
Citation: Sharmy S Mano, Koichiro Uto, Takao Aoyagi, Mitsuhiro Ebara. Fluidity of biodegradable substrate regulates carcinoma cell behavior: A novel approach to cancer therapy[J]. AIMS Materials Science, 2016, 3(1): 66-82. doi: 10.3934/matersci.2016.1.66
[1] | Florencia G. Palis, R. M. Lampayan, R.J. Flor, E. Sibayan . A multi-stakeholder partnership for the dissemination of alternate wetting and drying water-saving technology for rice farmers in the Philippines. AIMS Agriculture and Food, 2017, 2(3): 290-309. doi: 10.3934/agrfood.2017.3.290 |
[2] | Theodor Friedrich, Amir Kassam . Food security as a function of Sustainable Intensification of Crop Production. AIMS Agriculture and Food, 2016, 1(2): 227-238. doi: 10.3934/agrfood.2016.2.227 |
[3] | Boris Boincean, Amir Kassam, Gottlieb Basch, Don Reicosky, Emilio Gonzalez, Tony Reynolds, Marina Ilusca, Marin Cebotari, Grigore Rusnac, Vadim Cuzeac, Lidia Bulat, Dorian Pasat, Stanislav Stadnic, Sergiu Gavrilas, Ion Boaghii . Towards Conservation Agriculture systems in Moldova. AIMS Agriculture and Food, 2016, 1(4): 369-386. doi: 10.3934/agrfood.2016.4.369 |
[4] | Isaac Busayo Oluwatayo . Towards assuring food security in South Africa: Smallholder farmers as drivers. AIMS Agriculture and Food, 2019, 4(2): 485-500. doi: 10.3934/agrfood.2019.2.485 |
[5] | Fernando Arias, Maytee Zambrano, Kathia Broce, Carlos Medina, Hazel Pacheco, Yerenis Nunez . Hyperspectral imaging for rice cultivation: Applications, methods and challenges. AIMS Agriculture and Food, 2021, 6(1): 273-307. doi: 10.3934/agrfood.2021018 |
[6] | J.M.A. Duncan, J. Dash, E.L. Tompkins . Observing adaptive capacity in Indian rice production systems. AIMS Agriculture and Food, 2017, 2(2): 165-182. doi: 10.3934/agrfood.2017.2.165 |
[7] | Raulston Derrick Gillette, Norio Sakai, Godfrid Erasme Ibikoule . Role and impact of contract farming under various pricing standards: A case of Guyana's rice sector. AIMS Agriculture and Food, 2024, 9(1): 336-355. doi: 10.3934/agrfood.2024020 |
[8] | Karin Lindsjö, Agnes Anderssonc Djurfeldt, Aida Cuthbert Isinika, Elibariki Msuya . Youths' participation in agricultural intensification in Tanzania. AIMS Agriculture and Food, 2020, 5(4): 681-699. doi: 10.3934/agrfood.2020.4.681 |
[9] | Abbas Ali Chandio, Yuansheng Jiang, Abdul Rehman, Rahman Dunya . The linkage between fertilizer consumption and rice production: Empirical evidence from Pakistan. AIMS Agriculture and Food, 2018, 3(3): 295-305. doi: 10.3934/agrfood.2018.3.295 |
[10] | Deborah Nabuuma, Beatrice Ekesa, Mieke Faber, Xikombiso Mbhenyane . Food security and food sources linked to dietary diversity in rural smallholder farming households in central Uganda. AIMS Agriculture and Food, 2021, 6(2): 644-662. doi: 10.3934/agrfood.2021038 |
Currently it is the digital era where there is a steady flood of information. Such information inundation makes a variety of mass media more important, for example, newspapers, broadcast, social network system media, and public speaking. Before developing mass media, rumors propagated by word of mouth and played a crucial role in communication between people or groups. This process can be understood as a kind of homogenization of information system and social interaction [1]. With the emergence of multimedia and social media, rumors have spread faster and have wide transmissions [5]. However, some harmful and powerful rumor outbreaks arise from such wide transmission via these media [10,14,18]. Moreover, their influence causes multiple effects for a variety of situations rather than the mono effect for localized situations [12].
As a benefit in return for the homogenization, personality is more heavily emphasized and the diversity of people has garnered much attention in our social community. In the microscopic viewpoint of rumor spreading, this variety of characteristics is important. Many researchers already have investigated that the degree of belief is important in rumor spreading [8,16]. From this perspective, we assume that there will be various groups that share the same trust rate. In this paper, we propose an SIR type rumor spreading model with given spreading rate distributions
Next we provide a brief historical review of the rumor spreading model. Starting the pioneering studies by Daley and Kendall [3,4], a lot of researchers have studied rumor spreading and tried to build mathematical models [11,17]. Zanette [23,24] numerically obtained the existence of a critical threshold for a rumor spreading model regarding small-world networks. In [13], the authors derived the mean-field equation of complex heterogeneous networks. For other topological settings, see [7,15]. Most mathematical models for rumor spreading are based on the epidemic model. In [27], the authors considered an SIR type rumor spreading model with forgetting mechanism. See also [6,28] for other models with forgetting mechanisms. In [26], the authors added a hibernator variable to the SIR type rumor spreading model. Similarly, in [20,22], the authors adapted several new variables to construct a more realistic model for the rumor spreading phenomena. In [25], the authors employed the probability that ignorants directly become stiflers when they are aware of a rumor. We refer to papers [2,9,29] for other rumor spreading models.
The paper is organized as follows. In Section 2, we present the trust distribution and its mechanism in the SIR type model. In Section 3, we derive a single equation for the rumor size
Notation: Throughout the paper, we use the following simplified notation:
$I(t) = (I_1(t), \ldots, I_N(t)), ~~~~ \mathring{I} = (\mathring{I}_{1}, \ldots, \mathring{I}_{N}), ~~~~\mathring{I}^n = (\mathring{I}_{1}^{n}, \ldots, \mathring{I}_{N}^{n}), ~~~~ n, N\in \mathbb{N}.$ |
Let
There are three groups of populations: ignorants (I), spreaders (S), and stiflers (R). At the first stage, ignorants contact a spreader, realize a rumor, and accept the hearsay. According to the acceptance with rate
$
˙I=−kλSI,˙S=kλSI−kS(σ1S+σ2R),˙R=kσS(S+R),
$
|
where
As in [25], we assume that spreaders lose their interest in rumors with probability
$
˙Ii=−kλiSIi, i=1,…,N,˙S=N∑i=1kλiSIi−kσS(S+R)−δS,˙R=kσS(S+R)+δS,
$
|
(1) |
subject to initial data
Throughout this paper, we assume that
(1)
(2) The spreading (trust) rate distribution
We will consider a family of initial data
$\mathring{T} = \Big(\sum\limits_{j = 1}^N\mathring{I}_{j}\Big)+\mathring{S}+\mathring{R}$ |
for a fixed total initial population
Next, we define the rumor size, a momentum type quantity of the initial data and rumor outbreak.
Definition 2.1. [19,25,26]For a solution
$ \phi(t) = \int_0^t S(\tau)d\tau. $ |
Definition 2.2. Let
$ M_1(\mathring{I}) = \sum\limits_{i = 1}^N\lambda_i \mathring{I}_i $ |
and total population with initial
$T(t) = \Big(\sum\limits_{i = 1}^NI_{i}(t)\Big)+S(t)+R(t).$ |
Definition 2.3. Let
$\phi^\infty(\mathring{I}, \mathring{S}): = \lim\limits_{t\to\infty}\phi(t).$ |
Definition 2.4. For a given initial data
$\mathring{I}^{n}\to \mathring{I},~~~~ \mathring{S}^{n}\to0 ~~~~ \mbox{as} ~~~~ n\to\infty$ |
and
$ \mathring{S}^n > 0,~~~~ \mathring{R}^n = 0~~~~ \mbox{for}~~n\in \mathbb{N}.$ |
We additionally assume that the total populations are the same:
$\mathring{T} = \Big(\sum\limits_{i = 1}^N\mathring{I}_{i}\Big)+\mathring{S}+\mathring{R} = \Big(\sum\limits_{i = 1}^N\mathring{I}_{i}^n\Big)+\mathring{S}^n+\mathring{R}^n = \mathring{T}^n.$ |
We say that a rumor outbreak occurs if the following limit exists
$\phi_e(\mathring{I}) = \lim\limits_{n\to \infty}\phi^\infty(\mathring{I}^n, \mathring{S}^n)$ |
and
Remark 1. (1) In [13,15,25], the authors define that the rumor outbreak occurs if
$\lim\limits_{\mathring{R}\to 0}R(\infty) > 0.$ |
This is essentially equivalent to Definition 2.4. We use
(2) The rumor spreading begins with one spreader. Therefore,
The following is the main theorem of this paper.
Theorem 2.5. Let
We assume that each
$\mathring{T} = \Big(\sum\limits_{k = 1}^N\mathring{I}_{k}^n\Big)+\mathring{S}^n = \sum\limits_{i = 1}^N\mathring{I}_i.$ |
Then, there exists the following limit of steady states:
$\phi_e = \phi_e(\mathring{I}) = \lim\limits_{\mathring{S}^n\to 0, \mathring{I}^n\to \mathring{I} }\phi^\infty(\mathring{I}^n, \mathring{S}^n), $ |
where
Furthermore, if
Remark 2. An equivalent condition of occurring a rumor outbreak is
$kM_1(\mathring{I}) > \delta.$ |
In this section, we derive a single equation for
Lemma 3.1. Let
$ I_i(t) = \mathring{I}_ie^{- k \lambda_i \phi(t)}, ~~~~i = 1, \ldots, N, $ | (2) |
where
Proof. From the first equation of system (1), we have
$ \frac{d}{dt}\log I_i(t) = - k \lambda_i S(t), ~~~~ i = 1, \ldots, N. $ |
Integrating the above relation gives
$ \log I_i(t) = \log \mathring{I}_i -\int_0^t k \lambda_i S(\tau)d\tau, ~~~~ i = 1, \ldots, N.$ |
For the population density of
$ I_i(t) = \mathring{I}_ie^{-\int_0^t k \lambda_i S(\tau)d\tau}, ~~~~ i = 1, \ldots, N.$ |
Clearly, we have
Lemma 3.2. Let
$ T(t) = \mathring{T}, ~~~~for ~~~~any~~ t > 0.$ | (3) |
Proof. Note that the summation of all equations in system (1) yields
$\Big(\sum\limits_{i = 1}^N\dot{I_i}\Big)+\dot{S}+\dot{R} = 0.$ |
Integrating the above equation leads to
$T(t) = \Big(\sum\limits_{i = 1}^NI_i(t)\Big)+S(t)+R(t) = \Big(\sum\limits_{i = 1}^N\mathring{I}_i\Big)+\mathring{S}+\mathring{R} = \mathring{T}. $ |
Remark 3. By the conservation property (3) in Lemma 3.2 and the formula in (2), we easily obtain the following formula for
$ S(t) = \mathring{T}-\sum\limits_{i = 1}^NI_i(t)-R(t) = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi(t)}-R(t). $ | (4) |
Lemma 3.3. Let
$ R(t) = R(\phi(t)) = \mathring{R}+ k \sigma \mathring{T} \phi(t) - k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } - k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \phi(t) +\delta \phi(t) .$ |
Proof. The third equation in system (1) gives us that
$ R(t)-\mathring{R} = \int_0^t \dot{R}(\tau) d\tau = \int_0^t \Big[ k \sigma S(\tau)(S(\tau)+R(\tau))+\delta S(\tau)\Big]d\tau. $ |
From (4) and the definition of
$
R(t)−˚R=kσ∫t0S(τ)[S(τ)+R(τ)]dτ+δϕ(t)=kσ∫t0S(τ)(˚T−N∑i=1Ii(τ))dτ+δϕ(t)=kσ∫t0ϕ′(τ)(˚T−N∑i=1˚Iie−kλiϕ(τ))dτ+δϕ(t)=kσ˚T∫t0ϕ′(τ)dτ−∑λi≠0kσ∫t0ϕ′(τ)˚Iie−kλiϕ(τ)dτ−∑λi=0kσ∫t0ϕ′(τ)˚Iie−kλiϕ(τ)dτ+δϕ(t)=K1+K2+K3+K4.
$
|
We directly have
$K_1 = k \sigma \mathring{T} \phi(t) ~~~~\mbox{and}~~~~ K_4 = \delta \phi(t).$ |
For
$ K_2 = -\sum\limits_{\lambda_i\ne 0 } k \sigma \int_0^t \phi'(\tau)e^{- k \lambda_i \phi(\tau)}d\tau\\ = -\sum\limits_{\lambda_i\ne 0 } k \sigma \int_{\phi(0)}^{\phi(t)} e^{- k \lambda_i \eta}d\eta \\ = -\sum\limits_{\lambda_i\ne 0 } k \sigma \frac{e^{- k \lambda_i \phi(0)}-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } \\ = -\sum\limits_{\lambda_i\ne 0 } k \sigma \frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i }. $ |
Similarly, we have
$K_3 = -\sum\limits_{\lambda_i = 0 } k \sigma \int_0^t \phi'(\tau)e^{- k \lambda_i \phi(\tau)}d\tau \\ = -\sum\limits_{\lambda_i = 0 } k \sigma \int_0^t \phi'(\tau)d\tau \\ = -\sum\limits_{\lambda_i = 0 } k \sigma (\phi(t)-\phi(0)) \\ = -\sum\limits_{\lambda_i = 0 } k \sigma \phi(t).$ |
Therefore, the above elementary calculations yield
$ R(t)-\mathring{R} = k \sigma \mathring{T} \phi(t) - k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } - k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \phi(t) +\delta \phi(t).$ |
The formula (4) of
$ \frac{d\phi(t)}{dt} = S(t) = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi(t)}-R(t) .$ |
By the result in Lemma 3.3, we derive a single decoupled equation for
$ \frac{d\phi(t)}{dt} = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi(t)} -\mathring{R}- k \sigma \mathring{T} \phi(t) \\ + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } + k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \phi(t) -\delta \phi(t). $ |
For simplicity, we define
$
F(ϕ)=F(ϕ,˚I,˚S,˚R,˚T):=˚T−N∑i=1˚Iie−kλiϕ−˚R−kσ˚Tϕ+kσ∑λi≠0˚Ii1−e−kλiϕkλi+kσ∑λi=0˚Iiϕ(t)−δϕ.
$
|
(5) |
Then,
$ \dot{\phi}(t) = F(\phi(t)). $ | (6) |
In this section, we use the steady state analysis to obtain the threshold phenomena for asymptotic behavior of the solution to system (1). To obtain the asymptotic behavior of solutions to (6), we first consider a steady state
$ F(\phi) = 0, $ | (7) |
where
$ G(\phi) = G(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi}}{ k \lambda_i } $ | (8) |
and
$ H(\phi) = H(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = \Big(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \Big)\phi . $ | (9) |
Then, we divide
$ H(\phi) = G(\phi). $ |
Lemma 4.1. Let
$G(0) = \mathring{S}, ~~~~and~~~~ \lim\limits_{\phi\to \infty}G(\phi) < \infty, ~~~~if~~~ \mathring{R} = 0.$ |
Proof. By the definition of
For the next result, we take the limit such that
$ \lim\limits_{\phi\to \infty}G(\phi) = \lim\limits_{\phi\to \infty}\Big(\mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi}}{ k \lambda_i }\Big)\\ = \lim\limits_{\phi\to \infty}\Big(\mathring{T}-\sum\limits_{\lambda_i\ne 0} \mathring{I}_ie^{- k \lambda_i \phi}-\sum\limits_{\lambda_i = 0} \mathring{I}_i -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi}}{ k \lambda_i }\Big) \\ = \mathring{T}-\sum\limits_{\lambda_i = 0} \mathring{I}_i -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\frac{\mathring{I}_i}{ k \lambda_i }. $ |
Therefore, we have
$\displaystyle k \sigma \sum\limits_{\lambda_i\ne 0}\frac{\mathring{I}_i}{ k \lambda_i } < \infty.$ |
Therefore, we conclude that
Lemma 4.2. Assume that
$ \frac{dG}{d\phi} = \sum\limits_{\lambda_i\ne0} \Big( k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \mathring{I}_i e^{- k \lambda_i \phi}\Big) > 0. $ |
Proof. Note that the derivative of
$ \frac{dG}{d\phi} = -\frac{d}{d\phi}\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi}. $ |
We can calculate the first term in the above as
$ \frac{d}{d\phi}\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} = \frac{d}{d\phi}\sum\limits_{\lambda_i\ne0} \mathring{I}_ie^{- k \lambda_i \phi} +\frac{d}{d\phi}\sum\limits_{\lambda_i = 0} \mathring{I}_ie^{- k \lambda_i \phi}\\ = \frac{d}{d\phi}\sum\limits_{\lambda_i\ne0} \mathring{I}_ie^{- k \lambda_i \phi} +\frac{d}{d\phi}\sum\limits_{\lambda_i = 0} \mathring{I}_i \\ = -\sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi}. $ |
Thus, if at least one non-zero
$ \frac{dG}{d\phi} = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi} > 0. $ |
Lemma 4.3. Let
Proof. Note that
$\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i = \delta+ k \sigma \Big(\sum\limits_{i = 1}^N\mathring{I}_i+\mathring{S}+\mathring{R}\Big)- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i\\ = \delta+ k \sigma \Big(\sum\limits_{\lambda_i\ne 0}\mathring{I}_i+\mathring{S}+\mathring{R}\Big).$ |
Therefore,
Proposition 1. Let
Then there is a final rumor size
$\phi^\infty(\mathring{I}, \mathring{S}): = \lim\limits_{t\to\infty}\phi(t), $ |
where
$F(\phi^\infty(\mathring{I}, \mathring{S})) = 0.$ |
Proof. This follows from an elementary result of ordinary differential equations. Note that for given initial data
$F(0) = G(0)-H(0) = \mathring{S} > 0, $ |
and
$\lim\limits_{\phi\to \infty}F(\phi) = G(\phi)-H(\phi) = -\infty.$ |
By the intermediate value theorem, there is at least one positive solution
For a fixed
Proposition 2. Let
The equation
Proof. We have, by Lemma 4.1 and 4.3,
$G(0) = \mathring{S} = 0, ~~~~ \lim\limits_{\phi\to \infty}G(\phi) < \infty$ |
and
$H(0) = 0, ~~~~ \lim\limits_{\phi\to \infty}H(\phi) = \infty.$ |
It follows that
$\lim\limits_{\phi\to \infty}F(\phi) = -\infty.$ | (10) |
Lemma 4.2 implies that the derivative of
$ \frac{dG}{d\phi} = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi} > 0. $ |
Moreover, if
$\frac{dH}{d\phi}(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = \delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i .$ |
Therefore,
$
dFdϕ=dGdϕ−dHdϕ=∑λi≠0kλi˚Iie−kλiϕ+kσ∑λi≠0˚Iie−kλiϕ−(δ+kσ˚T−kσ∑λi=0˚Ii).
$
|
(11) |
So,
$ \frac{dF}{d\phi}(0) = \frac{dG}{d\phi}(0)-\frac{dH}{d\phi}(0) = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_i + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i\bigg)\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_i -\delta = kM_1-\delta. $ |
This yields
$ kM_1 > \delta \Rightarrow \frac{dF}{d\phi}(0) > 0, $ | (12) |
and the continuity of
$F(\phi_\epsilon) > 0.$ |
Thus, the intermediate value theorem and (10) show that
In order to complete the proof of this proposition, it suffices to verify that the equation has a unique solution
We now assume that
$ \frac{dF}{d\phi} = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i\bigg)\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_ie^{ -k \lambda_i \phi }\bigg) \\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}_i e^{- k \lambda_i \phi}-\delta- k \sigma \mathring{T} .$ |
Since we assume that
$ \frac{dF}{d\phi} \leq \sum\limits_{i = 1}^N k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}_i e^{- k \lambda_i \phi}-\sum\limits_{i = 1}^N k \lambda_i \mathring{I}_i- k \sigma \sum\limits_{i = 1}^N \mathring{I}_i\\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}_i(e^{- k \lambda_i \phi}-1) + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}_i (e^{- k \lambda_i \phi}-1) .$ |
This implies that
$\frac{dF}{d\phi} < 0 ~~~~\mbox{ if}~~~~ \phi > 0, ~~~~\mbox{ and }~~~~ \frac{dF}{d\phi}\leq 0~~~~\mbox{ if} ~~~~ \phi = 0.$ |
The fact in (10) with
$F(\phi) < 0 ~~~~\mbox{for}~\phi > 0.$ |
Therefore, we complete the proof.
We are now ready to prove the main theorem.
The proof of the main theorem. Let
$\mathring{I}^n\to \mathring{I},~~~~ \mathring{S}^n\to 0.$ | (13) |
We denote
$F(\phi, \mathring{S}^n) = F(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T})~~~~ \mbox{and}~~~~ F_\infty(\phi) = F(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}).$ |
First, assume that
$F_\infty(0) = 0 ~~~~\mbox{ and}~~~~ \frac{d}{d\phi}F_\infty(\phi)\bigg|_{\phi = 0} > 0.$ |
Note that (11) implies that
$ \frac{\partial F}{\partial \phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T})\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}^n_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}^n_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}^n_i\bigg)\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}^n_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}^n_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}^n_ie^{ -k \lambda_i \phi }\bigg) \\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i e^{- k \lambda_i \phi}-\delta- k \sigma \mathring{T}\\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i\Big(e^{- k \lambda_i \phi}-1\Big)+\sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i \\ + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i e^{- k \lambda_i \phi}-\delta- k \sigma \Big(\Big(\sum\limits_{i = 1}^N\mathring{I}_{i}^n\Big)+\mathring{S}^n\Big) .$ |
Therefore,
$ \frac{\partial F}{\partial \phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T}) = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i\Big(e^{- k \lambda_i \phi}-1\Big) + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i \Big(e^{- k \lambda_i \phi}-1\Big)\\- k \sigma \mathring{S}^n+ k M_1(\mathring{I}^n)-\delta. $ |
By (13), there is
$k M_1(\mathring{I}^n)-\delta > \frac{1}{2}(k M_1(\mathring{I})-\delta)$ |
and
$k \sigma \mathring{S}^n\leq \frac{1}{4}(k M_1(\mathring{I})-\delta).$ |
Since
$\bigg|\sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i\Big(e^{- k \lambda_i \phi}-1\Big) + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i \Big(e^{- k \lambda_i \phi}-1\Big)\bigg|\leq \frac{1}{4}(k M_1(\mathring{I})-\delta).$ |
Thus, there are constants
$ \frac{\partial F}{\partial\phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T}) > 0. $ | (14) |
In order to prove convergence, we consider differentiable functions
$I(1/n) = \mathring{I}^n, ~~~~S(1/n) = \mathring{S}^n, ~~~~R(1/n) = \mathring{R}^n, ~~~~ n\in\mathbb{N}, $ |
and
$\mathring{T} = \Big(\sum\limits_{i = 1}^N I_i(s)\Big)+S(s)+R(s).$ |
We denote
We now prove that
For
For the last part, we assume that
Let
$\lim\limits_{n\to \infty}F(\phi_{n_n}, \mathring{I}_{n_n}, \mathring{S}_{n_n}, \mathring{R}_{n_n}, \mathring{T}) = F(\phi_{n_\infty}, \mathring{I}, 0, 0, \mathring{T}).$ |
Therefore, by Proposition 2,
$\lim\limits_{n\to \infty}\phi_{n} = 0.$ |
In this section, we numerically provide the solutions to system (1) with respect to several
For the numerical simulations, we used the fourth-order Runge-Kutta method with the following parameters:
$ \lambda_1 = 1, ~~~~\lambda_2 = 2, ~~~~\lambda_3 = 3, ~~~~\sigma = 0.2, ~~~~ k = 10. $ |
We take sufficiently large initial data
$\mathring{I}_1 = \mathring{I}_2 = \mathring{I}_3 = 9999, ~~~~\mathring{S} = 3, ~~~~\mathring{R} = 0.$ |
To see the threshold phenomena for
Note that in Proposition 1, we rigorously obtained that the final size of the rumor
In Figure 2, we plotted the densities of the spreaders (S) and the stiflers (R) with respect to several
In Figure 3, we plotted
From our analytic results, we can expect that the threshold occurs when
In this paper, we consider the rumor spreading model with the trust rate distribution. The model consists of several ignorants with trust rates
[1] |
Nishimura N, Sasaki T (2008) Regulation of epithelial cell adhesion and repulsion: role of endocytic recycling. J Med Invest 55: 9–15. doi: 10.2152/jmi.55.9
![]() |
[2] | Sheetz MP, Felsenfeld DP, Galbraith CG (1998) Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol 8: 51–54. |
[3] |
Koohestani F, Braundmeier AG, Mahdian A, et al. (2013) Extracellular matrix collagen alters cell proliferation and cell cycle progression of human uterine leiomyoma smooth muscle cells. PLOS ONE 8: e75844. doi: 10.1371/journal.pone.0075844
![]() |
[4] |
Philp D, Chen SS, Fitzgerald W, et al. (2005) Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells 23: 288–296. doi: 10.1634/stemcells.2002-0109
![]() |
[5] |
Farrelly N, Lee YJ, Oliver J, et al. (1999) Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. J Cell Biol 144: 1337–1347. doi: 10.1083/jcb.144.6.1337
![]() |
[6] |
Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196: 395–406. doi: 10.1083/jcb.201102147
![]() |
[7] |
Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Reports 15: 1243–1253. doi: 10.15252/embr.201439246
![]() |
[8] | Ulrich TA, Pardo EMDJ, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69: 4167–74. |
[9] |
Yeung T, Georges PC, Flanagan LA, et al. (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskel 60: 24–34. doi: 10.1002/cm.20041
![]() |
[10] |
Tilghman WR, Blais EM, Cowan CR, et al. (2012) Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis. PLOS ONE 7: e37231. doi: 10.1371/journal.pone.0037231
![]() |
[11] |
Pathak A, Kumar S (2012) Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc Natl Acad Sci U S A 109: 10334–10339 doi: 10.1073/pnas.1118073109
![]() |
[12] |
Liu J, Tan Y, Zhang H, et al. (2012) Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mat 11: 734–741. doi: 10.1038/nmat3361
![]() |
[13] |
Ghosh K, Ingber DE (2007) Micromechanical control of cell and tissue development: Implications for tissue engineering. Advan Drug Deliv Rev 59: 1306–1318. doi: 10.1016/j.addr.2007.08.014
![]() |
[14] |
Eshraghi S, Das S (2012) Micromechanical finite element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone: hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater 8: 3138–3143. doi: 10.1016/j.actbio.2012.04.022
![]() |
[15] | Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2: 347−360. |
[16] |
Peer D, Karp JM, Hong S, et al. (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotech 2: 751–760. doi: 10.1038/nnano.2007.387
![]() |
[17] | Krishnan V, Xu X, Barwe SP, et al. (2013) Dexamethasone-loaded block copolymer nanoparticles induce leukemia cell death and enhance therapeutic efficacy: A novel application in pediatric nanomedicine. Mol Pharmaceutics 10: 2199−2210. |
[18] |
Pathak A, Kumar S (2013) Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm 447: 94–101. doi: 10.1016/j.ijpharm.2013.02.042
![]() |
[19] |
Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer: Polycaprolactone in the 21st century. Progress in Polymer Sci 35: 1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002
![]() |
[20] | Abedalwafa M, Wang F, Wang L, et al. (2013) Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 34: 123–140. |
[21] |
Rie JV, Declercq H, Hoorick JV, et al. (2015) Cryogel-PCL combination scaffolds for bone tissue repair. J Mater Sci Mater Med 26:123. doi: 10.1007/s10856-015-5465-8
![]() |
[22] |
Uto K, Muroya T, Okamoto M, et al. (2012) Design of super-elastic biodegradable scaffolds with longitudinally oriented microchannels and optimization of the channel size for schwann cell migration. Sci Technol Adv Mater 13: 064207. doi: 10.1088/1468-6996/13/6/064207
![]() |
[23] |
Uto K, Yamamoto K, Hirase S, et al. (2006) Temperature-responsive cross-linked poly(ε-caprolactone) membrane that functions near body temperature. J Control Release 110: 408–413. doi: 10.1016/j.jconrel.2005.10.024
![]() |
[24] |
Ebara M, Uto K, Idota N, et al. (2012) Shape-memory surface with dynamically tunable nano-geometry activated by body heat. Adv Mater 24: 273–278. doi: 10.1002/adma.201102181
![]() |
[25] |
Versaevel M, Grevesse T, Gabriele S (2012) Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun 3: 671. doi: 10.1038/ncomms1668
![]() |
[26] |
Forte G, Pagliari S, Ebara M, et al. (2012) Substrate stiffness modulates gene expression and phenotype in neonatal cardiomyocytes in vitro. Tissue Eng Part A 18: 1837–1848. doi: 10.1089/ten.tea.2011.0707
![]() |
[27] |
Romanazzo S, Forte G, Ebara M, et al. (2012) Substrate stiffness affects skeletal myoblast differentiation in vitro. Sci Technol Adv Mater 13: 064211. doi: 10.1088/1468-6996/13/6/064211
![]() |
[28] |
Uto K, Ebara M, Aoyagi T (2014) Temperature-responsive poly(ε-caprolactone) cell culture platform with dynamically tunable nano-roughness and elasticity for control of myoblast morphology. Int J Mol Sci 15: 1511–1524. doi: 10.3390/ijms15011511
![]() |
[29] |
Sell SA, Wolfe PS, Garg K (2010) The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers 2: 522–553. doi: 10.3390/polym2040522
![]() |
[30] | Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. European Cells and Mat 5: 1–16. |
[31] |
Breuls RGM, Jiya TU, Smit TH (2008) Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering. Open Orthopedics 2: 103–109. doi: 10.2174/1874325000802010103
![]() |
[32] | Park JS, Chu JS, Tsou AD (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-b. Biomaterials 32: 3921–3930. |
[33] | Ni Y, Chiang MYM (2007) Cell morphology and migration linked to substrate rigidity. Soft Matter 3: 1285–1292. |
[34] | Yeung T, Georges PC, Flanagan LA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60: 24–34. |
[35] | Tilghman RW, Cowan CR, Mih JD, et al. (2010) Matrix rigidity regulates cancer cell growth and cellular phenotype. PLOS ONE 5: 9. |
[36] |
Wozniak MA, Modzelewska K, Kwong L, et al. (2004) Focal adhesion regulation of cell behavior. Biochim Biophys Acta 1692: 103–119. doi: 10.1016/j.bbamcr.2004.04.007
![]() |
[37] |
Kroemer G, Galluzzi L, Vandenabeele P, et al. (2009) Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 16: 3–11. doi: 10.1038/cdd.2008.150
![]() |
[38] |
Campisi J, Fagagna FDD (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8: 729–740. doi: 10.1038/nrm2233
![]() |
[39] | Chen QM, Liu J, Merrett JB (2000) Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J 15: 543–551. |
[40] |
Assoian RK, Klein EA (2008) Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol 18: 347–352. doi: 10.1016/j.tcb.2008.05.002
![]() |
[41] | Vicencio JM, Galluzzi L, Tajeddine N, et al. (2008) Senescence, apoptosis or autophagy? when a damaged cell must decide its path- A mini review. Gerontology 54: 92–99. |
[42] |
Johnson DG, Walker CL (1999) Cyclins and cell cycle checkpoints. Annu Rev Pharm Tox 39: 295–312. doi: 10.1146/annurev.pharmtox.39.1.295
![]() |
[43] | Davis PK, Ho A, Dowdy SF (2001) Biological methods for cell-cycle synchronization of mammalian cells. Bio Techniques 30: 1322–1331. |
[44] | Tian Y, Luo C, Lu Y, et al. (2012) Cell cycle synchronization by nutrient modulation, Integr Biol (Camb) 4: 328–334. |
[45] |
Lee WC, Bhagat AAS, Huang S, et al. (2011) High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11: 1359–1367. doi: 10.1039/c0lc00579g
![]() |
[46] |
Chen M, Huang J, Yang X, et al. (2012) Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming. PLOS ONE 7: e28203. doi: 10.1371/journal.pone.0028203
![]() |
[47] | Gstraunthaler G (2003) Alternatives to the use of fetal bovine serum: Serum-free cell culture, ALTEX 20: 275–281. |
[48] |
Eric AK, Liqun Y, Devashish K, et al. (2009) Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 19: 1511–1518. doi: 10.1016/j.cub.2009.07.069
![]() |
[49] | Özdemir O (2011) Negative impact of paclitaxel crystallization on hydrogels and novel approaches for anticancer drug delivery systems, Current cancer treatment- Novel beyond conventional approaches. In Tech Open, Croatia 767–782 |
[50] |
Chiang PC, Goul S, Nannini M (2014) Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity. Nanoscale Res Lett 9: 156. doi: 10.1186/1556-276X-9-156
![]() |
[51] |
Liebmann JE, Cook JA, Lipschultz C, et al. (1993) Cytotoxic studies of pacfitaxel (Taxol®) in human tumour cell lines. Br J Cancer 68: 1104–1109. doi: 10.1038/bjc.1993.488
![]() |
1. | Carlos Ballester, Camilla Vote, John Hornbuckle, Thavone Inthavong, Vanndy Lim, Chantha Oeurng, Wendy Quayle, Vang Seng, Pheng Sengxua, Vorachith Sihathep, Veasna Touch, Philip Eberbach, Effects of Frequency of Irrigation on Dry-Season Furrow-Irrigated Maize and Peanut Production in the Rice-Growing Lowlands of the Lower Mekong Basin, 2019, 9, 2077-0472, 128, 10.3390/agriculture9060128 | |
2. | Hao Yuan Chan, Sarina Abdul Halim-Lim, Tai Boon Tan, Nitty Hirawaty Kamarulzaman, Adi Ainurzaman Jamaludin, Wan Abd Al Qadr Imad Wan-Mohtar, Exploring the Drivers and the Interventions towards Sustainable Food Security in the Food Supply Chain, 2020, 12, 2071-1050, 7890, 10.3390/su12197890 | |
3. | Abha Mishra, Jan Willem Ketelaar, Norman Uphoff, Max Whitten, Food security and climate-smart agriculture in the lower Mekong basin of Southeast Asia: evaluating impacts of system of rice intensification with special reference to rainfed agriculture, 2021, 1473-5903, 1, 10.1080/14735903.2020.1866852 | |
4. | Thi Bui, Huu Tran, Hossein Azadi, Philippe Lebailly, Improving the Technical Efficiency of Sengcu Rice Producers through Better Financial Management and Sustainable Farming Practices in Mountainous Areas of Vietnam, 2018, 10, 2071-1050, 2279, 10.3390/su10072279 | |
5. | Muhammad Shahbaz Farooq, Hira Fatima, Obaid Ur Rehman, Muhammad Yousuf, Rabia Kalsoom, Sajid Fiaz, Muhammad Ramzan Khan, Muhammad Uzair, Shuhao Huo, Major challenges in widespread adaptation of aerobic rice system and potential opportunities for future sustainability, 2023, 159, 02546299, 231, 10.1016/j.sajb.2023.06.017 | |
6. | Yun-Ho Lee, Seong-Woo Cho, Tae-Young Hwang, On-Farm Assessment of the System of Rice Intensification (SRI) Under Rainfed Lowland Fields of Southern Cambodia, 2024, 36, 1225-8504, 63, 10.12719/KSIA.2024.36.1.63 |