΔV+πf(V)VcVkpAV, xΩ, t>0,Aν=Vν=0, xΩ, t>0,A(x,0)=A0(x), V(x,0)=V0(x), xΩ. (3.1)

    We see that two possible steady states of system (3.1) are as follows:

    E0=(A,V)=(0,0),

    and

    E1=(A,V)=(A,0),

    where A:=Am(1dArA)>0, provided that rA>dA.

    Linearizing system (3.1) around E1, we get the following scalar system

    {Vt=DVΔV+πf(0)VcVkpAV, xΩ, t>0,Vν=0, xΩ, t>0. (3.2)

    Substituting V(x,t)=eΛtψ(x) into (3.2), and we get the associated eigenvalue problem:

    {Λψ(x)=DVΔψ(x)+(πf(0)ckpA)ψ(x), xΩ,ψ(x)ν=0, xΩ. (3.3)

    By the same argument in [17,Theorem 7.6.1], we can show that the eigenvalue problem (3.3) admits a principal eigenvalue, denoted by Λ0, which corresponds a strongly positive eigenfunction ψ0(x). In fact, one can show that Λ0=πf(0)ckpA and the associated eigenfunction ψ()1. Note that one can also adopt the theory developed in [21,Section 3] to define the basic reproduction number, R00, for system (3.1). For this purpose, we assume F=πf(0) and V=c+kpA. By [21,Theorem 3.4], it follows that

    R00=FV1=πf(0)c+kpA.

    Putting km=0 in (2.12), and it is easy to see that R00=R0 when km=0. This is the reason why the reproduction number in this section is denoted by R00. Further, it is easy to observe that

    R00<1Λ0<0. (3.4)

    We impose the following condition:

    ¯A:=pAkpA:=Am(1dArA) and rA>dA. (3.5)

    Let

    YP:={(A0,V0)C(ˉΩ,R2+):A0(x)¯A,  xˉΩ}.

    Theorem 3.1. Assume that (3.5) holds. For any (A0(),V0())YP with A0()0, let (A(,t),V(,t)) be the solution of (3.1) with (A(,0),V(,0))=(A0(),V0()). If R00<1, then we have

    limt(A(x,t),V(x,t))=(A,0), uniformly for x¯Ω.

    Proof. Assume R00<1, that is, Λ0<0 (see (3.4)). Then there exists ξ0>0 such that Λξ0<0, where Λξ0 is the principal eigenvalue of the following eigenvalue problem:

    {Λψ(x)=DVΔψ(x)+[πf(0)ckp(Aξ0)]ψ(x), xΩ,ψ(x)ν=0, xΩ. (3.6)

    The first equation of (3.1) can be rewritten as follows

    At=DAΔA+kp[¯AA](1+θ)V+rAAm[AA]A.

    From (3.5), we see that

    kp[¯AA](1+θ)V+rAAm[A¯A ]¯A<0.

    Then it is not hard to show that YP is a positively invariant set for system (3.1). Thus,

    [pAkpA(x,t)](1+θ)V(x,t)0,  xΩ, t0.

    In view of the first equation of (3.1), we see that

    {AtDAΔA+rAA(1AAm)dAA, xΩ, t>0,Aν=0, xΩ, t>0, (3.7)

    and hence,

    lim inftA(x,t)A, uniformly for x¯Ω.

    Therefore, we may choose t1>0 such that

    A(x,t)A(x)ξ0, uniformly for x¯Ω, tt1.

    In view of the second equation of (3.1), we see that

    {VtDVΔV+πf(0)VcVkp(A(x)ξ0)V, xΩ, tt1,Vν=0, xΩ, tt1, (3.8)

    where we have used the fact that f(V)f(0),  V0. Assume that ψξ0(x) is a strongly positive eigenfunction corresponding to Λξ0, and there exists ˆC>0 such that V(x,t1)ˆCψξ0(x),  x¯Ω. From (3.8), the comparison principle implies that

    V(x,t)ˆCeΛξ0(tt1)ψξ0(x),  tt1, xˉΩ.

    Since Λξ0<0, it follows that

    limtV(x,t)=0, uniformly for x¯Ω.

    Then A(x,t) in (3.1) is asymptotic to system (2.4). Using A0()0 and the theory for asymptotically autonomous semiflows (see, e.g., [28,Corollary 4.3]), we have

    limtA(x,t)=A, uniformly for x¯Ω.

    The proof is complete.

    This study presents a reaction-diffusion system (1.3) modeling HBV infection, which consists of five compartments of populations, namely, target cells (T), infected cells (I), free virus (V), free antibody (A), and virus-antibody complexes (X). In system (1.3), we assume that only free virus (V), free antibody (A), and virus-antibody complexes (X) can diffuse, and the host cells (target and infected cells) do not have the ability to move. Thus, the governing equations are coupled by ODEs and PDEs. Due to the lack of diffusion terms of target cells (T) and infected cells (I) in (1.3), the steady-state solutions involved T and I can be explicitly expressed by free virus (V). Thus, investigating the existence of steady-state solutions of (1.3) is equivalent to the study of steady-state solutions of system (1.9).

    The standard approach in seeking for positive steady-state solutions of system (1.9) is applying theory of bifurcation to the associated elliptic equations of (1.9). Instead, we adopt dynamical approach in the analysis of (1.9) in the current paper. We define an reproduction number, R0, for system (1.9), and we show that system (1.9) is uniformly persistent and it admits at least one (componentwise) positive steady state when R0>1 (see Theorem 2.1). Mathematically, it is more difficult to investigate the elimination of HBV in system (1.9). Putting km=0 in system (1.9), the equation of X in (1.9) is decoupled from the other equations, and we directly study the system (3.1) for the extinction case of HBV. Imposing the assumption (3.5), we can show that HBV will die out for (3.1) if the associated reproduction number R00 is less than one (Theorem 3.1). Here, we also raise some challenging problems related to system (1.9), which can be future research directions:

    ● The impact of the diffusion coefficients DX and DV on the basic reproduction number R0;

    ● The dynamics of system (1.9) for the critical case when R0=1;

    ● The uniqueness and the global attractiveness of the positive steady state of system (1.9) if it exists;

    ● The asymptotic profile of positive steady state of system (1.9) when the diffusion rates DX and DV both tend to zero.

    In order to simplify the modeling in system (1.3), we have ignored two compartments of populations, namely, free subviral particles (S) and subviral particles-antibody complexes (Xs) in [1] by assuming that subviral particles S (resp. subviral particles-antibody complexes Xs) is proportional to the concentration of free virus V (resp. virus-antibody complexes X) with a constant proportionality θ. The authors in [1] developed another more complete model about HBV infection with antibody, which includes the interactions of target cells (T), infected cells(I), free subviral particles (S), free antibody (A), virus-antibody complexes (X), subviral particles-antibody complexes (Xs), and free virus (V). After we add spatial variations into such system, we shall investigate the following more realistic and challenging case in the future:

    {Tt=rT(1T+ITm)βVT, xΩ, t>0,It=βVTδI, xΩ, t>0,At=DAΔA+pA(V+S)+rA(x)A(1AAm)+kmX            kpAV+ksmXSkspASdA(x)A, xΩ, t>0,Xt=DXΔXkmX+kpAVcAVX, xΩ, t>0,XSt=DXSΔXSksmXS+kspAScASXS, xΩ, t>0,Vt=DVΔV+πIcV+kmXkpAV, xΩ, t>0,St=DSΔS+πθIcsS+ksmXskspAS, xΩ, t>0,Aν=Xν=XSν=Vν=Sν=0, xΩ, t>0,u(x,0)=u0(x), u=T,I,A,X,XS,V,S, xΩ. (4.1)

    The meanings of the parameters in system (4.1) were collected in [1,Table 1].

    We are grateful to three anonymous referees for their careful reading and helpful suggestions which led to significant improvements of our original manuscript. Research of FBW is supported in part by Ministry of Science and Technology, Taiwan; and National Center for Theoretical Sciences (NCTS), National Taiwan University; and Chang Gung Memorial Hospital (BMRPD18, NMRPD5J0201 and CLRPG2H0041). YCS is partially supported by Chang Gung Memorial Hospital (CLRPG2H0041). CLL is partially supported by Chang Gung Memorial Hospital (CRRPG2B0185, CRRPG2H0041, CRRPG2H0081, CLRPG2H0041).

    The authors declare there is no conflicts of interest.



    [1] Ghoreychi M, Laouafa F, Poulard F. L'après-mine et la mécanique des roches; 2017.
    [2] Ahmedat C, El hassani I-EEA, Zarhraoui M, et al. (2018) Potentialités minérales et effet de géo-accumulation des éléments traces métalliques des rejets des mines abandonnées. L'exemple des mines d'antimoine de Tourtit et d'Ichoumellal (Maroc central). Bull Inst Sci Rabat 71-89.
    [3] Brodkom F (2001) Good Environmental Practice in the European Extractive Industry: A Reference Guide, with Examples from the Industrial Minerals and Gypsum Industries: IMA-Europe.
    [4] Chakraborty P, Gopalapillai Y, Murimboh J, et al. (2006) Kinetic speciation of nickel in mining and municipal effluents. Anal Bioanal Chem 386: 1803-1813. doi: 10.1007/s00216-006-0759-9
    [5] McClure R, Schneider A (2001) The General Mining Act of 1872 has left a legacy of riches and ruin. Seattle Post-Intelligencer 11.
    [6] Plumlee GS (1999) The environmental geology of mineral deposits. The environmental geochemistry of mineral deposits Society of Economic Geologists Part A: 71-116.
    [7] Touzara S, Amlil A, Ennachete M, et al. (2020) Development of Carbon Paste Electrode/EDTA/Polymer Sensor for Heavy Metals Detection. Anal Bioanal Electrochem 12: 644-652.
    [8] Salvarredy Aranguren MM (2008) Contamination en métaux lourds des eaux de surface et des sédiments du Val de Milluni (Andes Boliviennes) par des déchets miniers. Approches géochimique, minéralogique et hydrochimique: Université de Toulouse, Université Toulouse Ⅲ-Paul Sabatier.
    [9] Armiento G, Nardi E, Lucci F, et al. (2017) Antimony and arsenic distribution in a catchment affected by past mining activities: influence of extreme weather events. Rendiconti Lincei 28: 303-315. doi: 10.1007/s12210-016-0566-y
    [10] Benvenuti M, Mascaro I, Corsini F, et al. (1997) Mine waste dumps and heavy metal pollution in abandoned mining district of Boccheggiano (Southern Tuscany, Italy). Environ Geol 30: 238-243. doi: 10.1007/s002540050152
    [11] Galán E, Gómez-Ariza J, González I, et al. (2003) Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Appl. Geochem.Appl Geochem 18: 409-421.
    [12] González RC, González-Chávez M (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144: 84-92. doi: 10.1016/j.envpol.2006.01.006
    [13] Hilton J, Davison W, Ochsenbein U (1985) A mathematical model for analysis of sediment core data: Implications for enrichment factor calculations and trace-metal transport mechanisms. Chem Geol48: 281-291. doi: 10.1016/0009-2541(85)90053-1
    [14] Jian-Min Z, Zhi D, Mei-Fang C, et al. (2007) Soil heavy metal pollution around the Dabaoshan mine, Guangdong province, China. Pedosphere 17: 588-594. doi: 10.1016/S1002-0160(07)60069-1
    [15] Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management: Cambridge university press.
    [16] Mlayah A, Da Silva EF, Rocha F, et al. (2009) The Oued Mellègue: Mining activity, stream sediments and dispersion of base metals in natural environments, North-western Tunisia. J Geochem Explor 102: 27-36. doi: 10.1016/j.gexplo.2008.11.016
    [17] Tessier E (2012) Diagnostic de la contamination sédimentaire par les métaux/métalloï des dans la Rade de Toulon et mécanismes contrô lant leur mobilité.
    [18] Azzaoui s, El hanbali m, Leblanc m (2002) Note technique/Technical Note Cuivre, plomb, fer et manganèse dans le bassin versant du Sebou; Sources d'apport et impact sur la qualité des eaux de surface Copper, Lead, Iron and Manganese in the Sebou.Water qual Res J 37: 773-784. doi: 10.2166/wqrj.2002.052
    [19] Benaabidate L (2000) Caractérisation du bassin versant de Sebou: Hydrologie, Qualité des eaux et géochimie des sources thermales. Docteur Essciences, Univ S MBA, Fès (Maroc) 228.
    [20] Foudeil S, BOUNOUIRA H., EMBARCH K., et al. (2013) Evaluation de la pollution en metaux lourds dans l'oued sebou (Maroc).
    [21] Foutlane A, Saadallah M, Echihabi L, et al. (2002) Pollution by wastewater for olive oil mills and drinking-water production. Case study of River Sebou in Morocco.
    [22] Derwich E, Benaabidate L, Zian A, et al. (2010) Caractérisation physico-chimique des eaux de la nappe alluviale du haut Sebou en aval de sa confluence avec oued Fès. LARHYSS J ISSN 1112-3680.
    [23] Derwich E, Beziane Z, Benaabidate L, et al. (2008) Evaluation de la qualité des eaux de surface des Oueds Fès et Sebou utilisées en agriculture maraî chère au Maroc. LARHYSS J ISSN 1112-3680.
    [24] Hayzoun H (2014) Caractérisation et quantification de la charge polluante anthropique et industrielle dans le bassin du Sebou.
    [25] Lakhili F, Benabdelhadi M, Bouderka N, et al. (2015) Etude de la qualité physicochimique et de la contamination métallique des eaux de surface du bassin versant de Beht (Maroc). Eur Sci J ESJ 11.
    [26] Qaouiyid A, Hmima H, Houri K, et al. (2016) Les Teneurs Métalliques Et Paramètres Physico-Chimiques De L'eau Et Du Sédiment De Oued Beht, Au Niveau De Sidi Kacem Et De Oued R'dom Au Niveau De Sidi Slimane. Eur Sci J ESJ 12.
    [27] Essamt F (2016) Etude de la qualité d'eau de oued beht dans la région de Sidi Slimane.
    [28] Lamhasni N, Chillasse L, Timallouka M (2017) Bio-É valuation De La Qualité Des Eaux De Surface D'oued Beht (Maroc) Indice Biologique Global Des Réseaux De Contrô le Et De Surveillance (IBG-RCS).
    [29] Abdallaoui A (1998) Contribution à l'étude du phosphore et des métaux lourds contenus dans les sédiments et de leur influence sur les phénomènes d'eutrophisation et de la pollution: Cas du bassin versant de l'Oued Beht et de la retenue de barrage El Kansera.
    [30] Bouchouata O, Ouadarri H, El Abidi A, et al. (2012) Bioaccumulation des métaux lourds par les cultures maraî chères au niveau du Bassin de Sebou (Maroc). Bull Inst Sci Rabat 34: 189-203.
    [31] Kenfaoui A (2008) Economisons l'eau en la préservant de la pollution. REV HTE: 140-117.
    [32] Michard A, Soulaimani A, Hoepffner C, et al. (2010) The south-western branch of the Variscan Belt: evidence from Morocco. Tectonophysics 492: 1-24. doi: 10.1016/j.tecto.2010.05.021
    [33] Piqué A, Michard A (1981) Les zones structurales du Maroc hercynien. Geol Sci Bull Papr 34: 135-146. doi: 10.3406/sgeol.1981.1597
    [34] Ouabid M, Ouali H, Garrido CJ, et al. (2017) Neoproterozoic granitoids in the basement of the Moroccan Central Meseta: correlation with the Anti-Atlas at the NW paleo-margin of Gondwana. Precambrian Res 299: 34-57. doi: 10.1016/j.precamres.2017.07.007
    [35] Tahiri A, Montero P, El Hadi H, et al. (2010) Geochronological data on the Rabat-Tiflet granitoids: their bearing on the tectonics of the Moroccan Variscides. J Afr Earth Sci 57: 1-13. doi: 10.1016/j.jafrearsci.2009.07.005
    [36] El Hadi H, Tahiri A, El Maidani A, et al. (2014) Geodynamic setting context of the Permian and Triassic volcanism in the northwestern Moroccan Meseta from petrographical and geochemical data.
    [37] Ben Abbou M (1990) Evolution stratigraphique et structurale, au cours du Paléozoï que, de la bordure nord du Massif central (région d'Agourai, Maroc). Unpubl Thesis Univ Fès.
    [38] Izart A, Tahiri A, El Boursoumi A, et al. (2001) Carte géologique du Maroc au 1/50 000, feuille de Bouqachmir. Notes et mémoires Serv géol Maroc.
    [39] Cailleux Y (1974) Géologie de la région des Smaala (Massif central marocain): stratigraphie du primaire, tectonique hercynienne.
    [40] Tahiri A (1994) Tectonique hercynienne de l'anticlinorium de Khouribga-Oulmès et du synclinorium de Fourhal. Bull Inst Sci Rabat 18: 125-144.
    [41] Tahiri A, Hoepffner C (1987) La faille d'Oulmès (Maroc central hercynien): cisaillement ductile et tectonique tangentielle. Bull Inst Sci Rabat 11: 59-68.
    [42] Sebbag I (1970) Etude géologique et métallogénique de la région du Tafoudeit. Rapport du Service Régional de Géologie-Meknès, service d'étude des gî tes minéraux 29: 62p.
    [43] Rassou KK, Razoki B, Yazidi M, et al. (2019) The vulgarization for the patrimonialization of the kettara geodiversity (central jbilet) morocco.
    [44] Nerci K (2006) Les minéralisations aurifères du district polymétallique de Tighza (Maroc central): un exemple de mise en place périgranitique tardi-hercynienne.
    [45] Giuliani G (1984) Les concentrations filoniennes à tungstène-étain du massif granitique des Zaë r (Maroc Central): minéralisations et phases fluides associées. Mineralium Deposita 19: 193-201.
    [46] Salama L, Mouguina EM, Nahid A, et al. (2016) Apport de la modélisation géologique 3D à l'exploration minière: Etude de cas du gisement de Draa Sfar (Jbilets centrales, Maroc)[Mining exploration using 3D geological modeling: Draa Sfar deposit's case study (Central Jbilets, Morocco)].
    [47] Marcoux E, Belkabir A, Gibson HL, et al. (2008) Draa Sfar, Morocco: A Visean (331 Ma) pyrrhotite-rich, polymetallic volcanogenic massive sulphide deposit in a Hercynian sediment-dominant terrane. Ore Geol Rev 33: 307-328. doi: 10.1016/j.oregeorev.2007.03.004
    [48] Rziki S (2012) Environnement géologique et modèle 3D du gisement polymétallique de Draa Sfar (Massif hercynien des Jebilets, Maroc): Implications et perspectives de développement: Thèse de Doctorat Présentée à la Faculté des Sciences Semlalia Marrakech
    [49] DEM Dddm (2011) Les principales mines du maroc. In: Ministère de l'énergie dm, de l'eau et de l'environnement direction du développement minier, editor. É ditions du service géologique du maroc Rabat ed.
    [50] Onhym Ondhedm (2020) Oulmes (sn-w) (massif hercynien central, maroc).
    [51] Mint chevie M (2010) Contribution à l'étude hydroclimatique du bassin versant de l'Oued Beht, Maroc septentrional. Fès, Maroc: Université Sidi Mohammed Ben Abdellah Faculté des Sciences et Techniques. 58 p.
    [52] Burger J, Dardel R, Dutrieux E, et al. (1951) Carte géologique régulière du Maroc au 1: 100.000 eme: Meknès nord, Feuille levée et édifiée par la Société Chérifiènne des Pétroles. Notes et mémoires du Service.
    [53] Laabidi A, Gourari L, El hamaidi A (2014) Typologie morpho-sédimentaire des dépô ts actuels de la vallée du Moyen Beht (Sillon sud rifain occidental, Maroc). IOSR J Eng(IOSRJEN) 4.
    [54] ABHS AdBHdS (2013) É tude d'actualisation du plan directeur d'aménagement intégré des ressources en eau de bassin hydraulique de Sebou. Note de synthèse, Agence du bassin hydraulique du Sebou.
    [55] Duchaufour P (1977) Pédologie: Tome 1: Pédogenèse et classification: Masson.
    [56] Bryssine G (1966) Etude des proprietes physiques des dess de l'oued beht. Al Awamia 2: 85-123.
    [57] Rachdi HE-N (1995) Etude du volcanisme plio-quaternaire du Maroc central: pétrographie, géochimie et minéralogie: comparaison avec des laves types du Moyen Atlas et du Rekkam (Maroc): Editions du Service géologique du Maroc.
    [58] Schmiermund R, Drozd M (1997) Acid mine drainage and other mining-influenced waters (MIW). Mining Environmental Handbook: Effects of Mining on the Environment and American Environmental Controls on Mining: World Scientific. 599-617.
    [59] Karim A (2007) Le système siliciclastique-carbonaté de la marge sud-ouest paléotéthysienne au viséen supérieur: enregistrements paléoenvironnementaux et évolution dans un bassin d'avant pays (Tizra: Maroc central): Paris 11.
    [60] Pabst T (2011) Etude expérimentale et numérique du comportement hydro-géochimique de recouvrements placés sur des résidus sulfureux partiellement oxydés: Ecole Polytechnique, Montreal (Canada).
    [61] Blachere A (1985) Evaluation des impacts hydrogéologiques de l'arrêt d'une exhaure minière (vallées de l'Ondaine et du Lizeron, bassin houiller de la Loire): modélisation mathématique du milieu.
    [62] Armines ELEJ-MS (2010) Etat hydrogéochimique et évolution prévisionnelle du site des anciennes exploitations d'uranium de Lodève (Hérault). Centre de Géosciences, É cole des mines de Paris, Fontainebleau, France
    [63] El Hachimi ML, EL Hanbali M, Fekhaoui M, et al. (2005) Impact d'un site minier abandonné sur l'environnement: cas de la mine de Zeï da (Haute Moulouya, Maroc). Bull Inst Sci Rabat 93-100.
    [64] Bowell R, Bruce I (1995) Geochemistry of iron ochres and mine waters from Levant Mine, Cornwall. Appl Geochem Appl Geochem10: 237-250. doi: 10.1016/0883-2927(94)00036-6
    [65] Piqué A, Knidiri M (1994) Géologie du Maroc: les domaines régionaux et leur évolution structurale: Pumag.
    [66] Taltasse P (1953) Recherches géologiques et hydrogéologiques dans le bassin lacustre de Fès-Meknès: par P. Taltasse: F. Moncho.
    [67] Repeta DJ, Quan TM, Aluwihare LI, et al. (2002) Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters. Geochim. Cosmochim. Acta.66: 955-962.
    [68] Debaisieux B (1983) Géologie appliquée à l'aménagement urbain-Saint Etienne(Loire).
    [69] Hackbarth DA (1979) The effects of surface mining of coal on water quality near Grande Cache, Alberta. Can J Earth Sci 16: 1242-1253. doi: 10.1139/e79-109
    [70] Barbier J, Chery L (1997) Relation entre fond géochimique naturel et teneurs élevées en métaux lourds dans les eaux (antimoine, arsenic, baryum, chrome, nickel, plomb, zinc). Rapport BRGM 39544: 51.
    [71] Hervé D (1980) Etude de l'acquisition d'une teneur en sulfates par les eaux stockées dans les mines de fer de Lorraine.
    [72] Gupta N, Quraishi M, Singh P, et al. (2017) Curcumine longa: Green and sustainable corrosion inhibitor for aluminum in HCl medium. Anal Bioanal Electrochem 9: 245-265.
    [73] Marc Fiquet SL, Loic Riou, Bernard Sanjuan (1997) caractérisation des excès d'aluminium dans les eaux superficielles de la martinique. pp. 31.
    [74] Kuyucak N (2000) Microorganisms, biotechnology and acid rock drainage—emphasis on passive-biological control and treatment methods. Mining, Metallurgy & Exploration 17: 85-95.
    [75] Chatain V (2004) Caractérisation de la mobilisation potentielle de l'arsenic et d'autres constituants inorganiques présents dans les sols issus d'un site minier aurifère: Thèse, Institut National des Sciences Appliquées de Lyon.
    [76] Akil A, Hassan T, Lahcen B, et al. (2014) Etude de la qualité physico-chimique et contamination métallique des eaux de surface du bassin versant de Guigou, Maroc. Eur Sci J 10.
    [77] Newman DK, Kennedy EK, Coates JD, et al. (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168: 380-388.
    [78] Matera V (2001) Etude de la mobilité et de la spéciation de l'arsenic dans les sols de sites industriels pollués: Estimation du risque induit: Pau.
    [79] Smedley PL, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17: 517-568. doi: 10.1016/S0883-2927(02)00018-5
    [80] Laperche V, Bodénan F, Dictor M, et al. (2003) Guide méthodologique de l'arsenic, appliqué à la gestion des sites et sols pollués. Rapport BRGM RP-52066-FR.
    [81] Stollenwerk KG (2003) Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. Arsenic in ground water: Springer. 67-100.
    [82] Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chemical reviews 89: 713-764. doi: 10.1021/cr00094a002
    [83] Inskeep WP, McDernlott TR, Fendorf S (2001) Arsenic (V)/(Ⅲ) Cycling in Soils and Natural Waters: Chemical and Microhiological Processes. Environmental chemistry of arsenic: CRC Press. 203-236.
    [84] Fordham A, Norrish K (1979) Arsenate-73 uptake by components of several acidic soils and its implications for phosphate retention. Soil Research 17: 307-316. doi: 10.1071/SR9790307
    [85] Livesey N, Huang P (1981) Adsorption of arsenate by soils and its relation to selected chemical properties and anions. Soil Sci131: 88-94. doi: 10.1097/00010694-198102000-00004
    [86] Bowell R (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9: 279-286. doi: 10.1016/0883-2927(94)90038-8
    [87] Lin Z, Puls R (2000) Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environ Geol 39: 753-759. doi: 10.1007/s002540050490
    [88] Grosbois C, Schä fer J, Bril H, et al. (2009) Deconvolution of trace element (As, Cr, Mo, Th, U) sources and pathways to surface waters of a gold mining-influenced watershed. Sci Total Environ 407: 2063-2076. doi: 10.1016/j.scitotenv.2008.11.012
    [89] Bossy A (2010) Origines de l'arsenic dans les eaux, sols et sédiments du district aurifère de S t-Yrieix-la-Perche (Limousin, France): contribution du lessivage des phases porteuses d'arsenic: Université de Tours.
    [90] Shafer MM, Overdier JT, Hurley JP, et al. (1997) The influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA). Chem Geol 136: 71-97. doi: 10.1016/S0009-2541(96)00139-8
    [91] Li X, Shen Z, Wai OW, et al. (2001) Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River Estuary. Marine Mar Pollut Bull 42: 215-223. doi: 10.1016/S0025-326X(00)00145-4
    [92] Morgan JJ, Stumm W (1996) Aquatic chemistry: chemical equilibria and rates in natural waters: Wiley.
    [93] Swedlund P, Webster J (2001) Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite. Appl Geochem 16: 503-511. doi: 10.1016/S0883-2927(00)00044-5
    [94] Aranguren MMS (2008) Contamination en métaux lourds des eaux de surface et des sédiments du Val de Milluni (Andes Boliviennes) par des déchets miniers Approches géochimique, minéralogique et hydrochimique: Université Paul Sabatier-Toulouse Ⅲ.
    [95] Karlsson T, Persson P, Skyllberg U (2005) Extended X-ray absorption fine structure spectroscopy evidence for the complexation of cadmium by reduced sulfur groups in natural organic matter. Environ Sci Technol 39: 3048-3055. doi: 10.1021/es048585a
    [96] Cotton FA, Wilkinson G, Murillo CA, et al. (1988) Advanced inorganic chemistry: Wiley New York.
    [97] Ganjali MR, Esmaeili BM, Davarkhah N, et al. (2017) Nano-molar Monitoring of Copper ions in Waste Water Samples by a Novel All-Solid-State Ion Selective Electrode (ASS-ISE). Anal Bioanal Electrochem 9: 187-197.
    [98] Bruland K, Lohan M (2006) Controls of trace metals in seawater. The oceans and marine geochemistry 6: 23-47.
    [99] Eary LE (1999) Geochemical and equilibrium trends in mine pit lakes. Appl Geochem 14: 963-987. doi: 10.1016/S0883-2927(99)00049-9
    [100] Baghdad B, Naimi M, Bouabdli A, et al. Evaluation de la contamination et évolution de la qualité des eaux au voisinage d'une mine abandonnée d'extraction de plomb; 2009.
    [101] Benzaazoua M (1996) Caractérisation physico-chimique et minéralogique de produits miniers sulfurés en vue de la réduction de leur toxicité et de leur valorisation.
    [102] Lghoul M (2014) Apport de la géophysique, de l'hydrogéochimie et de la modélisation du transfert en DMA: projet de réhabilitation de la mine abandonnée de Kettara (région de Marrakech, Maroc).
    [103] Esshaimi M, Ouazzani N, Valiente M, et al. (2013) Speciation of heavy metals in the soil and the tailings, in the zinc-lead Sidi Bou Othmane Abandoned Mine.
    [104] Bouabdli A, Saidi N, El Founti L, et al. (2004) Impact de la mine d'Aouli sur les eaux et les sédiments de l'Oued Moulouya (Maroc). Bull Soc Hist Nat Toulouse 140: 27-33.
    [105] Saidi N (2004) Le bassin versant de la Moulouya: pollution par les métaux lourds et essais de phytoremédiation.
    [106] El Hachimi ML, Fekhaoui M, El Abidi A, et al. (2014) Contamination des sols par les métaux lourds à partir de mines abandonnées: le cas des mines Aouli-Mibladen-Zeï da au Maroc. Cahiers Agricultures 23: 213-219. doi: 10.1684/agr.2014.0702
    [107] Argane R, Benzaazoua M, Bouamrane A, et al. (2015) Cement hydration and durability of low sulfide tailings-based renders: A case study in Moroccan constructions. Miner Eng 76: 97-108. doi: 10.1016/j.mineng.2014.10.022
    [108] El Hassani F, Boushaba A, Raï s N, et al. (2016) Etude de la contamination par les métaux lourds des eaux et des sédiments au voisinage de la mine de Tighza (Maroc central oriental). Eur Sci J 12.
    [109] Farki K, Zahour G, Baroudi Z, et al. (2016) Mines et carrières triasico-liasiques de la région de Mohammedia: Inventaire, valorisation et étude d'impact environnemental. Int J Innov Sci Res IJISR 20: 306-326.
    [110] Taha Y (2017) Valorisation des rejets miniers dans la fabrication de briques cuites: É valuations technique et environnementale: Université du Québec en Abitibi-Témiscamingue.
    [111] El Hachimi M, El Founti L, Bouabdli A, et al. (2007) Pb et As dans des eaux alcalines minières: contamination, comportement et risques (mine abandonnée de Zeï da, Maroc). J Water Sci 20: 1-13.
    [112] Elazhari A (2013) Etude de la contamination par les éléments traces métalliques des sédiments de l'oued Moulouya et de la retenue du barrage Hassan Ⅱ en aval de la mine abandonnée Zeï da, Haute Moulouya: Université Cadi Ayyad, Faculté des Sciences et Techniques, Marrakech. 115 p.
    [113] El Hachimi ML, Bouabdli A, Fekhaoui M (2013) Les rejets miniers de traitement: caractérisation, capacité polluante et impacts environnementaux, mine Zeï da, mine Mibladen, Haute Moulouya (Maroc). Environ Tech: 32-42.
    [114] El Amari K, Valera P, Hibti M, et al. (2014) Impact of mine tailings on surrounding soils and ground water: Case of Kettara old mine, Morocco. J. Afr. Earth Sci 100: 437-449.
    [115] Nfissi S, Zerhouni Y, Benzaazoua M, et al. (2011) Caractérisation des résidus miniers des mines abandonnées de Kettara et de Roc Blanc (Jebilet Centrales, Maroc). Société Géologique du Nord 18: 43-53.
    [116] Ouakibi O, Loqman S, Hakkou R, et al. (2013) The potential use of phosphatic limestone wastes in the passive treatment of AMD: a laboratory study. Mine water Environ.32: 266-277.
    [117] Hakkou R, Benzaazoua M, Bussière B (2008) Acid mine drainage at the abandoned Kettara mine (Morocco): 1. Environmental characterization. Mine water Environ 27: 145-159.
    [118] Géodéris (2002) Base de Données Environnementales de Languedoc-Roussillon (Programme Géodéris 2002). 41.
    [119] Cartier A (1981) Etude de minéralisations à fluorine, barytine et sidérite en contexte hercynien: secteur du gisement d'Escaro (Pyrénées-Orientales): UER de sciences fondamentales et appliquées.
    [120] Banks D, Younger PL, Arnesen R-T, et al. (1997) Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32: 157-174. doi: 10.1007/s002540050204
    [121] Stumm W, Morgan J (1981) An Introduction Emphasizing Chemical Equilibria in Natural Waters, Aquatic Chemistry. J. Wiley and Sons, New York. 2nd edition. A Wiley-Interscience Publication.
    [122] Brown M B, B. Wood, H. (2002) Mine water treatment technology, Application & Policy. London. 449.
    [123] Boon M, Heijnen JJ, Hansford G (1998) The mechanism and kinetics of bioleaching sulphide minerals. Miner. Process Extr Metall Rev19: 107-115.
  • This article has been cited by:

    1. Vladimir P. Zhdanov, Joshua A. Jackman, Analysis of the initiation of viral infection under flow conditions with applications to transmission in feed, 2020, 196, 03032647, 104184, 10.1016/j.biosystems.2020.104184
    2. Shawn A. Means, Md A. Ali, Harvey Ho, Illuminating HBV with multi-scale modeling, 2023, 3, 2674-0702, 10.3389/fsysb.2023.1045754
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5757) PDF downloads(350) Cited by(1)

Figures and Tables

Figures(10)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog