Loading [MathJax]/jax/output/SVG/jax.js
Research article

Numerical simulations for initial value inversion problem in a two-dimensional degenerate parabolic equation

  • Received: 05 November 2020 Accepted: 31 December 2020 Published: 12 January 2021
  • MSC : 35R30, 49J20

  • In this paper, we study the inverse problem of identifying the initial value of a two-dimensional degenerate parabolic equation, which often appears in the fields of engineering, physics, and computer image processing. Firstly, the difference scheme of forward problem is established by using the finite volume method. Then stability and convergence of the difference equations are proved rigorously. Finally, the Landweber iteration and conjugate gradient method are used to solve the inverse problem, and some typical numerical examples are shown to verify the validity of our iterative algorithm. Numerical results show that the algorithm is stable and efficient.

    Citation: Zui-Cha Deng, Fan-Li Liu, Liu Yang. Numerical simulations for initial value inversion problem in a two-dimensional degenerate parabolic equation[J]. AIMS Mathematics, 2021, 6(4): 3080-3104. doi: 10.3934/math.2021187

    Related Papers:

    [1] Gregory N. Haidemenopoulos, Kostantinos N. Malizos, Anna D. Zervaki, and Kostantinos Bargiotas . Human bone ingrowth into a porous tantalum acetabular cup. AIMS Materials Science, 2017, 4(6): 1220-1230. doi: 10.3934/matersci.2017.6.1220
    [2] Bandar Abdullah Aloyaydi, Subbarayan Sivasankaran, Hany Rizk Ammar . Influence of infill density on microstructure and flexural behavior of 3D printed PLA thermoplastic parts processed by fusion deposition modeling. AIMS Materials Science, 2019, 6(6): 1033-1048. doi: 10.3934/matersci.2019.6.1033
    [3] Vincenzo Guarino, Tania Caputo, Rosaria Altobelli, Luigi Ambrosio . Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Materials Science, 2015, 2(4): 497-502. doi: 10.3934/matersci.2015.4.497
    [4] Raffaele Conte, Anna Di Salle, Francesco Riccitiello, Orsolina Petillo, Gianfranco Peluso, Anna Calarco . Biodegradable polymers in dental tissue engineering and regeneration. AIMS Materials Science, 2018, 5(6): 1073-1101. doi: 10.3934/matersci.2018.6.1073
    [5] Rémi G. Tilkin, Ana P. F. Monteiro, Julien G. Mahy, Jérome Hurlet, Nicolas Régibeau, Christian Grandfils, Stéphanie D. Lambert . Hybrid agarose gel for bone substitutes. AIMS Materials Science, 2022, 9(3): 430-445. doi: 10.3934/matersci.2022025
    [6] Miguel-Angel Rojas-Yañez, Claudia-Alejandra Rodríguez-González, Santos-Adriana Martel-Estrada, Laura-Elizabeth Valencia-Gómez, Claudia-Lucia Vargas-Requena, Juan-Francisco Hernández-Paz, María-Concepción Chavarría-Gaytán, Imelda Olivas-Armendáriz . Composite scaffolds of chitosan/polycaprolactone functionalized with protein of Mytilus californiensis for bone tissue regeneration. AIMS Materials Science, 2022, 9(3): 344-358. doi: 10.3934/matersci.2022021
    [7] Alp Karakoc, Ertugrul Taciroglu . Optimal automated path planning for infinitesimal and real-sized particle assemblies. AIMS Materials Science, 2017, 4(4): 847-855. doi: 10.3934/matersci.2017.4.847
    [8] Mario Ceddia, Bartolomeo Trentadue . A review of carbon fiber-reinforced polymer composite used to solve stress shielding in total hip replacement. AIMS Materials Science, 2024, 11(3): 449-462. doi: 10.3934/matersci.2024023
    [9] Juan Zhang, Huizhong Lu, Gamal Baroud . An accelerated and accurate process for the initial guess calculation in Digital Image Correlation algorithm. AIMS Materials Science, 2018, 5(6): 1223-1241. doi: 10.3934/matersci.2018.6.1223
    [10] Ananthanarayanan Rajeshkannan, Sumesh Narayan, A.K. Jeevanantham . Modelling and analysis of strain hardening characteristics of sintered steel preforms under cold forging. AIMS Materials Science, 2019, 6(1): 63-79. doi: 10.3934/matersci.2019.1.63
  • In this paper, we study the inverse problem of identifying the initial value of a two-dimensional degenerate parabolic equation, which often appears in the fields of engineering, physics, and computer image processing. Firstly, the difference scheme of forward problem is established by using the finite volume method. Then stability and convergence of the difference equations are proved rigorously. Finally, the Landweber iteration and conjugate gradient method are used to solve the inverse problem, and some typical numerical examples are shown to verify the validity of our iterative algorithm. Numerical results show that the algorithm is stable and efficient.


    Let A denote the family of all functions f which are analytic in the open unit disc U={z:|z|<1} and satisfying the normalization

    f(z)=z+n=2anzn, (1.1)

    while by S we mean the class of all functions in A which are univalent in U. Also let S and C denote the familiar classes of starlike and convex functions, respectively. If f and g are analytic functions in U, then we say that f is subordinate to g, denoted by fg, if there exists an analytic Schwarz function w in U with w(0)=0 and |w(z)|<1 such that f(z)=g(w(z)). Moreover if the function g is univalent in U, then

    f(z)g(z)f(0)=g(0) and f(U)g(U).

    For arbitrary fixed numbers A, B and b such that A, B are real with 1B<A1 and bC{0}, let P[b,A,B] denote the family of functions

    p(z)=1+n=1pnzn, (1.2)

    analytic in U such that

    1+1b{p(z)1}1+Az1+Bz.

    Then, pP[b,A,B] can be written in terms of the Schwarz function w by

    p(z)=b(1+Aw(z))+(1b)(1+Bw(z))1+Bw(z).

    By taking b=1σ with 0σ<1, the class P[b,A,B] coincides with P[σ,A,B], defined by Polatoğ lu [17,18] (see also [2]) and if we take b=1, then P[b,A,B] reduces to the familiar class P[A,B] defined by Janowski [10]. Also by taking A=1, B=1 and b=1 in P[b,A,B], we get the most valuable and familiar set P of functions having positive real part. Let S[A,B,b] denote the class of univalent functions g of the form

    g(z)=z+n=2bnzn, (1.3)

    in U such that

    1+1b{zg(z)g(z)1}1+Az1+Bz, 1B<A1,zU.

    Then S[A,B]:=S[A,B,1] and the subclass S[1,1,1] coincides with the usual class of starlike functions.

    The set of Bazilevič functions in U was first introduced by Bazilevič [7] in 1955. He defined the Bazilevič function by the relation

    f(z)={(α+iβ)z0gα(t)p(t)tiβ1dt}1α+iβ,

    where pP, gS, β is real and α>0. In 1979, Campbell and Pearce [8] generalized the Bazilevi č functions by means of the differential equation

    1+zf(z)f(z)+(α+iβ1)zf(z)f(z)=αzg(z)g(z)+zp(z)p(z)+iβ,

    where α+iβC{negative integers}. They associate each generalized Bazilevič functions with the quadruple (α,β,g,p).

    Now we define the following subclass.

    Definition 1.1. Let g be in the class S[A,B] and let pP[b,A,B]. Then a function f of the form (1.1) is said to belong to the class of generalized Bazilevič function associated with the quadruple (α,β,g,p) if f satisfies the differential equation

    1+zf(z)f(z)+(α+iβ1)zf(z)f(z)=αzg(z)g(z)+zp(z)p(z)+iβ.

    where α+iβC{negative integers}.

    The above differential equation can equivalently be written as

    zf(z)f(z)=(g(z)z)α(zf(z))α+iβp(z),

    or

    z1iβf(z)f1(α+iβ)gα(z)=p(z), zU.

    Since pP[b,A,B], it follows that

    1+1b{z1iβf(z)f1(α+iβ)gα(z)1}1+Az1+Bz,

    where gS[A,B].

    Several research papers have appeared recently on classes related to the Janowski functions, Bazilevič functions and their generalizations, see [3,4,5,13,16,21,22].

    The following are some results that would be useful in proving the main results.

    Lemma 2.1. Let pP[b,A,B] with b0, 1B<A1, and has the form (1.2). Then for z=reiθ,

    12π2π0|p(reiθ)|2dθ1+[|b|2(AB)21]r21r2.

    Proof. The proof of this lemma is straightforward but we include it for the sake of completeness. Since pP[b,A,B], we have

    p(z)=b˜p(z)+(1b),˜pP[A,B].

    Let ˜p(z)=1+n=1cnzn. Then

    1+n=1pnzn=b(1+n=1cnzn)+(1b).

    Comparing the coefficients of zn, we have

    pn=bcn.

    Since |cn|AB [20], it follows that |pn||b|(AB) and so

    12π2π0|p(reiθ)|2dθ=12π2π0|n=0pnrneinθ|2dθ=12π2π0(n=0|pn|2r2n)dθ=n=0|pn|2r2n1+|b|2(AB)2n=1r2n=1+|b|2(AB)2r21r2=1+(|b|2(AB)21)r21r2.

    Thus the proof is complete.

    Lemma 2.2. [1] Let Ω be the family of analytic functions ω on U, normalized by ω(0)=0, satisfying the condition |ω(z)|<1. If ωΩ and

    ω(z)=ω1z+ω2z2+,(zU),

    then for any complex number t,

    |ω2tω21|max{1,|t|}.

    The above inequality is sharp for ω(z)=z or ω(z)=z2.

    Lemma 2.3. Let p(z)=1+n=1pnznP[b,A,B], bC{0}, 1B<A1. Then for any complex number μ,

    |p2μp21||b|(AB)max{1,|μb(AB)+B|}={|b|(AB),if|μb(AB)+B|1,|b|(AB)|μb(AB)+B|,if|μb(AB)+B|1.

    This result is sharp.

    Proof. Let pP[b,A,B]. Then we have

    1+1b{p(z)1}1+Az1+Bz,

    or, equivalently

    p(z)1+[bA+(1b)B]z1+Bz=1+b(AB)n=1(B)n1zn,

    which would further give

    1+p1z+p2z2+=1+b(AB)ω(z)+b(AB)(B)ω2(z)+=1+b(AB)(ω1z+ω2z2+) +b(AB)(B)(ω1z+ω2z2+)2+=1+b(AB)ω1z+b(AB){ω2Bω21}z2+.

    Comparing the coefficients of z and z2, we obtain

    p1=b(AB)ω1p2=b(AB)ω2b(AB)Bω21.

    By a simple computation,

    |p2μp21|=|b|(AB)|ω2(μb(AB)+B)ω21|.

    Now by using Lemma 2.2 with t=μb(AB)+B, we get the required result. Equality holds for the functions

    p(z)=1+(bA+(1b)B)z21+Bz2=1+b(AB)z2+b(AB)(B)z4+,p1(z)=1+(bA+(1b)B)z1+Bz=1+b(AB)z+b(AB)(B)z2+.

    Now we prove the following result by using a method similar to the one in Libera [12].

    Lemma 2.4. Suppose that N and D are analytic in U with N(0)=D(0)=0 and D maps U onto a many sheeted region which is starlike with respect to the origin. If N(z)D(z)P[b,A,B], then

    N(z)D(z)P[b,A,B].

    Proof. Let N(z)D(z)P[b,A,B]. Then by using a result due to Attiya [6], we have

    |N(z)D(z)c(r)|d(r),|z|<r,0<r<1,

    where c(r)=1B[B+b(AB)]r21B2r2 and d(r)=|b|(AB)r21B2r2. We choose A(z) such that |A(z)|<d(r) and

    A(z)D(z)=N(z)c(r)D(z).

    Now for a fixed z0 in U, consider the line segment L joining 0 and D(z0) which remains in one sheet of the starlike image of U by D. Suppose that L1 is the pre-image of L under D. Then

    |N(z0)c(r)D(z0)|=|z00(N(t)c(r)D(t))dt|=|L1A(t)D(t)dt|<d(r)L1|dD(t)|=d(r)D(z0).

    This implies that

    |N(z0)D(z0)c(r)|<d(r).

    Therefore

    N(z)D(z)P[b,A,B].

    For A=B=b=1, we have the following result due to Libera [12].

    Lemma 2.5. If N and D are analytic in U with N(0)=D(0)=0 and D maps U onto a many sheeted region which is starlike with respect to the origin, then

    N(z)D(z)P implies N(z)D(z)P.

    Lemma 2.6. [14] If 1B<A1,β1>0 and the complex number γ satisfies Re{γ}β1(1A)/(1B), then the differential equation

    q(z)+zq(z)β1q(z)+γ=1+Az1+Bz,zU,

    has a univalent solution in U given by

    q(z)={zβ1+γ(1+Bz)β1(AB)/Bβ1z0tβ1+γ1(1+Bt)β1(AB)/Bdtγβ1,B0,zβ1+γeβ1Azβ1z0tβ1+γ1eβ1Atdtγβ1,B=0.

    If p(z)=1+p1z+p2z2+ is analytic in U and satisfies

    p(z)+zp(z)β1p(z)+γ1+Az1+Bz,

    then

    p(z)q(z)1+Az1+Bz,

    and q(z) is the best dominant.

    Before proving the results for the generalized Bazilevič functions, let us discuss a few results related to the function gS[A,B].

    Theorem 3.1. Let gS[A,B] and of the form (1.3). Then for any complex number μ,

    |b3μb22|(AB)2max{1,|2(AB)μ(A2B))|}.

    Proof. The proof of the result is the same as of Lemma 2.3. The result is sharp and equality holds for the function defined by

    g1(z)={z(1+Bz2)AB2B=z+12(AB)z3+,B0,zeA2z2=z+A2z3+,B=0,

    or

    g2(z)={z(1+Bz)ABB,B0,zeAz,B=0,={z+(AB)z2+12(AB)(A2B)z3+,B0,z+Az2+12A2z3+,B=0.

    Theorem 3.2. Let gS[A,B]. Then for c>0, α>0 and β any real number,

    Gα(z)=c+α+iβzc+iβz0tc+iβ1gα(t)dt, (3.1)

    is in S[A,B]. In addition

    RezG(z)G(z)>δ=min|z|=1Req(z),

    where

    q(z)={1αα+iβ+c2F1(1;α(1AB);α+iβ+c+1;Bz1+Bz)(c+iβ),B0,1αα+iβ+c1F1(1;α+iβ+c+1;αAz)(c+iβ),B=0.

    Proof. From (3.1), we have

    zc+iβGα(z)=(c+α+iβ)z0tc+iβ1gα(t)dt.

    Differentiating and rearranging gives

    (c+α+iβ)gα(z)Gα(z)=(c+iβ)+αp(z), (3.2)

    where p(z)=zG(z)G(z). Then differentiating (3.2) logarithmically, we have

    zg(z)g(z)=p(z)+zp(z)αp(z)+(c+iβ).

    Since gS[A,B], it follows that

    p(z)+zp(z)αp(z)+(c+iβ)1+Az1+Bz.

    Now by using Lemma 2.6, for β1=α and γ=c+iβ, we obtain

    p(z)q(z)1+Az1+Bz,

    where

    q(z)={zc+α+iβ(1+Bz)α(AB)/Bαz0tc+α+iβ1(1+Bt)α(AB)/Bdtc+iβα,B0,zc+α+iβeαAzαz0tc+α+iβ1eαAtdtc+iβα,B=0.

    Now by using the properties of the familiar hypergeometric functions proved in [15], we have

    q(z)={1αα+iβ+c2F1(1;α(1AB);α+iβ+c+1;Bz1+Bz)(c+iβ),B0,α+iβ+c1F1(1;α+iβ+c+1;αAz)(c+iβ),B=0.

    This implies that

    p(z)q(z)={1αα+iβ+c2F1(1;α(1AB);α+iβ+c+1;Bz1+Bz)(c+iβ),B0,1αα+iβ+c1F1(1;α+iβ+c+1;αAz)(c+iβ),B=0,

    and

    RezG(z)G(z)=Rep(z)>δ=min|z|=1Req(z).

    Theorem 3.3. Let gS[A,B]. Then

    S(z)=z0tc+iβ1gα(t)dt,

    is (α+c)-valent starlike, where α>0, c>0 and β is a real number.

    Proof. Let D1(z)=zS(z)=zc+iβgα(z) and N1(z)=S(z). Then

    RezD1(z)D1(z)=Re{(c+iβ)+αzg(z)g(z)}=c+αRezg(z)g(z).

    Since gS[A,B]S(1A1B), see [10], it follows that

    RezD1(z)D1(z)>c+α(1A1B)>0.

    Also

    ReD1(z)N1(z)=Re{(c+iβ)+αzg(z)g(z)}>c+α(1A1B)>0.

    Now by using Lemma 2.5, we have

    ReD1(z)N1(z)>0 or RezS(z)S(z)>0.

    By the mean value theorem for harmonic functions,

    RezS(z)S(z)|z=0=12π2π0RereiθS(reiθ)S(reiθ)dθ.

    Therefore

    2π0RereiθS(reiθ)S(reiθ)dθ=2πRe{c+iβ+αzg(z)g(z)}|z=0=2π(c+α).

    Now by using a result due to [9,p 212], we have that S is (c+α)-valent starlike function.

    Now we are ready to discuss some results related to the defined generalized Bazilevič functions.

    Theorem 4.1. Let f be a generalized Bazilevič function associated by the quadruple (α,β,g,p), where gS[A,B] of the form (1.3) and pP[b,A,B] of the form (1.2). Then for c>0,

    F(z)=[c+α+iβzcz0tc1fα+iβ(t)dt]1α+iβ (4.1)

    is a generalized Bazilevič function associated by the quadruple (α,β,G,p), where GS[A,B,δ], as defined by (3.1).

    Proof. From (4.1), we have

    Fα+iβ(z)=c+α+iβzcz0tc1(f(t))α+iβdt.

    This implies that

    zcFα+iβ(z)=(c+α+iβ)z0tc1(f(t))α+iβdt.

    Differentiate both sides and rearrange, we get

    czc1Fα+iβ(z)+(α+iβ)zcFα+iβ1(z)F(z)=(c+α+iβ)zc1(f(z))α+iβ,

    and

    z1iβF(z)F1(α+iβ)(z)=1α+iβ{(c+α+iβ)ziβfα+iβ(z)cziβFα+iβ(z)}.

    Now from (3.1), we have

    z1iβF(z)F1(α+iβ)Gα(z)=1α+iβ{(c+α+iβ)ziβfα+iβ(z)cziβc(c+α+iβ)z0tc1(f(t))α+iβdt}(c+α+iβ)zc+iβz0tc+iβ1gα(t)dt=1α+iβ{(zcfα+iβ(z)cz0tc1(f(t))α+iβdt}z0tc+iβ1gα(t)dt:=N(z)D(z).

    With this, note that

    N(z)D(z)=1α+iβ{(czc1fα+iβ(z)+(α+iβ)zcfα+iβ1(z)f(z)czc1(f(z))α+iβ}zc+iβ1gα(z)=z1iβf(z)f1(α+iβ)(z)gα(z),

    which implies N(z)D(z)P[b,A,B]. By Theorem 3.3, we know that D(z)=z0tc+iβ1gα(t)dt is (α+c)-valent starlike. Therefore by using Lemma 2.4, we obtain

    z1iβF(z)F1(α+iβ)(z)Gα(z)P[b,A,B].

    This is the equivalent form of Definition 1.1. Hence the result follows.

    Corollary 4.2. Let A=1,B=1 and β=0 in Theorem 4.1. Then

    Gα(z)=(α+c)zcz0tc1gα(t)dt

    belong to S(δ1), where

    δ1=(1+2c)+(1+2c)2+8α4α,(see [16]).

    Hence G is starlike when gS, and

    Fα(z)=(α+c)zcz0tc1gα(t)dt

    belongs to the class of Bazilevič functions associated by the quadruple (α,0,G,p).

    Theorem 4.3. Let f of the form (1.1) be a generalized Bazilevič function associated by the quadruple (α,β,g,p), with gS[A,B] of the form (1.3) and pP[b,A,B] of the form (1.2). Then

    |a33+α+iβ2(2+α+iβ)a22|AB2|2+α+iβ|[α+|b|max{2,|b(AB)+2B|}].

    This inequality is sharp.

    Proof. Since f is a generalized Bazilevič function associated by the quadruple (α,β,g,p), we have

    1+zf(z)f(z)+(α+iβ1)zf(z)f(z)=αzg(z)g(z)+zp(z)p(z)+iβ. (4.2)

    As f, g and p respectively have the form (1.1),(1.3) and (1.2), it is easy to get

    1+zf(z)f(z)=1+2a2z+(6a34a22)z2+,zf(z)f(z)=1+a2z+(2a3a22)z2+,zg(z)g(z)=1+b2z+(2b3b22)z2+,zp(z)p(z)=p1z+(2p2p21)z2+.

    Putting these values in (4.2) and comparing the coefficients of z, we obtain

    (1+α+iβ)a2=αb2+p1. (4.3)

    Similarly by comparing the coefficients of z2 and rearranging, we have

    2(2+α+iβ)a3=α(2b3b22)+2p2p21+a22(3+α+iβ). (4.4)

    From (4.4), we have

    |a33+α+iβ2(2+α+iβ)a22|=|α(b312b22)+(p212p21)2+α+iβ|α|b312b22||2+α+iβ|+|p212p21||2+α+iβ|.

    Now by using Theorem 3.1 and Lemma 2.3, both with μ=12, we obtain

    |b312b22|AB2max{1,|B|}=AB2,

    and

    |p212p21||b|(AB)max{1,12|b(AB)+2B|}.

    Therefore, we have

    |a33+α+iβ2(2+α+iβ)a22|AB2|2+α+iβ|[α+2|b|max{1,12|b(AB)+2B|}].

    The equality

    |b312b22|=AB2

    for B0 can be obtained for

    g(z)={z(1+Bz)ABB=z+(AB)z2+12(AB)(A2B)z3+,z(1+Bz2)AB2B=z+12(AB)z3+.

    Similarly, the equality

    |b312b22|=A2

    for B=0 can be obtained for the function g(z)= zeA2z2=z+A2z3+. Also equality for the functional |p212p21| can be obtained by the functions

    p(z)=1+(bA+(1b)B)z1+Bz or p1(z)=1+(bA+(1b)B)z21+Bz2.

    Corollary 4.4. For A=1, B=1 and b=1, we have the result proved in [8]:

    |a33+α+iβ2(2+α+iβ)a22|α+2|2+α+iβ|.

    For α=1, β=0, we have fK, the class of close-to-convex functions, and

    |a323a22|1.

    The latter result has been proved in [11].

    Theorem 4.5. Let f of the form (1.1) be a generalized Bazilevič function associated by the quadruple (α,β,g,p), with gS[A,B] and of the form (1.3) and pP[b,A,B] of the form (1.2). Then

    (i)

    |a2|(AB)(α+|b|)|1+α+iβ|.

    (ii) If α=0, then

    |a3||b|(AB)|2+iβ|max{1,|b(AB)2(1(3+iβ)(1+iβ)2)+B|}.

    Both the above inequalities are sharp.

    Proof. (ⅰ) From (4.3), we have

    (1+α+iβ)a2=αb2+p1.

    This implies that

    |a2|α|b2|+|p1||1+α+iβ|.

    By using the coefficient bound for S[A,B] along with the coefficient bound of P[b,A,B], we have

    |b2|AB and |p1||b|(AB).

    This implies that

    |a2|(α+|b|)(AB)|1+α+iβ|.

    Equality can be obtained by the functions

    g(z)=z(1+Bz)ABB, B0 and p(z)=1+[bA+(1b)B]z1+Bz.

    (ⅱ) Let α=0. Then from (4.3) and (4.4), we have

    (2+iβ)a3=p212p21+(3+iβ)p212(1+iβ)2=p212(1(3+iβ)(1+iβ)2)p21.

    This implies

    |a3|=1|2+iβ||p2μp21|,

    where μ=12(3+iβ)2(1+iβ)2. Now by using Lemma 2.3, we obtain

    |a3||b|(AB)|2+iβ|max{1,|b(AB)2(2β2+iβ)(1+iβ)2)+B|}.

    Sharpness can be attained by the functions

    p0(z)=1+(bA+(1b)B)z21+Bz2=1+b(AB)z2+b(AB)(B)z4+,p1(z)=1+(bA+(1b)B)z1+Bz=1+b(AB)z+b(AB)(B)z2+.

    Corollary 4.6. For A=1, B=1 and b=1, we have

    |a2|2(α+1)|1+α+iβ|,

    and

    |a3|=2|2+iβ|max{1,|(3+iβ)(1+iβ)2|}.

    In the final part of this paper, we look at some results for the generalized Bazilevič functions associated with β=0.

    Let Cr denote the closed curve which is the image of the circle |z|=r<1 under the mapping w= f(z), and Lr(f(z)) denote the length of Cr. Also let M(r)=max|z|=r|f(z)| and m(r)=min|z|=r|f(z)|. We now prove the following result.

    Theorem 4.7. Let f be a generalized Bazilevič function associated by the quadruple (α,0,g,p). Then for B0,

    Lr(f(z)){C(α,b,A,B)M1α(r)[1(1r)α(ABB)],0<α1,C(α,b,A,B)m1α(r)[1(1r)α(ABB)],α>1,

    where

    C(α,b,A,B)=2π|b|B[(AB)+1α].

    Proof. As f is a generalized Bazilevič function associated by the quadruple (α,0,g,p), we have

    zf(z)=f1α(z)gα(z)p(z),

    where gS[A,B] and pP[b,A,B]. Since for z=reiθ, 0<r<1,

    Lr(f(z))=2π0|zf(z)|dθ,

    we have for 0<α1,

    Lr(f(z))=2π0|f1α(z)gα(z)p(z)|dθ,M1α(r)2π0r0|αg(z)gα1(z)p(z)+gα(z)p(z)|dsdθ,M1α(r){2π0r0α|gα(z)|s|h(z)p(z)|dsdθ+2π0r0|gα(z)|s|zp(z)|dsdθ},

    where zg(z)g(z)=h(z)P[A,B]. Now by using the distortion theorem for Janowski starlike functions when B0 (see [10]) and the Cauchy-Schwarz inequality, we have

    Lr(f(z))M1α(r)×r0sα1(1|B|s)αBAB{α2π0|h(z)|2dθ2π0|p(z)|2dθ+2π0|zp(z)|dθ}ds.

    Now by using Lemma 2.1 for both the classes P[b,A,B] and P[A,B], along with the result

    2π0|zp(z)||b|(AB)r1B2r2,

    for pP[b,A,B] (see [19]), we can write

    Lr(f(z))2πM1α(r)×r0sα1(1|B|s)αBAB{α1+[(AB)21]s21s21+[|b|2(AB)21]s21s2+|b|(AB)s1B2s2}ds.

    Since 1|B|r1r and 1B2r21r2,

    Lr(f(z))2πM1α(r)[|b|(AB)2+|b|(AB)]r01(1s)αBAB+1ds=C(α,b,A,B)M1α(r)[1(1r)α(ABB)],

    where C(α,b,A,B)=2π|b|[(AB)+(1/α)]B.

    When α>1, we can prove similarly as above to get

    Lr(f(z))C(α,b,A,B)m1α(r)[1(1r)α(ABB)].

    Corollary 4.8. For gS and pP(b), we have

    Lr(f(z)){2π|b|(2+1α)M1α(r)[1(1r)2α1],0<α1,2π|b|(2+1α)m1α(r)[1(1r)2α1],α>1.

    Theorem 4.9. Let f be a generalized Bazilevič function associated by the quadruple (α,0,g,p), where gS[A,B] and pP[b,A,B]. Then for B0,

    |an|{1n|b|B(AB+1α)limr1M1α(r),0<α1,1n|b|B(AB+1α)limr1m1α(r),α>1.

    Proof. By Cauchy's theorem for z=reiθ, n2, we have

    nan=12πrn2π0zf(z)einθdθ.

    Therefore

    n|an|12πrn2π0|zf(z)|dθ,=12πrnLr(f(z)).

    By using Theorem 4.7 for the case 0<α1, we have

    n|an|12πrn(2π|b|B(AB+1α)M1α(r)[1(1r)αABB]).

    Hence, by taking r approaches 1,

    |an|1n|b|B(AB+1α)limr1M1α(r).

    For α>1, we have

    |an|1n|b|B(AB+1α)limr1m1α(r).

    Theorem 4.10. Let f be a generalized Bazilevič function represented by the quadruple (α,0,g,p), where gS[A,B] and pP[b,A,B]. Then for B0,

    |f(z)|αα(1B2)+(AB)(|b|BRe(b))1Brα2F1(α(1AB)+1;α;α+1;|B|r).

    Proof. Since f is a generalized Bazilevič function associated by the quadruple (α,0,g,p), by definition, we have

    zf(z)f1α(z)gα(z)=p(z),

    where gS[A,B] and pP[b,A,B]. This implies that

    fα(z)=αz0t1gα(t)p(t)dt,

    and so

    |f(z)|αα|z|0|t1||gα(t)||p(t)|d|t|,=αr0s1|gα(t)||p(t)|ds.

    Now by using the results

    |g(z)|r(1|B|r)ABB,B0, (see [10]), 

    and

    |p(z)|1+|b|(AB)rB[(AB)Re{b}+B]r21|B|2r2, (see [6]), 

    we have

    |f(z)|ααr0s1sα(1|B|s)α(1AB)1+|b|(AB)sB[(AB)Re{b}+B]s21|B|2s2dsα(1B2)+(AB)(|b|BRe{b})1+|B|r0sα1(1|B|s)α(1AB)1ds.

    Putting s=ru, we have

    |f(z)|αα(1B2)+(AB)(|b|BRe{b})1Brα10uα1(1|B|ru)α(1AB)1du=(1B2)+(AB)(|b|BRe{b})1Brα 2F1(α(1AB)+1;α;α+1;|B|r),

    where 2F1(a;b;c;z) is the hypergeometric function.

    Corollary 4.11. For gSand pP, we have

    |f(z)|α2αrα2F1(2α+1;α;α+1;r).

    The research for the fourth author is supported by the USM Research University Individual Grant (RUI) 1001/PMATHS/8011038.

    The authors declare that they have no conflict of interests.



    [1] G. Albuja, A.I. Ávila, A family of new globally convergent linearization schemes for solving Richards' equation, Appl. Numer. Math., 159 (2021), 281-296.
    [2] K. Beauchard, P. Cannarsa, M. Yamamoto, Inverse source problem and null controllability for multidimensional parabolic operators of Grushin type, Inverse Problems, 30 (2014), 025006. doi: 10.1088/0266-5611/30/2/025006
    [3] M. Berardi, F. Difonzo, F. Notarnicola, M. Vurro, A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone, Appl. Numer. Math., 135 (2019) 264-275.
    [4] M. Berardi, F. Difonzo, L. Lopez, A mixed MoL-TMoL for the numerical solution of the 2D Richards' equation in layered soils, Comput. Math. Appl., 79 (2020), 1990-2001. doi: 10.1016/j.camwa.2019.07.026
    [5] N. Brandhorst, D. Erdal, I. Neuweiler, Soil moisture prediction with the ensemble Kalman filter: Handling uncertainty of soil hydraulic parameters, Adv. Water Res., 110 (2017), 360-370. doi: 10.1016/j.advwatres.2017.10.022
    [6] P. Cannarsa, J. Tort, M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Problems, 26 (2010), 105003. doi: 10.1088/0266-5611/26/10/105003
    [7] P. Cannarsa, P. Martinez, J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J Control Optim, 47 (2008), 1-19. doi: 10.1137/04062062X
    [8] P. Cannarsa, P. Martinez, J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differ. Equ., 10 (2005), 153-190.
    [9] J. R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley, 1984.
    [10] J. R. Cannon, Y. Lin, S. Xu, Numerical procedure for the determination of an unknown coefficient in semilinear parabolic partial differential equations, Inverse Problems, 10 (1994), 227-243.
    [11] J. Cheng, J. J. Liu, A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental solution, Inverse Problems, 24 (2008), 065012. doi: 10.1088/0266-5611/24/6/065012
    [12] M. Dehghan, Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement, Numer. Meth. Part. Diff. Equ., 21 (2005), 611-622. doi: 10.1002/num.20055
    [13] M. Dehghan, Determination of a control function in three-dimensional parabolic equations, Math. Comput. Simul., 61 (2003), 89-100. doi: 10.1016/S0378-4754(01)00434-7
    [14] M. Dehghan, M. Tatari, Determination of a control parameter in a one-dimensional parabolicequation using the method of radial basis functions, Math. Comput. Model., 44 (2006), 1160-1168. doi: 10.1016/j.mcm.2006.04.003
    [15] M. Dehghan, An inverse problems of finding a source parameter in a semilinear parabolic equation, Appl. Math. Model., 25 (2001), 743-754. doi: 10.1016/S0307-904X(01)00010-5
    [16] Z. C. Deng, K. Qian, X. B. Rao, L. Yang, G. W. Luo, An inverse problem of identifying the source coefficient in a degenerate heat equation, Inverse Probl. Sci. Eng., 23 (2015), 498-517. doi: 10.1080/17415977.2014.922079
    [17] F. L. Dimet, V. Shutyaev, J. Wang, M. Mu, The problem of data assimilation for soil water movement, ESAIM: Control, Optimisation and Calculus of Variations, 10 (2004), 331-345. doi: 10.1051/cocv:2004009
    [18] A. Kirsch, An introduction to the mathematical theory of inverse problem, Springer, New York, 1999.
    [19] H. W. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Dordrecht: Kluwer Academic Publishers, 1996.
    [20] V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 1998.
    [21] J. F. Lu, Z. Guan, Numerical Solution of Partial Differential Equations, Tsinghua University Press, Beijing, 2004.
    [22] P. Martinez, J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 325-362. doi: 10.1007/s00028-006-0214-6
    [23] O. A. Oleinik, E. V. Radkevic, Second order differential equations with non-negative characteristic form, Rhode Island and Plenum Press, New York: American Mathematical Society, 1973.
    [24] M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Harlow, Longman Scientific and Technical, Essex, 1995.
    [25] I. S. Pop, Regularization Methods in the Numerical Analysis of Some Degenerate Parabolic Equations, IWR, University of Heidelberg, 1998.
    [26] X. B. Rao, Y. X. Wang, K. Qian, Z. C. Deng, L. Yang, Numerical simulation for an inverse source problem in a degenerate parabolic equation, Appl. Math. Model., 39 (2015), 7537-7553. doi: 10.1016/j.apm.2015.03.016
    [27] R. B. Ricardo, Numerical Methods and Analysis for Degenerate Parabolic Equations and Reaction-Diffusion Systems, 2008.
    [28] Z. Z. Sun, Numerical Solution of Partial Differential Equations, Science Press, Beijing, 2005.
    [29] J. Tort, J. Vancostenoble, Determination of the insolation function in the nonlinear Sellers climate model, Ann. I. H. Poincare-AN, 29 (2012), 683-713. doi: 10.1016/j.anihpc.2012.03.003
    [30] D. K. Wang, Y. Q. Hou, J. Y. Peng, Partial Differential Equation Method for Image Processing, Science Press, Beijing, 2008.
    [31] L. Yang, Z. C. Deng, J. N. Yu, G. W. Luo, Optimization method for the inverse problem of reconstructing the source term in a parabolic equation, Math. Comput. Simul., 80 (2009), 314-326. doi: 10.1016/j.matcom.2009.06.031
    [32] L. Yang, Z. C. Deng, An inverse backward problem for degenerate parabolic equations, Numer. Meth. Part. Differ. Equ., 33 (2017), 1900-1923. doi: 10.1002/num.22165
    [33] L. Yang, Y. Liu, Z. C. Deng, Multi-parameters identification problem for a degenerate parabolic equation, J. Comput. Appl. Math., 366 (2020), 112422. doi: 10.1016/j.cam.2019.112422
  • This article has been cited by:

    1. S. Budhe, M. D. Banea, S. de Barros, Composite repair system for corroded metallic pipelines: an overview of recent developments and modelling, 2020, 25, 0948-4280, 1308, 10.1007/s00773-019-00696-3
    2. Mojdeh Mehrinejad Khotbehsara, Allan Manalo, Thiru Aravinthan, Wahid Ferdous, Brahim Benmokrane, Kate T.Q. Nguyen, Synergistic effects of hygrothermal conditions and solar ultraviolet radiation on the properties of structural particulate-filled epoxy polymer coatings, 2021, 277, 09500618, 122336, 10.1016/j.conbuildmat.2021.122336
    3. Mojdeh Mehrinejad Khotbehsara, Allan Manalo, Thiru Aravinthan, Wahid Ferdous, Kate T.Q. Nguyen, Gangarao Hota, Ageing of particulate-filled epoxy resin under hygrothermal conditions, 2020, 249, 09500618, 118846, 10.1016/j.conbuildmat.2020.118846
    4. K. S. Lim, A. S. Kasmaon, S. C. Chin, S. I. Doh, 2018, 2020, 0094-243X, 020036, 10.1063/1.5062662
    5. Saeid Ansari Sadrabadi, Amin Dadashi, Sichen Yuan, Venanzio Giannella, Roberto Citarella, Experimental-Numerical Investigation of a Steel Pipe Repaired with a Composite Sleeve, 2022, 12, 2076-3417, 7536, 10.3390/app12157536
    6. Emine Feyza Sukur, Sinem Elmas, Mahsa Seyyednourani, Volkan Eskizeybek, Mehmet Yildiz, Hatice S. Sas, Effects of meso‐ and micro‐scale defects on hygrothermal aging behavior of glass fiber reinforced composites , 2022, 43, 0272-8397, 8396, 10.1002/pc.27011
    7. Djouadi Djahida, Ghomari Tewfik, Maciej Witek, Mechri Abdelghani, Analytical Model and Numerical Analysis of Composite Wrap System Applied to Steel Pipeline, 2021, 14, 1996-1944, 6393, 10.3390/ma14216393
    8. Hanis Hazirah Arifin, Norhazilan Md Noor, Chao Bao, Meilin Deng, Kar Sing Lim, 2025, 9780443220845, 103, 10.1016/B978-0-443-22084-5.00010-5
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2999) PDF downloads(185) Cited by(1)

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog