Citation: J. Appelbaum. A static multiple detector solar radiation sensor[J]. AIMS Energy, 2020, 8(5): 802-818. doi: 10.3934/energy.2020.5.802
[1] | Ee Sann Tan, Kumaran Palanisamy, Teuku Meurah Indra Mahlia, Kunio Yoshikawa . Performance and emission study on waste cooking oil biodiesel and distillate blends for microturbine application. AIMS Energy, 2015, 3(4): 798-809. doi: 10.3934/energy.2015.4.798 |
[2] | Sunbong Lee, Shaku Tei, Kunio Yoshikawa . Properties of chicken manure pyrolysis bio-oil blended with diesel and its combustion characteristics in RCEM, Rapid Compression and Expansion Machine. AIMS Energy, 2014, 2(3): 210-218. doi: 10.3934/energy.2014.3.210 |
[3] | Shemelis Nigatu Gebremariam, Jorge Mario Marchetti . Biodiesel production technologies: review. AIMS Energy, 2017, 5(3): 425-457. doi: 10.3934/energy.2017.3.425 |
[4] | Hussein A. Mahmood, Ali O. Al-Sulttani, Hayder A. Alrazen, Osam H. Attia . The impact of different compression ratios on emissions, and combustion characteristics of a biodiesel engine. AIMS Energy, 2024, 12(5): 924-945. doi: 10.3934/energy.2024043 |
[5] | Dejene Beyene, Dejene Bekele, Bezu Abera . Biodiesel from blended microalgae and waste cooking oils: Optimization, characterization, and fuel quality studies. AIMS Energy, 2024, 12(2): 408-438. doi: 10.3934/energy.2024019 |
[6] | Tien Duy Nguyen, Trung Tran Anh, Vinh Tran Quang, Huy Bui Nhat, Vinh Nguyen Duy . An experimental evaluation of engine performance and emissions characteristics of a modified direct injection diesel engine operated in RCCI mode. AIMS Energy, 2020, 8(6): 1069-1087. doi: 10.3934/energy.2020.6.1069 |
[7] | Yadessa Gonfa Keneni, Jorge Mario Marchetti . Oil extraction from plant seeds for biodiesel production. AIMS Energy, 2017, 5(2): 316-340. doi: 10.3934/energy.2017.2.316 |
[8] | Lihao Chen, Hu Wu, Kunio Yoshikawa . Research on upgrading of pyrolysis oil from Japanese cedar by blending with biodiesel. AIMS Energy, 2015, 3(4): 869-883. doi: 10.3934/energy.2015.4.869 |
[9] | Quoc Dang Tran, Thanh Nhu Nguyen, Vinh Nguyen Duy . Effect of piston geometry design and spark plug position on the engine performance and emission characteristics. AIMS Energy, 2023, 11(1): 156-170. doi: 10.3934/energy.2023009 |
[10] | Charalambos Chasos, George Karagiorgis, Chris Christodoulou . Technical and Feasibility Analysis of Gasoline and Natural Gas Fuelled Vehicles. AIMS Energy, 2014, 2(1): 71-88. doi: 10.3934/energy.2014.1.71 |
To understand in a clear way the notions used in our main results, we need to add here some basic literature of Geometric function theory. For this we start first with the notation A which denotes the class of holomorphic or analytic functions in the region D={z∈C:|z|<1} and if a function g∈A, then the relations g(0)=g′(0)−1=0 must hold. Also, all univalent functions will be in a subfamily S of A. Next we consider to define the idea of subordinations between analytic functions g1 and g2, indicated by g1(z)≺g2(z), as; the functions g1,g2∈A are connected by the relation of subordination, if there exists an analytic function w with the restrictions w(0)=0 and |w(z)|<1 such that g1(z)=g2(w(z)). Moreover, if the function g2∈S in D, then we obtain:
g1(z)≺g2(z)⇔[g1(0)=g2(0) & g1(D)⊂g1(D)]. |
In 1992, Ma and Minda [16] considered a holomorphic function φ normalized by the conditions φ(0)=1 and φ′(0)>0 with Reφ>0 in D. The function φ maps the disc D onto region which is star-shaped about 1 and symmetric along the real axis. In particular, the function φ(z)=(1+Az)/(1+Bz), (−1≤B<A≤1) maps D onto the disc on the right-half plane with centre on the real axis and diameter end points 1−A1−B and 1+A1+B. This interesting familiar function is named as Janowski function [10]. The image of the function φ(z)=√1+z shows that the image domain is bounded by the right-half of the Bernoulli lemniscate given by |w2−1|<1, [25]. The function φ(z)=1+43z+23z2 maps D into the image set bounded by the cardioid given by (9x2+9y2−18x+5)2−16(9x2+9y2−6x+1)=0, [21] and further studied in [23]. The function φ(z)=1+sinz was examined by Cho and his coauthors in [3] while φ(z)=ez is recently studied in [17] and [24]. Further, by choosing particular φ, several subclasses of starlike functions have been studied. See the details in [2,4,5,11,12,14,19].
Recently, Ali et al. [1] have obtained sufficient conditions on α such that
1+zg′(z)/gn(z)≺√1+z⇒g(z)≺√1+z,for n=0,1,2. |
Similar implications have been studied by various authors, for example see the works of Halim and Omar [6], Haq et al [7], Kumar et al [13,15], Paprocki and Sokól [18], Raza et al [20] and Sharma et al [22].
In 1994, Hayman [8] studied multivalent (p-valent) functions which is a generalization of univalent functions and is defined as: an analytic function g in an arbitrary domain D⊂C is said to be p-valent, if for every complex number ω, the equation g(z)=ω has maximum p roots in D and for a complex number ω0 the equation g(z)=ω0 has exactly p roots in D. Let Ap (p∈N={1,2,…}) denote the class of functions, say g∈Ap, that are multivalent holomorphic in the unit disc D and which have the following series expansion:
g(z)=zp+∞∑k=p+1akzk, (z∈D). | (1.1) |
Using the idea of multivalent functions, we now introduce the class SL∗p of multivalent starlike functions associated with lemniscate of Bernoulli and as given below:
SL∗p={g(z)∈Ap:zg′(z)pg(z)≺√1+z, (z∈D)}. |
In this article, we determine conditions on α such that for each
1+αz2+p(j−1)g′(z)pgj(z), for each j=0,1,2,3, |
are subordinated to Janowski functions implies g(z)zp≺√1+z, (z∈D). These results are then utilized to show that g are in the class SL∗p.
Let w be analytic non-constant function in D with w(0)=0. If
|w(z0)|=max{|w(z)|, |z|≤|z0|}, z∈D, |
then there exists a real number m (m≥1) such that z0w′(z0)=mw(z0).
This Lemma is known as Jack's Lemma and it has been proved in [9].
Let g∈Ap and satisfying
1+αz1−pg′(z)p≺1+Az1+Bz, |
with the restriction on α is
|α|≥232p(A−B)1−|B|−4p(1+|B|). | (2.1) |
Then
g(z)zp≺√1+z. |
Proof
Let us define a function
p(z)=1+αz1−pg′(z)p, | (2.2) |
where the function p is analytic in D with p(0)=1. Also consider
g(z)zp=√1+w(z). | (2.3) |
Now to prove our result we will only require to prove that |w(z)|<1. Logarithmically differentiating (2.3) and then using (2.2), we get
p(z)=1+αzw′(z)2p√1+w(z)+α√1+w(z), |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p√1+w(z)+α√1+w(z)A−B(1+αzw′(z)2p√1+w(z)+α√1+w(z))|=|αzw′(z)+2pα(1+w(z))2p(A−B)√1+w(z)−B(αzw′(z)+2pα(1+w(z)))|. |
Now, we suppose that a point z0∈D occurs such that
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Also by Lemma 1.1, a number m≥1 exists with z0w′(z0)=mw(z0). In addition, we also suppose that w(z0)=eiθ for θ∈[−π,π]. Then we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)−2pα(1+w(z0))2p(A−B)√1+w(z0)−B(αmw(z0)+2pα(1+w(z0)))|,≥|α|m−2p|α|(|1+eiθ|)2p(A−B)√|1+eiθ|+|B|(|α|m+2pα|1+eiθ|),≥|α|m−4p|α|232p(A−B)+|B||α|(m+4p). |
Now if
ϕ(m)=|α|(m−4p)232p(A−B)+|B||α|(m+4p), |
then
ϕ′(m)=232p(A−B)|α|+8|α|2p|B|(232p(A−B)+|B||α|(m+4p))2>0, |
which illustrates that the function ϕ(m) is increasing and hence ϕ(m)≥ϕ(1) for m≥1, so
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)232p(A−B)+|B||α|(1+4p). |
Now, by using (2.1), we have
|p(z0)−1A−Bp(z0)|≥1 |
which contradicts the fact that p(z)≺1+Az1+Bz. Thus |w(z)|<1 and so we get the desired result.
Taking g(z)=zp+1f′(z)pf(z) in the last result, we obtain the following Corollary:
Let f∈Ap and satisfying
1+αzf′(z)p2f(z)(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, | (2.4) |
with the condition on α is
|α|≥232p(A−B)1−|B|−4p(1+|B|). |
Then f∈SL∗p.
If g∈Ap such that
1+αpzg′(z)g(z)≺1+Az1+Bz, | (2.5) |
with
|α|≥8p(A−B)1−|B|−4p(1+|B|), | (2.6) |
then
g(z)zp≺√1+z. |
Proof
Let us choose a function p by
p(z)=1+αzg′(z)pg(z), |
in such a way that p is analytic in D with p(0)=1. Also consider
g(z)zp=√1+w(z). |
Using some simple calculations, we obtain
p(z)=1+αzw′(z)2p(1+w(z))+α, |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p(1+w(z))+αA−B(1+αzw′(z)2p(1+w(z))+α)|=|αzw′(z)+2pα(1+w(z))2p(A−B)(1+w(z))−B(αzw′(z)+2pα(1+w(z)))|. |
Let a point z0∈D exists in such a way
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Then, by virtue of Lemma 1.1, a number m≥1 occurs such that z0w′(z0)=mw(z0). In addition, we set w(z0)=eiθ, so we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(A−B)(1+w(z0))−B(αmw(z0)+2pα(1+w(z0)))|,≥|α|m−2p|α||1+eiθ|2(A−B)|1+eiθ|+|B||α|m+2p|B||α||1+eiθ|,=|α|m−2p|α|√2+2cosθ2(2(A−B)+|B||α|)p√2+2cosθ+|B||α|m,≥|α|(m−4p)4p(2(A−B)+|B||α|)+|B||α|m. |
Now let
ϕ(m)=|α|(m−4p)4p(2(A−B)+|B||α|)+|B||α|m, |
it implies
ϕ′(m)=|α|8p((A−B)+|α||B|)(4p(2(A−B)+|B||α|)+|B||α|m)2>0, |
which illustrates that the function ϕ(m) is increasing and so ϕ(m)≥ϕ(1) for m≥1, hence
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)4p(2(A−B)+|B||α|)+|B||α|. |
Now, by using (2.6), we have
|p(z0)−1A−Bp(z0)|≥1, |
which contradicts (2.5). Thus |w(z)|<1 and so the desired proof is completed.
Putting g(z)=zp+1f′(z)pf(z) in last Theorem, we get the following Corollary:
If f∈Ap and satisfying
1+αp(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, |
with
|α|≥8p(A−B)1−|B|−4p(1+|B|), |
then f∈SL∗p.
If g∈Ap and satisfy the subordination relation
1+αz1−pg′(z)p(g(z))2≺1+Az1+Bz, | (2.7) |
with the condition on α
|α|≥252p(A−B)1−|B|−4p(1+|B|) | (2.8) |
is true, then
g(z)zp≺√1+z. |
Proof
Let us define a function
p(z)=1+αz1−pg′(z)p(g(z))2. |
Then p is analytic in D with p(0)=1. Also let us consider
g(z)zp=√1+w(z). |
Using some simplification, we obtain
p(z)=1+αzw′(z)2p(1+w(z))32+α√1+w(z), |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p(1+w(z))32+α√1+w(z)A−B(1+αzw′(z)2p(1+w(z))32+α√1+w(z))|=|αzw′(z)+2pα(1+w(z))2p(A−B)(1+w(z))32−Bαzw′(z)−2pαB(1+w(z))|. |
Let us choose a point z0∈D such a way that
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Then, by the consequences of Lemma 1.1, a number m≥1 occurs such that z0w′(z0)=mw(z0) and also put w(z0)=eiθ,for θ∈[−π,π], we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(A−B)(1+w(z0))32−Bαmw(z0)−2pαB(1+w(z0))|,≥|α|m−2p|α||1+eiθ|2p(A−B)|1+eiθ|32+|B||α|m+2p|α||B||1+eiθ|,=|α|m−4p|α|252p(A−B)+|B||α|m+4p|α||B|,≥|α|(m−4p)252p(A−B)+|B||α|m+4p|α||B|=ϕ(m) (say). |
Then
ϕ′(m)=252p(A−B)+8|α|2|B|p(252p(A−B)+B|α|m+4p|α|B)2>0, |
which demonstrates that the function ϕ(m) is increasing and thus ϕ(m)≥ϕ(1) for m≥1, hence
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)252p(A−B)+|B||α|+4p|α||B|. |
Now, using (2.8), we have
|p(z0)−1A−Bp(z0)|≥1, |
which contradicts (2.7). Thus |w(z)|<1 and so we get the required proof.
If we set g(z)=zp+1f′(z)pf(z) in last theorem, we easily have the following Corollary:
Assume that
|α|≥252p(A−B)1−|B|−4p(1+|B|), |
and if f∈Ap satisfy
1+αf(z)z2p+1f′(z)(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, |
then f∈SL∗p.
If g∈Ap satisfy the subordination
1+αz1−2pg′(z)p(g(z))3≺1+Az1+Bz, |
with restriction on α is
|α|≥8p(A−B)1−|B|−4p(1+|B|). | (2.9) |
then
g(z)zp≺√1+z. |
Proof. Let us define a function
p(z)=1+αz1−2pg′(z)p(g(z))3, |
where p is analytic in D with p(0)−1=0. Also let
g(z)zp=√1+w(z). |
Using some simple calculations, we obtain
p(z)=1+αzw′(z)2p(1+w(z))2+α1+w(z), |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p(1+w(z))2+α1+w(z)A−B(1+αzw′(z)2p(1+w(z))2+α1+w(z))|=|αzw′(z)+2pα(1+w(z))2p(A−B)(1+w(z))2−Bαzw′(z)−2pαB(1+w(z))|. |
Let us pick a point z0∈D in such a way that
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Then, by using Lemma 1.1, a number m≥1 exists such that z0w′(z0)=mw(z0) and put w(z0)=eiθ, for θ∈[−π,π], we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(A−B)(1+w(z0))2−Bαmw(z0)−2pαB(1+w(z0))|≥|α|m−2p|α||1+eiθ|2p(A−B)|1+eiθ|2+|B||α|m+2p|α||B||1+eiθ|=|α|m−2p|α|√2+2cosθ2p(A−B)(√2+2cosθ)2+|B||α|m+2p|α||B|√2+2cosθ≥|α|(m−4p)8p(A−B)+|B||α|m+4p|α||B|, |
Now let
ϕ(m)=|α|(m−4p)8p(A−B)+|B||α|m+4p|α||B|, |
then
ϕ′(m)=8p|α|(A−B)+8|α|2|B|p(8p(A−B)+|B||α|m+4p|α||B|)2>0 |
which shows that ϕ(m) is an increasing function and hence it will have its minimum value at m=1, so
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)8p(A−B)+|B||α|+4p|α||B|. |
Using (2.9), we easily obtain
|p(z0)−1A−Bp(z0)|≥1, |
which is a contradiction to the fact that p(z)≺1+Az1+Bz, and so |w(z)|<1. Hence we get the desired result.
If we put g(z)=zp+1f′(z)pf(z) in last Theorem, we achieve the following result:
If f∈Ap and satisfy the condition
|α|≥8p(A−B)1−|B|−4p(1+|B|), |
and
1+αp(f(z))2z3p+2(f′(z))2(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, |
then f∈SL∗p.
All authors declare no conflict of interest in this paper.
[1] |
Faiman D, Feuermann D, Ibbetson P, et al. (1992) A multipyranometer instrument for obtaining the solar beam and diffuse components, and the irradiance on inclined planes. Sol Energy 48: 253-259. doi: 10.1016/0038-092X(92)90099-V
![]() |
[2] |
Curtis P (1993) An analysis of methods for deriving the constituent insolation components from multipyranometer array measurements. J Sol Energy Eng 115: 11-21. doi: 10.1115/1.2930018
![]() |
[3] |
Hamalainen M, Nurkkanen P, Slaen T (1985) A multisensory pyranometer for determination of the direct component and angular distribution of solar radiation. Sol Energy 35: 511-525. doi: 10.1016/0038-092X(85)90120-3
![]() |
[4] |
Appelbaum J, Bergshtein O (1987) Solar radiation distribution Sensor. Sol Energy 39: 1-10. doi: 10.1016/S0038-092X(87)80046-4
![]() |
[5] |
Imamura M, Helm P (1992) A novel method of monitoring global normal irradiance with a stationary sensor. Int J Sol Energy 11: 211-217. doi: 10.1080/01425919208909741
![]() |
[6] | Heisterkamp N, Orthjohann E, Voss J (1994) A multi-purpose irradiance measuring system. 12th European photovoltaic solar Energy conference, Amsterdam, The Netherlans. |
[7] |
Appelbaum J, Weiss Y (1999) The packing of circles on a hemisphere. Meas Sci Technol 10: 1015-1019. doi: 10.1088/0957-0233/10/11/307
![]() |
[8] |
Bany J, Appelbaum J (1987) The effect of shading on the design of a field of solar collectors. Sol Cells 20: 201-228. doi: 10.1016/0379-6787(87)90029-9
![]() |
[9] |
Temp RC, Coulson KL (1977) Solar radiation incident upon slopes of different orientations. Sol Energy 19: 179-184. doi: 10.1016/0038-092X(77)90056-1
![]() |
[10] | Klucher TM (1979) Evaluation of models to predict insolation on tilted surfaces. Sol Energy 23: 111-114. |
[11] |
Perez R, Ineichen P, Seal P, et al. (1990) Modeling daylight availability and irradiance componens from direct and global irradiance. Sol Energy 44: 271-289. doi: 10.1016/0038-092X(90)90055-H
![]() |
1. | Gurmeet Singh Gahir, Surendrapal Singh Matharu, D.A. Joshi, N.B. Ibrahim, D.M. Sangeetha, Characterization of Non-Edible Oil for Development of Stable Industrial Lubricant, 2023, 405, 2267-1242, 04045, 10.1051/e3sconf/202340504045 | |
2. | Thuy T. Cao, Xuan-Nang Ho, Vinh Nguyen Duy, Biodiesel from Jatropha curcas seed oil: Status, perspectives, and challenges in Southeast Asia, 2023, 1556-5068, 10.2139/ssrn.4589941 |