Research article

Numerical simulations for initial value inversion problem in a two-dimensional degenerate parabolic equation

  • Received: 05 November 2020 Accepted: 31 December 2020 Published: 12 January 2021
  • MSC : 35R30, 49J20

  • In this paper, we study the inverse problem of identifying the initial value of a two-dimensional degenerate parabolic equation, which often appears in the fields of engineering, physics, and computer image processing. Firstly, the difference scheme of forward problem is established by using the finite volume method. Then stability and convergence of the difference equations are proved rigorously. Finally, the Landweber iteration and conjugate gradient method are used to solve the inverse problem, and some typical numerical examples are shown to verify the validity of our iterative algorithm. Numerical results show that the algorithm is stable and efficient.

    Citation: Zui-Cha Deng, Fan-Li Liu, Liu Yang. Numerical simulations for initial value inversion problem in a two-dimensional degenerate parabolic equation[J]. AIMS Mathematics, 2021, 6(4): 3080-3104. doi: 10.3934/math.2021187

    Related Papers:

    [1] Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering . Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295
    [2] Markus Dick, Martin Gugat, Günter Leugering . Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Networks and Heterogeneous Media, 2010, 5(4): 691-709. doi: 10.3934/nhm.2010.5.691
    [3] Mapundi K. Banda, Michael Herty, Axel Klar . Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295
    [4] Mapundi K. Banda, Michael Herty, Axel Klar . Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41
    [5] Michael Herty . Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97. doi: 10.3934/nhm.2007.2.81
    [6] Michael Herty, Veronika Sachers . Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media, 2007, 2(4): 733-750. doi: 10.3934/nhm.2007.2.733
    [7] Martin Gugat, Rüdiger Schultz, Michael Schuster . Convexity and starshapedness of feasible sets in stationary flow networks. Networks and Heterogeneous Media, 2020, 15(2): 171-195. doi: 10.3934/nhm.2020008
    [8] Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025
    [9] Magali Tournus, Aurélie Edwards, Nicolas Seguin, Benoît Perthame . Analysis of a simplified model of the urine concentration mechanism. Networks and Heterogeneous Media, 2012, 7(4): 989-1018. doi: 10.3934/nhm.2012.7.989
    [10] Klaus-Jochen Engel, Marjeta Kramar Fijavž, Rainer Nagel, Eszter Sikolya . Vertex control of flows in networks. Networks and Heterogeneous Media, 2008, 3(4): 709-722. doi: 10.3934/nhm.2008.3.709
  • In this paper, we study the inverse problem of identifying the initial value of a two-dimensional degenerate parabolic equation, which often appears in the fields of engineering, physics, and computer image processing. Firstly, the difference scheme of forward problem is established by using the finite volume method. Then stability and convergence of the difference equations are proved rigorously. Finally, the Landweber iteration and conjugate gradient method are used to solve the inverse problem, and some typical numerical examples are shown to verify the validity of our iterative algorithm. Numerical results show that the algorithm is stable and efficient.




    [1] G. Albuja, A.I. Ávila, A family of new globally convergent linearization schemes for solving Richards' equation, Appl. Numer. Math., 159 (2021), 281-296.
    [2] K. Beauchard, P. Cannarsa, M. Yamamoto, Inverse source problem and null controllability for multidimensional parabolic operators of Grushin type, Inverse Problems, 30 (2014), 025006. doi: 10.1088/0266-5611/30/2/025006
    [3] M. Berardi, F. Difonzo, F. Notarnicola, M. Vurro, A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone, Appl. Numer. Math., 135 (2019) 264-275.
    [4] M. Berardi, F. Difonzo, L. Lopez, A mixed MoL-TMoL for the numerical solution of the 2D Richards' equation in layered soils, Comput. Math. Appl., 79 (2020), 1990-2001. doi: 10.1016/j.camwa.2019.07.026
    [5] N. Brandhorst, D. Erdal, I. Neuweiler, Soil moisture prediction with the ensemble Kalman filter: Handling uncertainty of soil hydraulic parameters, Adv. Water Res., 110 (2017), 360-370. doi: 10.1016/j.advwatres.2017.10.022
    [6] P. Cannarsa, J. Tort, M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Problems, 26 (2010), 105003. doi: 10.1088/0266-5611/26/10/105003
    [7] P. Cannarsa, P. Martinez, J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J Control Optim, 47 (2008), 1-19. doi: 10.1137/04062062X
    [8] P. Cannarsa, P. Martinez, J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differ. Equ., 10 (2005), 153-190.
    [9] J. R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley, 1984.
    [10] J. R. Cannon, Y. Lin, S. Xu, Numerical procedure for the determination of an unknown coefficient in semilinear parabolic partial differential equations, Inverse Problems, 10 (1994), 227-243.
    [11] J. Cheng, J. J. Liu, A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental solution, Inverse Problems, 24 (2008), 065012. doi: 10.1088/0266-5611/24/6/065012
    [12] M. Dehghan, Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement, Numer. Meth. Part. Diff. Equ., 21 (2005), 611-622. doi: 10.1002/num.20055
    [13] M. Dehghan, Determination of a control function in three-dimensional parabolic equations, Math. Comput. Simul., 61 (2003), 89-100. doi: 10.1016/S0378-4754(01)00434-7
    [14] M. Dehghan, M. Tatari, Determination of a control parameter in a one-dimensional parabolicequation using the method of radial basis functions, Math. Comput. Model., 44 (2006), 1160-1168. doi: 10.1016/j.mcm.2006.04.003
    [15] M. Dehghan, An inverse problems of finding a source parameter in a semilinear parabolic equation, Appl. Math. Model., 25 (2001), 743-754. doi: 10.1016/S0307-904X(01)00010-5
    [16] Z. C. Deng, K. Qian, X. B. Rao, L. Yang, G. W. Luo, An inverse problem of identifying the source coefficient in a degenerate heat equation, Inverse Probl. Sci. Eng., 23 (2015), 498-517. doi: 10.1080/17415977.2014.922079
    [17] F. L. Dimet, V. Shutyaev, J. Wang, M. Mu, The problem of data assimilation for soil water movement, ESAIM: Control, Optimisation and Calculus of Variations, 10 (2004), 331-345. doi: 10.1051/cocv:2004009
    [18] A. Kirsch, An introduction to the mathematical theory of inverse problem, Springer, New York, 1999.
    [19] H. W. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Dordrecht: Kluwer Academic Publishers, 1996.
    [20] V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 1998.
    [21] J. F. Lu, Z. Guan, Numerical Solution of Partial Differential Equations, Tsinghua University Press, Beijing, 2004.
    [22] P. Martinez, J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 325-362. doi: 10.1007/s00028-006-0214-6
    [23] O. A. Oleinik, E. V. Radkevic, Second order differential equations with non-negative characteristic form, Rhode Island and Plenum Press, New York: American Mathematical Society, 1973.
    [24] M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Harlow, Longman Scientific and Technical, Essex, 1995.
    [25] I. S. Pop, Regularization Methods in the Numerical Analysis of Some Degenerate Parabolic Equations, IWR, University of Heidelberg, 1998.
    [26] X. B. Rao, Y. X. Wang, K. Qian, Z. C. Deng, L. Yang, Numerical simulation for an inverse source problem in a degenerate parabolic equation, Appl. Math. Model., 39 (2015), 7537-7553. doi: 10.1016/j.apm.2015.03.016
    [27] R. B. Ricardo, Numerical Methods and Analysis for Degenerate Parabolic Equations and Reaction-Diffusion Systems, 2008.
    [28] Z. Z. Sun, Numerical Solution of Partial Differential Equations, Science Press, Beijing, 2005.
    [29] J. Tort, J. Vancostenoble, Determination of the insolation function in the nonlinear Sellers climate model, Ann. I. H. Poincare-AN, 29 (2012), 683-713. doi: 10.1016/j.anihpc.2012.03.003
    [30] D. K. Wang, Y. Q. Hou, J. Y. Peng, Partial Differential Equation Method for Image Processing, Science Press, Beijing, 2008.
    [31] L. Yang, Z. C. Deng, J. N. Yu, G. W. Luo, Optimization method for the inverse problem of reconstructing the source term in a parabolic equation, Math. Comput. Simul., 80 (2009), 314-326. doi: 10.1016/j.matcom.2009.06.031
    [32] L. Yang, Z. C. Deng, An inverse backward problem for degenerate parabolic equations, Numer. Meth. Part. Differ. Equ., 33 (2017), 1900-1923. doi: 10.1002/num.22165
    [33] L. Yang, Y. Liu, Z. C. Deng, Multi-parameters identification problem for a degenerate parabolic equation, J. Comput. Appl. Math., 366 (2020), 112422. doi: 10.1016/j.cam.2019.112422
  • This article has been cited by:

    1. Falk M. Hante, Günter Leugering, Alexander Martin, Lars Schewe, Martin Schmidt, 2017, Chapter 5, 978-981-10-3757-3, 77, 10.1007/978-981-10-3758-0_5
    2. Tatsien Li, Lei Yu, Local Exact One-Sided Boundary Null Controllability of Entropy Solutions to a Class of Hyperbolic Systems of Balance Laws, 2019, 57, 0363-0129, 610, 10.1137/18M1187052
    3. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    4. Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang, Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks, 2015, 10, 1556-181X, 749, 10.3934/nhm.2015.10.749
    5. Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002
    6. Martin Gugat, Rüdiger Schultz, David Wintergerst, Networks of pipelines for gas with nonconstant compressibility factor: stationary states, 2018, 37, 0101-8205, 1066, 10.1007/s40314-016-0383-z
    7. Michael Hintermüller, Nikolai Strogies, Identification of the friction function in a semilinear system for gas transport through a network, 2020, 35, 1055-6788, 576, 10.1080/10556788.2019.1692206
    8. Martin Gugat, Michael Herty, 2020, Chapter 6, 978-981-15-0927-8, 147, 10.1007/978-981-15-0928-5_6
    9. Martin Gugat, Richard Krug, Alexander Martin, Transient gas pipeline flow: analytical examples, numerical simulation and a comparison to the quasi-static approach, 2021, 1389-4420, 10.1007/s11081-021-09690-4
    10. Martin Gugat, Günter Leugering, Alexander Martin, Martin Schmidt, Mathias Sirvent, David Wintergerst, Towards simulation based mixed-integer optimization with differential equations, 2018, 72, 00283045, 60, 10.1002/net.21812
    11. Martin Gugat, Günter Leugering, Ke Wang, Neumann boundary feedback stabilization for a nonlinear wave equation: A strict H2-lyapunov function, 2017, 7, 2156-8499, 419, 10.3934/mcrf.2017015
    12. Michael Schuster, Elisa Strauch, Martin Gugat, Jens Lang, Probabilistic constrained optimization on flow networks, 2022, 23, 1389-4420, 1, 10.1007/s11081-021-09619-x
    13. Andrea Corli, Magdalena Figiel, Anna Futa, Massimiliano D. Rosini, Coupling conditions for isothermal gas flow and applications to valves, 2018, 40, 14681218, 403, 10.1016/j.nonrwa.2017.09.005
    14. Martin Gugat, Günter Leugering, Alexander Martin, Martin Schmidt, Mathias Sirvent, David Wintergerst, MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems, 2018, 70, 0926-6003, 267, 10.1007/s10589-017-9970-1
    15. Martin Gugat, Michael Herty, Hui Yu, 2018, Chapter 50, 978-3-319-91544-9, 651, 10.1007/978-3-319-91545-6_50
    16. Martin Schmidt, Mathias Sirvent, Winnifried Wollner, A decomposition method for MINLPs with Lipschitz continuous nonlinearities, 2019, 178, 0025-5610, 449, 10.1007/s10107-018-1309-x
    17. Amaury Hayat, Peipei Shang, Exponential stability of density-velocity systems with boundary conditions and source term for the H2 norm, 2021, 153, 00217824, 187, 10.1016/j.matpur.2021.07.001
    18. Günter Leugering, 2020, Chapter 4, 978-981-15-0927-8, 77, 10.1007/978-981-15-0928-5_4
    19. Martin Gugat, Jens Habermann, Michael Hintermüller, Olivier Huber, Constrained exact boundary controllability of a semilinear model for pipeline gas flow, 2023, 0956-7925, 1, 10.1017/S0956792522000389
    20. Martin Gugat, Rüdiger Schultz, Boundary Feedback Stabilization of the Isothermal Euler Equations with Uncertain Boundary Data, 2018, 56, 0363-0129, 1491, 10.1137/16M1090156
    21. Georges Bastin, Jean-Michel Coron, 2016, Chapter 1, 978-3-319-32060-1, 1, 10.1007/978-3-319-32062-5_1
    22. Martin Gugat, Falk M. Hante, Li Jin, Closed loop control of gas flow in a pipe: stability for a transient model, 2020, 68, 2196-677X, 1001, 10.1515/auto-2020-0071
    23. Martin Gugat, David Wintergerst, Transient Flow in Gas Networks: Traveling waves, 2018, 28, 2083-8492, 341, 10.2478/amcs-2018-0025
    24. Daniel Rose, Martin Schmidt, Marc C. Steinbach, Bernhard M. Willert, Computational optimization of gas compressor stations: MINLP models versus continuous reformulations, 2016, 83, 1432-2994, 409, 10.1007/s00186-016-0533-5
    25. Lars Schewe, Martin Schmidt, 2019, Chapter 13, 978-3-662-58538-2, 173, 10.1007/978-3-662-58539-9_13
    26. Martin Gugat, Michael Schuster, Stationary Gas Networks with Compressor Control and Random Loads: Optimization with Probabilistic Constraints, 2018, 2018, 1024-123X, 1, 10.1155/2018/7984079
    27. Michael Herty, Hui Yu, Feedback boundary control of linear hyperbolic equations with stiff source term, 2018, 91, 0020-7179, 230, 10.1080/00207179.2016.1276635
    28. Martin Gugat, Stefan Ulbrich, The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, 2017, 454, 0022247X, 439, 10.1016/j.jmaa.2017.04.064
    29. Volker Mehrmann, Martin Schmidt, Jeroen J. Stolwijk, Model and Discretization Error Adaptivity Within Stationary Gas Transport Optimization, 2018, 46, 2305-221X, 779, 10.1007/s10013-018-0303-1
    30. Martin Schmidt, Falk M. Hante, 2023, Chapter 872-1, 978-3-030-54621-2, 1, 10.1007/978-3-030-54621-2_872-1
    31. Martin Gugat, Jan Giesselmann, An Observer for Pipeline Flow with Hydrogen Blending in Gas Networks: Exponential Synchronization, 2024, 62, 0363-0129, 2273, 10.1137/23M1563840
    32. Martin Gugat, Michael Schuster, Jan Sokołowski, The location problem for compressor stations in pipeline networks, 2024, 12, 2325-3444, 507, 10.2140/memocs.2024.12.507
    33. Ariane Fazeny, Martin Burger, Jan-F. Pietschmann, Optimal transport on gas networks, 2025, 0956-7925, 1, 10.1017/S0956792525000051
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2922) PDF downloads(183) Cited by(1)

Article outline

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog