Citation: Zui-Cha Deng, Fan-Li Liu, Liu Yang. Numerical simulations for initial value inversion problem in a two-dimensional degenerate parabolic equation[J]. AIMS Mathematics, 2021, 6(4): 3080-3104. doi: 10.3934/math.2021187
[1] | Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering . Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295 |
[2] | Markus Dick, Martin Gugat, Günter Leugering . Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Networks and Heterogeneous Media, 2010, 5(4): 691-709. doi: 10.3934/nhm.2010.5.691 |
[3] | Mapundi K. Banda, Michael Herty, Axel Klar . Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295 |
[4] | Mapundi K. Banda, Michael Herty, Axel Klar . Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41 |
[5] | Michael Herty . Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97. doi: 10.3934/nhm.2007.2.81 |
[6] | Michael Herty, Veronika Sachers . Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media, 2007, 2(4): 733-750. doi: 10.3934/nhm.2007.2.733 |
[7] | Martin Gugat, Rüdiger Schultz, Michael Schuster . Convexity and starshapedness of feasible sets in stationary flow networks. Networks and Heterogeneous Media, 2020, 15(2): 171-195. doi: 10.3934/nhm.2020008 |
[8] | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025 |
[9] | Magali Tournus, Aurélie Edwards, Nicolas Seguin, Benoît Perthame . Analysis of a simplified model of the urine concentration mechanism. Networks and Heterogeneous Media, 2012, 7(4): 989-1018. doi: 10.3934/nhm.2012.7.989 |
[10] | Klaus-Jochen Engel, Marjeta Kramar Fijavž, Rainer Nagel, Eszter Sikolya . Vertex control of flows in networks. Networks and Heterogeneous Media, 2008, 3(4): 709-722. doi: 10.3934/nhm.2008.3.709 |
[1] | G. Albuja, A.I. Ávila, A family of new globally convergent linearization schemes for solving Richards' equation, Appl. Numer. Math., 159 (2021), 281-296. |
[2] |
K. Beauchard, P. Cannarsa, M. Yamamoto, Inverse source problem and null controllability for multidimensional parabolic operators of Grushin type, Inverse Problems, 30 (2014), 025006. doi: 10.1088/0266-5611/30/2/025006
![]() |
[3] | M. Berardi, F. Difonzo, F. Notarnicola, M. Vurro, A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone, Appl. Numer. Math., 135 (2019) 264-275. |
[4] |
M. Berardi, F. Difonzo, L. Lopez, A mixed MoL-TMoL for the numerical solution of the 2D Richards' equation in layered soils, Comput. Math. Appl., 79 (2020), 1990-2001. doi: 10.1016/j.camwa.2019.07.026
![]() |
[5] |
N. Brandhorst, D. Erdal, I. Neuweiler, Soil moisture prediction with the ensemble Kalman filter: Handling uncertainty of soil hydraulic parameters, Adv. Water Res., 110 (2017), 360-370. doi: 10.1016/j.advwatres.2017.10.022
![]() |
[6] |
P. Cannarsa, J. Tort, M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Problems, 26 (2010), 105003. doi: 10.1088/0266-5611/26/10/105003
![]() |
[7] |
P. Cannarsa, P. Martinez, J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J Control Optim, 47 (2008), 1-19. doi: 10.1137/04062062X
![]() |
[8] | P. Cannarsa, P. Martinez, J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differ. Equ., 10 (2005), 153-190. |
[9] | J. R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley, 1984. |
[10] | J. R. Cannon, Y. Lin, S. Xu, Numerical procedure for the determination of an unknown coefficient in semilinear parabolic partial differential equations, Inverse Problems, 10 (1994), 227-243. |
[11] |
J. Cheng, J. J. Liu, A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental solution, Inverse Problems, 24 (2008), 065012. doi: 10.1088/0266-5611/24/6/065012
![]() |
[12] |
M. Dehghan, Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement, Numer. Meth. Part. Diff. Equ., 21 (2005), 611-622. doi: 10.1002/num.20055
![]() |
[13] |
M. Dehghan, Determination of a control function in three-dimensional parabolic equations, Math. Comput. Simul., 61 (2003), 89-100. doi: 10.1016/S0378-4754(01)00434-7
![]() |
[14] |
M. Dehghan, M. Tatari, Determination of a control parameter in a one-dimensional parabolicequation using the method of radial basis functions, Math. Comput. Model., 44 (2006), 1160-1168. doi: 10.1016/j.mcm.2006.04.003
![]() |
[15] |
M. Dehghan, An inverse problems of finding a source parameter in a semilinear parabolic equation, Appl. Math. Model., 25 (2001), 743-754. doi: 10.1016/S0307-904X(01)00010-5
![]() |
[16] |
Z. C. Deng, K. Qian, X. B. Rao, L. Yang, G. W. Luo, An inverse problem of identifying the source coefficient in a degenerate heat equation, Inverse Probl. Sci. Eng., 23 (2015), 498-517. doi: 10.1080/17415977.2014.922079
![]() |
[17] |
F. L. Dimet, V. Shutyaev, J. Wang, M. Mu, The problem of data assimilation for soil water movement, ESAIM: Control, Optimisation and Calculus of Variations, 10 (2004), 331-345. doi: 10.1051/cocv:2004009
![]() |
[18] | A. Kirsch, An introduction to the mathematical theory of inverse problem, Springer, New York, 1999. |
[19] | H. W. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Dordrecht: Kluwer Academic Publishers, 1996. |
[20] | V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 1998. |
[21] | J. F. Lu, Z. Guan, Numerical Solution of Partial Differential Equations, Tsinghua University Press, Beijing, 2004. |
[22] |
P. Martinez, J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 325-362. doi: 10.1007/s00028-006-0214-6
![]() |
[23] | O. A. Oleinik, E. V. Radkevic, Second order differential equations with non-negative characteristic form, Rhode Island and Plenum Press, New York: American Mathematical Society, 1973. |
[24] | M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Harlow, Longman Scientific and Technical, Essex, 1995. |
[25] | I. S. Pop, Regularization Methods in the Numerical Analysis of Some Degenerate Parabolic Equations, IWR, University of Heidelberg, 1998. |
[26] |
X. B. Rao, Y. X. Wang, K. Qian, Z. C. Deng, L. Yang, Numerical simulation for an inverse source problem in a degenerate parabolic equation, Appl. Math. Model., 39 (2015), 7537-7553. doi: 10.1016/j.apm.2015.03.016
![]() |
[27] | R. B. Ricardo, Numerical Methods and Analysis for Degenerate Parabolic Equations and Reaction-Diffusion Systems, 2008. |
[28] | Z. Z. Sun, Numerical Solution of Partial Differential Equations, Science Press, Beijing, 2005. |
[29] |
J. Tort, J. Vancostenoble, Determination of the insolation function in the nonlinear Sellers climate model, Ann. I. H. Poincare-AN, 29 (2012), 683-713. doi: 10.1016/j.anihpc.2012.03.003
![]() |
[30] | D. K. Wang, Y. Q. Hou, J. Y. Peng, Partial Differential Equation Method for Image Processing, Science Press, Beijing, 2008. |
[31] |
L. Yang, Z. C. Deng, J. N. Yu, G. W. Luo, Optimization method for the inverse problem of reconstructing the source term in a parabolic equation, Math. Comput. Simul., 80 (2009), 314-326. doi: 10.1016/j.matcom.2009.06.031
![]() |
[32] |
L. Yang, Z. C. Deng, An inverse backward problem for degenerate parabolic equations, Numer. Meth. Part. Differ. Equ., 33 (2017), 1900-1923. doi: 10.1002/num.22165
![]() |
[33] |
L. Yang, Y. Liu, Z. C. Deng, Multi-parameters identification problem for a degenerate parabolic equation, J. Comput. Appl. Math., 366 (2020), 112422. doi: 10.1016/j.cam.2019.112422
![]() |
1. | Falk M. Hante, Günter Leugering, Alexander Martin, Lars Schewe, Martin Schmidt, 2017, Chapter 5, 978-981-10-3757-3, 77, 10.1007/978-981-10-3758-0_5 | |
2. | Tatsien Li, Lei Yu, Local Exact One-Sided Boundary Null Controllability of Entropy Solutions to a Class of Hyperbolic Systems of Balance Laws, 2019, 57, 0363-0129, 610, 10.1137/18M1187052 | |
3. | Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485 | |
4. | Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang, Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks, 2015, 10, 1556-181X, 749, 10.3934/nhm.2015.10.749 | |
5. | Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002 | |
6. | Martin Gugat, Rüdiger Schultz, David Wintergerst, Networks of pipelines for gas with nonconstant compressibility factor: stationary states, 2018, 37, 0101-8205, 1066, 10.1007/s40314-016-0383-z | |
7. | Michael Hintermüller, Nikolai Strogies, Identification of the friction function in a semilinear system for gas transport through a network, 2020, 35, 1055-6788, 576, 10.1080/10556788.2019.1692206 | |
8. | Martin Gugat, Michael Herty, 2020, Chapter 6, 978-981-15-0927-8, 147, 10.1007/978-981-15-0928-5_6 | |
9. | Martin Gugat, Richard Krug, Alexander Martin, Transient gas pipeline flow: analytical examples, numerical simulation and a comparison to the quasi-static approach, 2021, 1389-4420, 10.1007/s11081-021-09690-4 | |
10. | Martin Gugat, Günter Leugering, Alexander Martin, Martin Schmidt, Mathias Sirvent, David Wintergerst, Towards simulation based mixed-integer optimization with differential equations, 2018, 72, 00283045, 60, 10.1002/net.21812 | |
11. | Martin Gugat, Günter Leugering, Ke Wang, Neumann boundary feedback stabilization for a nonlinear wave equation: A strict -lyapunov function, 2017, 7, 2156-8499, 419, 10.3934/mcrf.2017015 | |
12. | Michael Schuster, Elisa Strauch, Martin Gugat, Jens Lang, Probabilistic constrained optimization on flow networks, 2022, 23, 1389-4420, 1, 10.1007/s11081-021-09619-x | |
13. | Andrea Corli, Magdalena Figiel, Anna Futa, Massimiliano D. Rosini, Coupling conditions for isothermal gas flow and applications to valves, 2018, 40, 14681218, 403, 10.1016/j.nonrwa.2017.09.005 | |
14. | Martin Gugat, Günter Leugering, Alexander Martin, Martin Schmidt, Mathias Sirvent, David Wintergerst, MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems, 2018, 70, 0926-6003, 267, 10.1007/s10589-017-9970-1 | |
15. | Martin Gugat, Michael Herty, Hui Yu, 2018, Chapter 50, 978-3-319-91544-9, 651, 10.1007/978-3-319-91545-6_50 | |
16. | Martin Schmidt, Mathias Sirvent, Winnifried Wollner, A decomposition method for MINLPs with Lipschitz continuous nonlinearities, 2019, 178, 0025-5610, 449, 10.1007/s10107-018-1309-x | |
17. | Amaury Hayat, Peipei Shang, Exponential stability of density-velocity systems with boundary conditions and source term for the H2 norm, 2021, 153, 00217824, 187, 10.1016/j.matpur.2021.07.001 | |
18. | Günter Leugering, 2020, Chapter 4, 978-981-15-0927-8, 77, 10.1007/978-981-15-0928-5_4 | |
19. | Martin Gugat, Jens Habermann, Michael Hintermüller, Olivier Huber, Constrained exact boundary controllability of a semilinear model for pipeline gas flow, 2023, 0956-7925, 1, 10.1017/S0956792522000389 | |
20. | Martin Gugat, Rüdiger Schultz, Boundary Feedback Stabilization of the Isothermal Euler Equations with Uncertain Boundary Data, 2018, 56, 0363-0129, 1491, 10.1137/16M1090156 | |
21. | Georges Bastin, Jean-Michel Coron, 2016, Chapter 1, 978-3-319-32060-1, 1, 10.1007/978-3-319-32062-5_1 | |
22. | Martin Gugat, Falk M. Hante, Li Jin, Closed loop control of gas flow in a pipe: stability for a transient model, 2020, 68, 2196-677X, 1001, 10.1515/auto-2020-0071 | |
23. | Martin Gugat, David Wintergerst, Transient Flow in Gas Networks: Traveling waves, 2018, 28, 2083-8492, 341, 10.2478/amcs-2018-0025 | |
24. | Daniel Rose, Martin Schmidt, Marc C. Steinbach, Bernhard M. Willert, Computational optimization of gas compressor stations: MINLP models versus continuous reformulations, 2016, 83, 1432-2994, 409, 10.1007/s00186-016-0533-5 | |
25. | Lars Schewe, Martin Schmidt, 2019, Chapter 13, 978-3-662-58538-2, 173, 10.1007/978-3-662-58539-9_13 | |
26. | Martin Gugat, Michael Schuster, Stationary Gas Networks with Compressor Control and Random Loads: Optimization with Probabilistic Constraints, 2018, 2018, 1024-123X, 1, 10.1155/2018/7984079 | |
27. | Michael Herty, Hui Yu, Feedback boundary control of linear hyperbolic equations with stiff source term, 2018, 91, 0020-7179, 230, 10.1080/00207179.2016.1276635 | |
28. | Martin Gugat, Stefan Ulbrich, The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, 2017, 454, 0022247X, 439, 10.1016/j.jmaa.2017.04.064 | |
29. | Volker Mehrmann, Martin Schmidt, Jeroen J. Stolwijk, Model and Discretization Error Adaptivity Within Stationary Gas Transport Optimization, 2018, 46, 2305-221X, 779, 10.1007/s10013-018-0303-1 | |
30. | Martin Schmidt, Falk M. Hante, 2023, Chapter 872-1, 978-3-030-54621-2, 1, 10.1007/978-3-030-54621-2_872-1 | |
31. | Martin Gugat, Jan Giesselmann, An Observer for Pipeline Flow with Hydrogen Blending in Gas Networks: Exponential Synchronization, 2024, 62, 0363-0129, 2273, 10.1137/23M1563840 | |
32. | Martin Gugat, Michael Schuster, Jan Sokołowski, The location problem for compressor stations in pipeline networks, 2024, 12, 2325-3444, 507, 10.2140/memocs.2024.12.507 | |
33. | Ariane Fazeny, Martin Burger, Jan-F. Pietschmann, Optimal transport on gas networks, 2025, 0956-7925, 1, 10.1017/S0956792525000051 |