Citation: Sa Xu. International comparison of green credit and its enlightenment to China[J]. Green Finance, 2020, 2(1): 75-99. doi: 10.3934/GF.2020005
[1] | Xudong Shang . Normalized ground states to the nonlinear Choquard equations with local perturbations. Electronic Research Archive, 2024, 32(3): 1551-1573. doi: 10.3934/era.2024071 |
[2] | Xiaoguang Li . Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189 |
[3] | Xiaoli Wang, Peter Kloeden, Meihua Yang . Asymptotic behaviour of a neural field lattice model with delays. Electronic Research Archive, 2020, 28(2): 1037-1048. doi: 10.3934/era.2020056 |
[4] | Ping Yang, Xingyong Zhang . Existence of nontrivial solutions for a poly-Laplacian system involving concave-convex nonlinearities on locally finite graphs. Electronic Research Archive, 2023, 31(12): 7473-7495. doi: 10.3934/era.2023377 |
[5] | Senli Liu, Haibo Chen . Existence and asymptotic behaviour of positive ground state solution for critical Schrödinger-Bopp-Podolsky system. Electronic Research Archive, 2022, 30(6): 2138-2164. doi: 10.3934/era.2022108 |
[6] | Hui Jian, Min Gong, Meixia Cai . Global existence, blow-up and mass concentration for the inhomogeneous nonlinear Schrödinger equation with inverse-square potential. Electronic Research Archive, 2023, 31(12): 7427-7451. doi: 10.3934/era.2023375 |
[7] | Shuai Yuan, Sitong Chen, Xianhua Tang . Normalized solutions for Choquard equations with general nonlinearities. Electronic Research Archive, 2020, 28(1): 291-309. doi: 10.3934/era.2020017 |
[8] | Haijun Luo, Zhitao Zhang . Existence and stability of normalized solutions to the mixed dispersion nonlinear Schrödinger equations. Electronic Research Archive, 2022, 30(8): 2871-2898. doi: 10.3934/era.2022146 |
[9] | Zhiyan Ding, Hichem Hajaiej . On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29(5): 3449-3469. doi: 10.3934/era.2021047 |
[10] | Chungen Liu, Huabo Zhang . Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electronic Research Archive, 2021, 29(5): 3281-3295. doi: 10.3934/era.2021038 |
In the present paper, we proved the existence of a ground state solution of the following nonlinear Choquard equation
{−Δu+V(x)u=(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|p−2u x∈ZN,u∈H1(ZN), | (1.1) |
on lattice graph ZN. This equation can be viewed as a discrete version of the following Choquard equation
−Δu+V(x)u=(Iα∗|u|p)|u|p−2u x∈RN, | (1.2) |
where α∈(0,N), p>1 and Iα:RN→R is the Riesz potential defined at x∈RN∖{0} by
Iα(x)=Aα|x|N−αandAα=Γ(N−α2)Γ(α2)πN/22α, |
with Γ being the Euler gamma function.
In the past few decades, many mathematicians have been devoted to studying the Eq (1.2), for example, see [1,2,3,4,5,6]. In particular, if N=3, V=1 and p=2, i.e., −Δu+u=(I2∗|u|2)u, appeared in the literature at least as early as in 1954's work by Pekar on quantum theory of a Polaron at rest [7]. Later in the 1970s, Choquard utilized model (1.2) to describe an electron caught in its own hole, in an approximation to Hartree-Fock theory of one-component plasma [1]. Particularly, the equation is also knows as the Schrödinger-Newton equation, which was used to a model of self-gravitating matter [8]. Also, the article [9] used this system to study the pseudo-relativistic boson stars. In a pioneering work, Lieb [1] proved the existence and uniqueness of the ground state to the Eq (1.2) in R3 with V=1, α=2 and p=2. In the paper [3], Moroz and Van Schaftingen first obtained the sharp range of the parameter for the existence of solutions of the Eq (1.2) with N+αN<p<N+αN−2. If V is the periodic function, since the nonlocal term is invariant under translation, the paper [10] got the existence results. Furthermore, Alves [11] proved the existence and convergence of nontrivial solutions of the nonlocal Choquard equation. There are tremendous results on this direction in [12,13,14,15,16,17,18] and the references therein.
On the other hand, the analysis on the graph has become more and more popular, for example, see [19,20,21,22,23,24,25,26,27]. In a series of work of Grigor'yan et al. [19,20,21], they studied the Yamabe type equations, Kazdan-Warner equation and some other nonlinear equations on graph by using the variational methods. In [27], Zhang and Zhao investigated the existence of nontrivial solution of the equation −Δu+(λa(x)+1)u=|u|p−1u on the locally finite graphs by using Nehari methods (see [28]) and the asymptotic properties of the solution. Later, the paper [22] generalized the results of [27] to higher order. Furthermore, Hua and Xu [] obtained the existence results of nonlinear equation −Δu+V(x)u=f on the lattice graph ZN. Recently, Huang et al. investigated extensively the Mean field equation and the relativistic Abelian Chern-Simons equations on the finite graphs by using the variational method in [23]. For other related results about the graph, we refer the reader to [29,30,31,32,33,34] and references therein.
Inspired by the poineering works, in this paper we study the existence and asymptotical behavior of solution for the Choquard equation (1.2) on the lattice graph ZN. For clarity, let us introduce the basic setting on the lattice graph ZN. The graph ZN consists of the set of vertices
V={x=(x1,⋯,xN):xi∈Z,1≤i≤N}, |
and the set of edges
E={{x,y}:x,y∈ZN,N∑i=1|xi−yi|=1}. |
For any two vertices x,y∈ZN, the distance d(x,y) between them is defined by
d(x,y):=inf{k:x=x1∼x2∼…∼xk=y}, |
where we write y∼x if and only if the edge {x,y}∈E. Assume Ω⊂ZN, we say Ω is bounded if d(x,y) is uniformly bounded for any x,y∈Ω. It is easy for us to see that a bounded domain of ZN can contain only finite vertices. We denote the boundary of Ω is
∂Ω:={y∉Ω:∃x∈Ωsuch that xy∈E}. |
C(ZN) denotes the set of real-valued functions on ZN. For any u∈C(ZN), its support set is defined as supp(u)={x∈ZN,u(x)≠0}. Let Cc(ZN) denote the set of all functions of finite support. We can define the associated gradient for any function u,v∈C(ZN) by
Γ(u,v)(x):=∑y∼x12(u(y)−u(x))(v(y)−v(x)). |
In particular, let Γ(u)=Γ(u,u) for simplicity. The length of the gradient of u is written by
|∇u|(x):=√Γ(u)(x)=(∑y∼x12(u(y)−u(x))2)1/2. |
Let μ be the counting measure on ZN, i.e., for any subset A⊂ZN, μ(A):= #{x:x∈A}. For any function f on ZN, we write
∫ZNfdμ:=∑x∈ZNf(x), |
whenever it makes sense. ℓp is a space endowed with the norm
‖u‖ℓp(ZN):={(∑x∈ZN|u(x)|p)1p1≤p<∞.supx∈ZN|u(x)|p=∞. |
Assume u∈C(ZN), the Laplacican on ZN is defined as
Δu=∑y∼x(u(y)−u(x)). |
The inner product of the Hilbert space H1(ZN) is given by
⟨u,v⟩:=∫ZN(Γ(u,v)+uv)dμ=∫ZN(∇u∇v+uv)dμ. |
Therefore, the corresponding norm reads
‖u‖H1(ZN)=(∫ZN(|∇u|2+u2)dμ)12. |
For a bounded uniformly positive function V:ZN→R, it is natural for us to consider the equivalent norm in H1(ZN) as
‖u‖2:=∫ZN(|∇u|2+V(x)u2)dμ. |
Then we have the conclusions for the Eq (1.1).
Theorem 1.1. Let N∈N∗, α∈(0,N) and p∈(N+αN,∞). Suppose that V(x):ZN→R satisfies the conditions:
(i) V is bounded uniformly positive, i.e. there exist constant C1,C2>0 satisfying C1<V(x)<C2 for any x∈ZN.
(ii) V is T-periodic, i.e. for the positive integer T, we have V(x+Tei)=V(x), ∀x∈ZN,1≤i≤N, where ei is the unit vector in the i-th coordinate.
Then there exists a ground state solution of (1.1).
Remark 1.2. The preceding theorem is a discrete version of the results in [3]. As in the paper [24], we use the Concentration-Compactness Principle (P. L. Lions [35,36]) to recover the compactness and prove the existence of ground state solution of (1.1). Interestingly, since the discreteness of the graph, the Sobolev embedding on the lattice graph is different from that in the continuous setting, which allows us to remove the upper critical exponents N+αN−α in the continuous case.
Next we turn to studying the convergence of the solution for the nonlinear Choquard equation. The results of Schrödinger type equation is already considered in the Euclidean space (see [11,37]). We may expect that the nonlocal Choquard equation on lattice graphs has some similar results. As the paper [22,27], we also consider the confining potential V=λa(x)+1, i.e.,
−Δu+(λa(x)+1)u=(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|p−2u. | (1.3) |
To study the problem (1.3), we introduce the following subspace of H1(ZN):
Eλ(ZN)={u∈H1(ZN):∫ZNλa(x)u2dμ<+∞}. |
It is easy to recognize that the scalar product of Eλ(ZN) is
⟨u,v⟩Eλ(ZN):=∫ZN(Γ(u,v)+(λa(x)+1)uv)dμ=∫ZN(∇u∇v+(λa(x)+1)uv)dμ. |
Then we have the following conclusions.
Theorem 1.3. Let N∈N∗, α∈(0,N) and p∈[N+αN,∞). Suppose that a(x):ZN→R satisfying
(A1) a(x)≥0 and the potential well Ω={x∈ZN:a(x)=0} is a non-empty, connected and bounded domain in ZN.
(A2) There exists a point x0 satisfying a(x)→∞ when d(x,x0)→∞.
Then (1.3) has a ground state solution uλ for any constant λ>1.
In order to observe the asymptotical properties of uλ as λ→∞, we first study the following Dirichlet problem.
{−Δu+u=(∑y≠xy∈Ω|u(y)|p|x−y|N−α)|u|p−2u in Ω.u=0on ∂Ω. | (1.4) |
We study the Eq (1.4) in the H10(Ω) with the norm:
‖u‖2H10(Ω):=∫Ω∪∂Ω|∇u|2dμ+∫Ωu2dμ. |
Similarly, the Eq (1.4) also possess a ground state solution.
Theorem 1.4. Let N∈N∗, α∈(0,N) and p∈(1,∞). Suppose Ω is a non-empty, connected and bounded domain in ZN. Then the Eq (1.4) has a ground state solution u∈H10(Ω).
Finally, we show that the solutions uλ of (1.3) converge to a solution of (1.4) as λ→∞ when the domain in (1.4) is the set of satisfying a(x)=0. On the other words, we obtain the following conclusions.
Theorem 1.5. Let N∈N∗, α∈(0,N) and p∈[2,∞). Assume that a(x) satisfies (A1) and (A2), then for any sequence λk→∞, up to a subsequence, the corresponding ground state solutions uλk of (1.3) converge in H1(ZN) to a ground state solution of (1.4).
The remaining parts of this paper are organized as follows. In Section 2, we give basic definitions and Lemmas on the lattice graph. In Section 3, we establish the discrete Brézis-Lieb Lemma for the nonlocal term and some important conclusions. Section 4 is devoted to proving Theorem 1.1. Then we complete the proof of Theorems 1.3 and 1.4 in Section 5. Finally, we prove Theorem 1.5 in Section 6.
In this section we give some basic results on the lattice graph. Firstly, we present the formula of integration by parts on lattice graph, which is the basic conclusion when we apply variational methods. Here we omit the concrete proofs and one can refer to [22] for more details.
Lemma 2.1. Suppose that u∈H1(ZN). Then for any v∈Cc(ZN), we obtain
∫ZN∇u⋅∇vdμ=∫ZNΓ(u,v)dμ=−∫ZNΔu⋅vdμ. | (2.1) |
Lemma 2.2. Suppose Ω⊂ZN is a bounded domain and u∈H10(Ω). Then for any v∈Cc(Ω), we have
∫Ω∪∂Ω∇u⋅∇vdμ=∫Ω∪∂ΩΓ(u,v)dμ=−∫ΩΔu⋅vdμ. | (2.2) |
Now we are ready to define the weak solution as follows.
Definition 1. Assume u∈H1(ZN). A function u is called a weak solution of (1.1) if for any φ∈H1(ZN),
∫ZN∇u∇φdμ+∫ZNV(x)uφdμ=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|p−2uφdμ. | (2.3) |
Definition 2. Assume u∈Eλ(ZN). A function u is called a weak solution of (1.3) if for any φ∈Eλ(ZN),
∫ZN∇u∇φdμ+∫ZN(λa(x)+1)uφdμ=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|p−2uφdμ. | (2.4) |
Definition 3. Assume u∈H10(Ω). A function u is called a weak solution of (1.4) if for any φ∈H10(Ω),
∫Ω∪∂Ω∇u∇φdμ+∫Ωuφdμ=∫Ω(∑y≠xy∈Ω|u(y)|p|x−y|N−α)|u|p−2uφdμ. | (2.5) |
Notice that if u is a weak solution of (1.1), we infer from Lemma 2.1 that for any test function φ∈H1(ZN),
∫ZN(−Δuφdμ+V(x)uφ)dμ=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|p−2uφdμ. | (2.6) |
For any fixed x0∈ZN, choosing a test function φ:ZN→R in (2.6) which is defined as
φ(x)={1,x=x0,0,x≠x0, |
we obtain
−Δu(x0)+V(x0)u(x0)=(∑y≠x0y∈ZN|u(y)|p|x0−y|N−α)|u(x0)|p−2u(x0), |
which implies that u is a point wise solution of (1.1). Thus, we have the following conclusion for the relationship between the weak solution and the point wise solution.
Proposition 2.3. If u is a weak solution of (1.1), then u is a point wise solution. Similarly, if u is a weak solution of (1.3) or (1.4), then u is also a point wise solution of the corresponding equation.
Finally, we state the following conclusions for the Sobolev embedding.
Lemma 2.4. ([38]) H1(ZN) is continuously embedded into ℓq(ZN) for any q∈[2,∞]. Namely, for any u∈H1(ZN), there exists a constant Cq depending only on q such that
‖u‖ℓq(ZN)≤Cq‖u‖H1(ZN). | (2.7) |
Lemma 2.5. ([27,Lemma 2.6]) Assume that λ>1 and a(x) satisfies (A1) and (A2). Then Eλ(ZN) is continuously embedded into ℓq(ZN) for any q∈[2,∞] and the embedding is independent of λ. Namely, there exists a constant Cq depending only on q such that for any u∈Eλ(ZN), ‖u‖ℓq(ZN)≤Cq‖u‖Eλ(ZN). Moreover, for any bounded sequence {uk}∈Eλ(ZN), there exists u∈Eλ(ZN) such that, up to a subsequence,
{uk⇀u in Eλ(ZN).uk(x)→u(x) ∀x∈ZN.uk→u in ℓq(ZN). |
Lemma 2.6. ([27,Lemma 2.7]) Assume that Ω is a bounded domain in ZN. Then H10(Ω) is continuously embedded into ℓq(Ω) for any q∈[1,∞]. Namely, there exists a constant Cq depending only on q such that for any u∈H10(Ω), ‖u‖ℓq(Ω)≤Cq‖u‖H10(Ω). Moreover, for any bounded sequence {uk}∈H10(Ω), there exists u∈H10(Ω) such that, up to a subsequence,
{uk⇀u in H10(Ω).uk(x)→u(x) ∀x∈Ω.uk→u in ℓq(Ω). |
In this section, we give a proof of the discrete Brézis-Lieb Lemma(see [3,39,40] for the continuous case) for the nonlocal term on the lattice graph. First, let us recall the discrete Brézis-Lieb Lemma [38] for the local case.
Lemma 3.1. ([38,Lemma 9]) Let Ω⊂ZN be a domain and {un}⊂ℓq(Ω) with 0<q<∞. If {un} is bounded in ℓq(Ω) and un→u pointwise on Ω as n→∞, then
limn→∞(‖un‖qℓq(Ω)−‖un−u‖qℓq(Ω))=‖u‖qℓq(Ω). | (3.1) |
From Lemma 3.1 and [38,Corollary 10], it is not hard for us to get the following corollary.
Corollary 3.2. Assume V is a uniformly bounded positive function. If {un} is bounded in H1(ZN) and un→u pointwise on ZN, then
limn→∞(∫ZN(|∇un|2+V(x)u2n)dμ−∫ZN(|∇(un−u)|2+V(x)(un−u)2)dμ)=∫ZN(|∇u|2+V(x)u2)dμ. | (3.2) |
Next, we prove a variant of the discrete Brézis-Lieb Lemma.
Lemma 3.3. Let Ω⊂ZN be a domain, 1≤q<∞. If the sequence {un} is bounded in ℓr(Ω) and un→u pointwise on Ω as n→∞, then for every q∈[1,r],
limn→∞∫Ω||un|q−|un−u|q−|u|q|rqdμ=0. | (3.3) |
Proof. Applying the Fatou's Lemma, we obtain
‖u‖ℓr(Ω)≤lim_n→∞‖un‖ℓr(Ω)<∞. | (3.4) |
Fix ε>0 and for all a,b∈R, there exists Cε satisfying
||a+b|q−|a|q|≤ε|a|q+Cε|b|q. |
Hence we obtain
fεn:=(||un|q−|un−u|q−|u|q|−ε|un−u|q)+≤(||un|q−|un−u|q|+|u|q−ε|un−u|q)+≤(ε|un−u|q+Cε|u|q+|u|q−ε|un−u|q)+=(1+Cε)|u|q. |
Thus
(fnε)rq≤(1+Cε)rq|u|r. | (3.5) |
It follows from the Dominated Convergence Theorem that
limn→∞∫Ω(fnε)rqdμ=∫Ωlimn→∞(fnε)rqdμ=0. | (3.6) |
From the definition of fεn, we obtain
||un|q−|un−u|q−|u|q|≤fεn+ε|un−u|q. |
Moreover, one deduces from the basic inequality (a+b)p≤Cp(ap+bp)(∀a,b,p>0) that
||un|q−|un−u|q−|u|q|rq≤(fεn+ε|un−u|q)rq≤Cq,r((fεn)rq+εrq|un−u|r). | (3.7) |
Therefore, from (3.6) and (3.7), we get
¯limn→∞∫Ω||un|q−|un−u|q−|u|q|rqdμ≤¯limn→∞Cq,r(∫Ω(fnε)rqdμ+∫ZNεrq|un−u|rdμ)≤Cq,rεrqsupn∈N‖un−u‖rℓr(Ω). |
Then let ε→0,
¯limn→∞∫Ω||un|q−|un−u|q−|u|q|rqdμ=0. |
This finishes the proof.
Next, we state the discrete Brézis-Lieb type Lemma.
Lemma 3.4. Suppose Ω⊂ZN and 1≤p<∞. If the sequence {un} is bounded in ℓp(Ω) and un→u pointwise on Ω as n→∞, then for every x∈ZN, we have
limn→∞(∑y≠xy∈Ω|un(y)|p|x−y|N−α−∑y≠xy∈Ω|un(y)−u(y)|p|x−y|N−α)=∑y≠xy∈Ω|u(y)|p|x−y|N−α. | (3.8) |
Proof. Since x≠y and x,y∈ZN, we obtain |x−y|≥1 and it follows that
∑y≠xy∈Ω||un(y)|p−|un(y)−u(y)|p−|u(y)|p||x−y|N−α≤∑y∈Ω||un(y)|p−|un(y)−u(y)|p−|u(y)|p|. |
Thus the proof is complete as n→∞ from Lemma 3.3.
Now we are in position to establish the discrete Brézis-Lieb Lemma for the nonlocal term of the functional. To this purpose we first present an important inequality on the lattice graph which is studied by many authors in the continuous setting.
Lemma 3.5. ([41]) (Discrete Hardy-Littlewood-Sobolev Inequality) Let 0<α<N, 1<r,s<∞ and 1r+1s+N−αN≥2. Assume f∈ℓr(ZN) and g∈ℓs(ZN). Then there exists a positive constant Cr,s,α depending only on r,s,α such that
∑x,y∈ZNy≠xf(x)g(y)|x−y|N−α≤Cr,s,α‖f‖ℓr(ZN)‖g‖ℓs(ZN). | (3.9) |
The paper [38] also give the following equivalent form of (3.9).
Lemma 3.6. Let 0<α<N, 1<r,t<∞ and 1t+αN≤1r. Assume f∈ℓr(ZN), then there exists a positive constant Cr,t,α depending only on r,t,α such that
‖∑y∈ZNy≠xf(y)|x−y|N−α‖ℓt(ZN)≤Cr,t,α‖f‖ℓr(ZN). | (3.10) |
The next lemma states the discrete Brézis-Lieb Lemma for the nonlocal term.
Lemma 3.7. Let 1≤p<∞ and the sequence {un} is bounded in ℓ2NpN+α(ZN). Suppose un→u pointwise on ZN as n→∞, then
limn→∞(∫ZN(∑y≠xy∈ZN|un(y)|p|x−y|N−α)|un|pdμ−∫ZN(∑y≠xy∈ZN|un(y)−u(y)|p|x−y|N−α)|un−u|pdμ)=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ. | (3.11) |
Proof. For every n, we can divide the left-hand side of (3.11) into two parts,
∫ZN(∑y≠xy∈ZN|un(y)|p|x−y|N−α)|un|pdμ−∫ZN(∑y≠xy∈ZN|un(y)−u(y)|p|x−y|N−α)|un−u|pdμ=∫ZN(∑y≠xy∈ZN|un(y)|p−|un(y)−u(y)|p|x−y|N−α)(|un|p−|un−u|p)dμ+2∫ZN(∑y≠xy∈ZN|un(y)|p−|un(y)−u(y)|p|x−y|N−α)|un−u|pdμ=:J1+2J2, | (3.12) |
where
J1=∫ZN(∑y≠xy∈ZN|un(y)|p−|un(y)−u(y)|p|x−y|N−α)(|un|p−|un−u|p)dμ,J2=∫ZN(∑y≠xy∈ZN|un(y)|p−|un(y)−u(y)|p|x−y|N−α)|un−u|pdμ. |
By Lemma 3.3, taking q=p, r=2NpN+α, one has
limn→∞∫ZN||un|p−|un−u|p−|u|p|2NN+αdμ=0. | (3.13) |
We first give the estimate for the term J1. From the Hardy-Littlewood-Sobolev inequality (Eq 3.9), one deduces that
|J1−∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ|≤∫ZN(∑y≠xy∈ZN||un(y)|p−|un(y)−u(y)|p−|u(y)|p||x−y|N−α)||un|p−|un−u|p−|u|p|dμ+2∫ZN(∑y≠xy∈ZN||un(y)|p−|un(y)−u(y)|p−|u(y)|p||x−y|N−α)|u|pdμ≤‖|un|p−|un−u|p−|u|p‖2ℓ2NN+α(ZN)+2‖|un|p−|un−u|p−|u|p‖ℓ2NN+α(ZN)‖|u|p‖ℓ2NN+α(ZN). |
From (3.13) and ‖u‖ℓ2NpN+α(ZN)≤lim infn→∞‖un‖ℓ2NpN+α(ZN)<∞, it gives that
limn→∞J1=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ. | (3.14) |
Now we give the estimate for J2. From the Banach-Alaoglu theorem, |un−u|p⇀0 weakly in ℓ2NN+α(ZN) as n→∞ and (3.9), we deduce that
J2=∫ZN(∑y≠xy∈ZN|un(y)|p−|un(y)−u(y)|p−|u(y)|p|x−y|N−α)|un−u|pdμ+∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|un−u|pdμ≤‖|un|p−|un−u|p−|u|p‖ℓ2NN+α(ZN)‖|un−u|p‖ℓ2NN+α(ZN)+∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|un−u|pdμ. |
We infer from (3.10) that
‖∑y≠xy∈ZN|u(y)|p|x−y|N−α‖ℓ2NN−α(ZN)≤CN,p,α‖u‖pℓ2NpN+α(ZN). |
Moreover, |un−u|p⇀0 in ℓ2NN+α(ZN). Hence we know that
limn→∞∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|un−u|pdμ=0. |
Then one deduces from (3.13) that limn→∞J2=0. This together with (3.14), we get the results.
In the present section we are devoted to the proof of Theorem 1.1. Obviously, for any function u:ZN→R, the energy functional related to (1.1) is given by
J(u)=12∫ZN(|∇u|2+V(x)u2)dμ−12p∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ. | (4.1) |
Notice that the functional J is well defined in H1(ZN). Indeed, assume that u∈ℓ2NPN+α(ZN), then by applying the Hardy-littlewood-Sobolev inequality (Eq 3.9) to the function f=|u|p∈ℓ2NN+α(ZN), we obtain
∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ≤CN,p,α(∫ZN|u|2NpN+αdμ)N+αN. | (4.2) |
It sufficient for us to confirm when the condition u∈ℓ2NPN+α(ZN) is satisfied. According to the Lemma 2.4, H1(ZN) is continuously embedded into ℓ2NpN+α(ZN) if and only if p≥N+αN. Moreover, we infer from the inequality (Eq 3.9) that
∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ≤CN,p,α‖u‖2pH1(ZN), | (4.3) |
where the constant CN,p,α depends only on N,α and p. Based on the previous argument, the function J is meaningful.
Next, we define the Nehari manifold related to (4.1) by
N:={u∈H1(ZN)∖{0}:J′(u)u=0}={u∈H1(ZN)∖{0}:∫ZN(|∇u|2+V(x)u2)dμ=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ}. |
Let
m=infu∈NJ(u). |
If there exists a function u∈N satisfying J(u)=m, then the function u is called a ground state solution. Obviously, u is a critical point of J.
Next, we shall find the critical point of the functional (4.1).
Proposition 4.1. Let N∈N∗, α∈(0,N) and p∈(1,∞). If u∈H1(ZN)∩ℓ2NpN+α(ZN)∖{0} and V is a uniformly bounded positive function, there holds
maxt>0J(tu)=(12−12p)S(u)pp−1, |
where
S(u)=∫ZN(|∇u|2+V(x)u2)dμ(∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ)1p. |
Proof. For any t>0, we set
s(t):=J(tu)=t22∫ZN(|∇u|2+V(x)u2)dμ−t2p2p∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ. |
By a direct computation,
s′(t)=t∫ZN(|∇u|2+V(x)u2)dμ−t2p−1∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ. |
When s′(t)=0, we can obtain a unique tu such that s′(tu)=0. Moreover, one has
tu=(∫ZN(|∇u|2+V(x)u2)dμ∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ)12p−2. |
Since as 0<t<tu, s′(t)>0 and as t>tu, s′(t)<0, thus
maxt>0J(tu)=J(tuu)=(12−12p)(∫ZN(|∇u|2+V(x)u2)dμ(∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ)1p)pp−1. |
This finishes the proof.
Note that the ground state energy of J can be characterized as
m=infu∈NJ(u)=infu∈H1(ZN)∖{0}maxt>0J(tu)=infu∈H1(ZN)∖{0}(12−12p)S(u)pp−1. |
In the next conclusion we show the infirmum of S(u) can be achieved by some nontrivial function.
Proposition 4.2. Let N∈N∗, α∈(0,N) and p∈(N+αN,∞). Suppose that V is a uniformly bounded positive function, then there exists u∈H1(ZN) satisfying
S(u)=inf{S(v):v∈H1(ZN)∖{0}}. |
Combining with Propositions 4.1 and 4.2, we complete the proof of Theorem 1.1. Then we only need to focus on the proof Proposition 4.2 in the next. In the Euclidean space, we are familiar with the different kinds of the proof of Proposition 4.2. For example, a strategy consists in minimizing among radial functions and then prove with the symmetrization by rearrangement that a radial minimizer is a global minimizer. In our setting, the main difficulty for the analysis is that there is no proper counterpart for radial functions on ZN and moreover we do not have the compactness in this problem. To overcome the difficulty we borrow an idea of [42,Section 4](also see [24]) and use the constraint method to prove Proposition 4.2.
Proof of Proposition 4.2. Set
m=inf{S(u):u∈H1(ZN)∖{0}}, |
then we can get
1m=sup{1S(u):u∈H1(ZN)and∫ZN(|∇u|2+V(x)u2)dμ=1}. |
Let {un} be a minimizing sequence in H1(ZN) such that
∫ZN(|∇un|2+V(x)u2n)dμ=1, |
and limn→∞1S(un)=1m. By the discrete Hardy-Littlewood-Sobolev inequality (Eq 3.9), we obtain
CN,p,α(∫ZN(∑y≠xy∈ZN|un(y)|p|x−y|N−α)|un|pdμ)1p≤‖un‖ℓ2NpN+α(ZN)≤‖un‖N+αNpℓ2(ZN)‖un‖1−N+αNpℓ∞(ZN)≤‖un‖N+αNpH1(ZN)‖un‖1−N+αNpℓ∞(ZN). | (4.4) |
Taking the limit from both sides, one can see
\begin{equation} C_{N, p, \alpha}(\frac{1}{m})^{\frac{1}{p}} \leq{\mathop {\underline\lim }\limits_{n \to \infty } } \|u_n\|_{\ell^\infty(\mathbb{Z}^{N})}^{1-\frac{N + \alpha}{Np}}. \end{equation} | (4.5) |
Since p > \tfrac{N+\alpha}{N} , we obtain
\begin{equation} {\mathop {\underline \lim }\limits_{n \to \infty } } {\|u_n\|_{\ell^\infty(\mathbb{Z}^{N}) }}\geq C > 0. \end{equation} | (4.6) |
Hence, there exists a subsequence \{u_n\} and a sequence \{y_n\} \subset \mathbb{Z}^{N} such that | {u_n(y_n)}| \ge C for each n . By translations, we define \widetilde{u}_n = :{u_n}(y+{k_n}T) with {k_n} = (k_n^1, \cdots k_n^N) to ensure that (y_n-{k_n}T) \subset \Omega where \Omega = [0, T)^N \cap \mathbb{Z}^{N} is a bounded domain in \mathbb{Z}^{N} . Then for each \widetilde{u}_n ,
\begin{equation*} {\|\widetilde{u}_n\|_{{\ell^\infty }(\Omega)}} \ge |u_n(y_n)| \ge C > 0. \end{equation*} |
Moreover, by translation invariance, we infer from V(x) is T-periodic in x that
\begin{equation*} 1 = \int_{\mathbb{Z}^{N}} {\left({|\nabla u_n|^2}+V(x)u_n^2 \right)} d\mu = \int_{\mathbb{Z}^{N}} {\left({|\nabla \widetilde u_n|^2}+V(x) {\widetilde{u}_n}^2 \right)} d\mu \end{equation*} |
and
\begin{equation*} S(u_n) = S(\widetilde{u}_n). \end{equation*} |
Without loss of generality, we can get a minimizing sequence \{u_n\} satisfying {\|u_n\|_{{\ell^\infty }(\Omega)}} \ge C > 0 . Since \Omega is bounded, there exists at least one point, say x_0 , such that {u_n}(x_0)\to u(x_0)\ge C > 0 . Since the sequence \{u_n\} is bounded in {H^1}(\mathbb{Z}^{N}) , it follows that {u_n} \rightharpoonup u in {H^1}(\mathbb{Z}^{N}) and {u_n} \to u\ne 0 pointwise on \mathbb{Z}^{N} . Then it follows from Corollary 3.2 and Lemma 3.7 that
\begin{equation} \begin{split} \frac{1}{m} = &\lim\limits_{n\to\infty} \frac{{\left( {{ \int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_n(y)|^p}{|x-y|^{N-\alpha }}} \right ){|u_n|^p}d\mu } \right)}^{\frac{1}{p}}}{ \int_{\mathbb{Z}^{N}} {\left({|\nabla u_n|^2}+V(x)u_n^2 \right)} d\mu}\\ = &{\mathop {\overline \lim }\limits_{n \to \infty } } { {{\left( {{ \int _{\mathbb{Z}^{N}}}\left( {\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u(y)|^p}{|x-y|^{N-\alpha}}} }\right ){{|u|}^p}d\mu } +{{ \int _{\mathbb{Z}^{N}}}\left( {\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_n(y)-u(y)|^p}{|x-y|^{N-\alpha}}} }\right ){{|u_n-u|}^p}d\mu }\right )}^{\frac{1}{p}}} \over { \int_{\mathbb{Z}^{N}} {\left( {|\nabla u|^2} +V(x)u^2 \right)}d\mu + \int_{\mathbb{Z}^{N}} {\left( |\nabla (u_n-u)|^2+ V(x)(u_n-u)^2 \right)} d\mu }}\\ \leq &{\mathop {\overline \lim }\limits_{n \to \infty } } { {{\left( {{ \int _{\mathbb{Z}^{N}}}\left( {\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u(y)|^p}{|x-y|^{N-\alpha}}} }\right ){{|u|}^p}d\mu }\right )^{\frac{1}{p}} +\left( {{ \int _{\mathbb{Z}^{N}}}\left( {\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_n(y)-u(y)|^p}{|x-y|^{N-\alpha}}} }\right ){{|u_n-u|}^p}d\mu }\right )}^{\frac{1}{p}}} \over { \int_{\mathbb{Z}^{N}} {\left( {|\nabla u|^2} +V(x)u^2 \right)}d\mu + \int_{\mathbb{Z}^{N}} {\left( |\nabla (u_n-u)|^2+ V(x)(u_n-u)^2 \right)} d\mu }}.\\ \end{split} \end{equation} | (4.7) |
For every n , we have
\begin{equation*} \left( {{ \int _{\mathbb{Z}^{N}}}\left( {\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_n(y)-u(y)|^p}{|x-y|^{N-\alpha}}} }\right ){{|u_n-u|}^p}d\mu }\right )^{\frac{1}{p}} \leq\frac{1}{m} \int_{\mathbb{Z}^{N}} {\left({|\nabla (u_n-u)|^2}+V(x)(u_n-u)^2 \right)} d\mu. \end{equation*} |
Since u\neq0 , one has
\begin{equation*} \left( {{\int _{\mathbb{Z}^{N}}}\left( {\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u(y)|^p}{|x-y|^{N-\alpha}}} }\right ){{|u|}^p}d\mu }\right )^{\frac{1}{p}} \geq\frac{1}{m}\int_{\mathbb{Z}^{N}} {\left({|\nabla (u)|^2}+V(x)(u)^2 \right)} d\mu, \end{equation*} |
which yields
\begin{equation*} \left( {{\int _{\mathbb{Z}^{N}}}\left( {\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u(y)|^p}{|x-y|^{N-\alpha}}} }\right ){{|u|}^p}d\mu. }\right )^{\frac{1}{p}} = \frac{1}{m}\int_{\mathbb{Z}^{N}} {\left({|\nabla (u)|^2}+V(x)(u)^2 \right)} d\mu. \end{equation*} |
By (4.7), one has
\begin{equation*} \lim\limits_{n\to\infty} \left( {{\int _{\mathbb{Z}^{N}}}\left( {\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_n(y)-u(y)|^p}{|x-y|^{N-\alpha}}} }\right ){{|u_n-u|}^p}d\mu }\right )^{\frac{1}{p}} = \lim\limits_{n\to\infty} \frac{1}{m}\int_{\mathbb{Z}^{N}} {\left({|\nabla (u_n-u)|^2}+V(x)(u_n-u)^2 \right)} d\mu. \end{equation*} |
By Fatou's Lemma, one gets
\begin{equation*} \int_{\mathbb{Z}^{N}} {\left({|\nabla u|^2}+V(x)u^2 \right)} d\mu \le \mathop {\liminf\limits_{n \to \infty } \int_{\mathbb{Z}^{N}} {\left({|\nabla u_n|^2}+V(x)u_n^2 \right)} d\mu } \le 1. \end{equation*} |
Then it is enough for us to prove that \int_{\mathbb{Z}^{N}} {\left({|\nabla u_n|^2}+V(x)u_n^2 \right)} d\mu = 1 . Using a contradiction argument, suppose that
\begin{equation*} 0 < \int_{\mathbb{Z}^{N}} {\left({|\nabla u_n|^2}+V(x)u_n^2 \right)} d\mu = K < 1. \end{equation*} |
then by
\begin{equation*} \begin{split} &\lim\limits_{n\to\infty} \int_{\mathbb{Z}^{N}} {\left({|\nabla (u_n-u)|^2}+V(x)(u_n-u)^2 \right)} d\mu\\ = &\lim\limits_{n\to\infty} \int_{\mathbb{Z}^{N}} {\left({|\nabla u_n|^2}+V(x)u_n^2 \right)} d\mu-\int_{\mathbb{Z}^{N}} {\left({|\nabla u|^2}+V(x)u^2 \right)} d\mu\\ = &1-K > 0.\\ \end{split} \end{equation*} |
However, (a+b)^p > a^p+b^p if a, b > 0 . This yields a contradiction by (4.7).
In this section we shall prove the existence result for (1.3) and (1.4) by using the standard variational methods. Obviously, the functional associated with the problem (1.3) is given by
\begin{equation*} J_\lambda(u) = \frac{1}{2}{\int _{\mathbb{Z}^{N}}}\left( |\nabla u|^2 +(\lambda a(x)+1)u^2 \right)d\mu -\frac{1}{2p}{\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u(y)|^p}{|x - y|^{N-\alpha}}}\right )|u|^pd\mu, \end{equation*} |
where p \ge \tfrac{N+\alpha}{N} . The corresponding Nehari manifold is defined as
\begin{equation*} \begin{split} \mathcal{N}_\lambda: & = \left\{ {u \in {E_\lambda}( {{\mathbb{Z}^{N}}}) \setminus \{ 0 \}:J_\lambda'(u)u = 0} \right\}\\ & = \left\{ {u \in {E_\lambda}(\mathbb{Z}^{N}) \setminus \{0\}:{\int _{\mathbb{Z}^{N}}}\left( {|\nabla u|^2 +(\lambda a(x)+1)u^2} \right)d\mu = {\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u(y)|^p}{|x -y|^{N-\alpha}}}\right )|u|^pd\mu} \right\}. \end{split} \end{equation*} |
We define the least energy level m_\lambda by
\begin{equation*} m_\lambda: = \inf\limits_{u\in\mathcal{N}_\lambda}J_\lambda(u). \end{equation*} |
Then we first prove the Nehari manifold \mathcal{N_\lambda} is nonempty.
Lemma 5.1. The Nehari manifold \mathcal{N_\lambda} is non-empty.
Proof. For t\in\mathbb{R} and fix a function u \in E_\lambda(\mathbb{Z}^{N})\backslash\{0\} and, we define
\begin{equation*} \gamma(t): = J'(tu)tu = t^2{\int _{\mathbb{Z}^{N}}}\left( {|\nabla u|^2 + (\lambda a(x)+1)u^2} \right)d\mu -t^{2p}{\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u(y)|^p}{|x - y|^{N-\alpha}}}\right ){|u|}^pd\mu. \end{equation*} |
Since p > 1 and u\neq 0 , it is obvious that \gamma(t) > 0 for small t > 0 and that \lim\limits_{t \rightarrow \infty}\gamma(t) = -\infty . Then there exists t_0 \in (0, \infty) such that \gamma(t_0) = 0 , which implies that t_0u \in\mathcal{N_\lambda} .
Next, we prove the least energy level m_\lambda is positive.
Lemma 5.2. We have m_\lambda = \inf\limits_{u \in \mathcal{N_\lambda}} J_\lambda(u) > 0 .
Proof. Since u \in \mathcal{N_\lambda} , then
\begin{equation*} {\int_{\mathbb{Z}^{N}}}\left( {|\nabla u|^2 + (\lambda a(x)+1)u^2} \right)d\mu = {\int_{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u(y)|^p}{|x - y|^{N-\alpha}}}\right ){|u|}^pd\mu. \end{equation*} |
By Lemma 2.5 and (3.9), we obtain
\begin{equation*} \|u\|^2_{E_\lambda(\mathbb{Z}^{N})} = {\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u(y)|^p}{|x - y|^{N-\alpha}}}\right ){|u|}^pd\mu \leq C \|u\|^{2p}_{\ell^\frac{2Np}{N+\alpha}(\mathbb{Z}^{N})} \leq C\|u\|^{2p}_{E_\lambda(\mathbb{Z}^{N})}, \end{equation*} |
where C is independent of \lambda . It follows from p > 1 that
\begin{equation} \|u\|_{E_\lambda(\mathbb{Z}^{N})}\geq\left(\frac{1}{C}\right)^\frac{1}{2(p-1)} > 0. \end{equation} | (5.1) |
This gives
\begin{equation*} m_\lambda = \inf\limits_{u\in\mathcal{N_\lambda}}J_\lambda(u) = \left(\frac{1}{2}-\frac{1}{2p}\right) \inf\limits_{u\in\mathcal{N_\lambda}}\|u\|^2_{E_\lambda(\mathbb{Z}^{N})} \geq\left(\frac{1}{2}-\frac{1}{2p}\right)\left(\frac{1}{C}\right)^\frac{1}{2(p-1)} > 0. \end{equation*} |
The next lemma states that the least energy m_\lambda can be achieved.
Lemma 5.3. The value m_\lambda can be achieved by some u_\lambda \in \mathcal{N_\lambda} . Namely, there exists some u_\lambda \in \mathcal{N_\lambda} such that J_\lambda(u_\lambda) = m_\lambda .
Proof. Take a minimizing sequence \{u_k\} \subset \mathcal{N_\lambda} such that \mathop{\lim}\limits_{k\rightarrow \infty}{J_\lambda(u_k)} = m_\lambda . Since
\begin{equation*} o_k(1)+m_\lambda = J_\lambda(u_k) = \frac{p-1}{2p}\|u_k\|^2_{E_\lambda(\mathbb{Z}^{N})}, \end{equation*} |
we have that \{u_k\} is bounded in E_\lambda(\mathbb{Z}^{N}) , where \mathop{\lim}\limits_{k\rightarrow \infty}{o_k(1)} = 0 . By Lemma 2.5, we can assume that there exists some u_\lambda \in E_\lambda(\mathbb{Z}^{N}) such that
\begin{equation*} \begin{cases} u_k\rightharpoonup u_\lambda\ & {\rm{in}}\ E_\lambda(\mathbb{Z}^{N}).\\ u_k(x)\rightarrow u_\lambda(x)\ &\forall x \in \mathbb{Z}^{N}.\\ u_k\rightarrow u_\lambda\ & {\rm{in}}\ \ell^q(\mathbb{Z}^{N}).\\ \end{cases} \end{equation*} |
From the discrete Hardy-Littlewood-Sobolev inequality (Eq 3.9), we infer that
\begin{equation*} {\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_k(y)-u_\lambda(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_k-u_\lambda|^pd\mu \leq C\|u_k-u_\lambda\|^{2p}_{\ell^\frac{2Np}{N+\alpha}(\mathbb{Z}^{N})}. \end{equation*} |
Therefore, one has
\begin{equation*} \lim\limits_{k \to\infty}{\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_k(y)-u_\lambda(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_k-u_\lambda|^pd\mu = 0. \end{equation*} |
Then from the Lemma 3.7, we get
\begin{equation} \lim\limits_{k \to\infty}{\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_k(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_k|^pd\mu = {\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_\lambda(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_\lambda|^p d\mu. \end{equation} | (5.2) |
Since the E_\lambda norm is weakly lower semi-continuous, one has
\begin{equation} \begin{split} J_\lambda(u_\lambda) & = \frac{1}{2} \|u_\lambda\|^2_{E_\lambda(\mathbb{Z}^{N})} -\frac{1}{2p}{\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_\lambda(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_\lambda|^pd\mu\\ &\leq\liminf\limits_{k \to\infty}\left(\frac{1}{2}\|u_k\|^2_{E_\lambda(\mathbb{Z}^{N})} -\frac{1}{2p}{\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_k(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_k|^pd\mu \right)\\ & = \liminf\limits_{k \to\infty}J_\lambda(u_k) = m_\lambda. \end{split} \end{equation} | (5.3) |
Next it suffices to show that u_\lambda\in \mathcal{N_\lambda} . We infer from (5.1) that
0 < c\leq\|u_k\|^2_{E_\lambda(\mathbb{Z}^{N})} = {\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_k(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_k|^pd\mu. |
This together with (5.2) which implies that
\begin{equation} 0 < c\leq{\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_\lambda(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_\lambda|^p d\mu. \end{equation} | (5.4) |
Therefore u_\lambda\neq0 . Since u_k \in \mathcal{N_\lambda} , we infer that
\begin{equation*} \begin{split} \|u_\lambda\|^2_{E_\lambda(\mathbb{Z}^{N})} &\leq\liminf\limits_{k \to\infty}\|u_k\|^2_{E_\lambda(\mathbb{Z}^{N})} = \liminf\limits_{k \to\infty}{\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_k(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_k|^pd\mu\\ & = {\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_\lambda(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_\lambda|^pd\mu.\\ \end{split} \end{equation*} |
We use the contradiction argument to obtain our results. Assume that
\|u_\lambda\|^2_{E_\lambda(\mathbb{Z}^{N})} < {\int _{\mathbb{Z}^{N}}}\left(\mathop{\sum}\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_\lambda(y)|^p}{|x - y|^{N-\alpha}}}\right)|u_\lambda|^pd\mu. |
Similar as the proof of Lemma 5.1, there would exist a t\in(0, 1) such that tu_\lambda \in \mathcal{N_\lambda} . This implies that
\begin{equation*} \begin{split} 0 < m_\lambda\leq J_\lambda(tu_\lambda) & = (\frac{1}{2}-\frac{1}{2p})\|tu_\lambda\|^2_{E_\lambda(\mathbb{Z}^{N})}\\ &\leq t^2\liminf\limits_{k \to\infty}(\frac{1}{2}-\frac{1}{2p})\|u_k\|^2_{E_\lambda(\mathbb{Z}^{N})}\\ & = t^2\liminf\limits_{k \to\infty}J_\lambda(u_k)\\ & = t^2m_\lambda < m_\lambda. \end{split} \end{equation*} |
This contradicts the fact that m_\lambda = \mathop{\inf}\limits_{u \in \mathcal{N_\lambda}} J_\lambda(u) . Therefore we have u_\lambda \in \mathcal{N_\lambda} . Moreover, we infer from (5.3) that m_\lambda is achieved by u_\lambda .
The following Lemma finishes the proof of Theorem 1.3.
Lemma 5.4. u_\lambda \in \mathcal{N_\lambda} is a critical point for J_\lambda .
Proof. It is enough for us to prove that for any \phi \in E_\lambda(\mathbb{Z}^{N}) , there holds
\begin{equation*} J'_\lambda(u_\lambda)\phi = 0. \end{equation*} |
Since u_\lambda \not\equiv 0 , we can choose a constant \varepsilon > 0 such that u_\lambda+s\phi \not\equiv 0 for all s \in (-\varepsilon, \varepsilon) . Furthermore, for every given s \in (- \varepsilon, \varepsilon) , we can find some t(s) \in (0, \infty) satisfying t(s)(u_\lambda+s\phi) \in \mathcal{N_\lambda} . Indeed, t(s) can be taken as
\begin{equation*} t(s) = \left(\frac{\|u_\lambda+s\phi\|^2_{E_\lambda(\mathbb{Z}^{N})}}{{ \int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|(u_\lambda+s\phi)(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_\lambda+s\phi|^pd\mu} \right)^\frac{1}{2p-2}. \end{equation*} |
Obviously, we can get t(0) = 1 . Take a function \gamma(s) :(-\varepsilon, \varepsilon) \rightarrow \mathbb{R} which is defined as
\begin{equation*} \gamma(s): = J_\lambda(t(s)(u_\lambda+s\phi)). \end{equation*} |
For t(s)(u_\lambda+s\phi) \in \mathcal{N_\lambda} and J_\lambda(u_\lambda) = \mathop{\inf}\limits_{u\in\mathcal{N_\lambda}} J_\lambda(u) , \gamma(s) achieves its minimum at s = 0 . Together with u_\lambda\in\mathcal{N_\lambda} and J'_\lambda (u_\lambda)u_\lambda = 0 , it follows that
\begin{equation*} \begin{split} 0 = \gamma'(0) & = J'_\lambda(t(0)u_\lambda)[t'(0)u_\lambda + t(0)\phi] \\ & = J'_\lambda (u_\lambda)t'(0)u_\lambda+J'_\lambda (u_\lambda)\phi \\ & = J'_\lambda (u_\lambda)\phi.\\ \end{split} \end{equation*} |
Next we focus on the proof of Theorem 1.4. The functional associated with the Eq (1.4) is given by
\begin{equation} J_\Omega(u) = \frac{1}{2} \int _{\Omega\cup\partial\Omega }|\nabla u|^2d\mu+\int_{\Omega}{u^2} d\mu -\frac{1}{2p}\int _{\Omega}\left(\sum\limits_{y\ne x \atop y \in \Omega } {\frac{|u(y)|^p}{|x - y|^{N-\alpha}}}\right )|u|^pd\mu. \end{equation} | (5.5) |
We remark that \|u\|_{\ell^q(\Omega)} \leq C\|u\|_{H_0^1(\Omega)} for q\in [1, \infty] by Lemma 2.6. Therefore, the functional J_\Omega(u) is well defined as p\geq\frac{N+\alpha}{2N} . The corresponding Nehari manifold is defined as
\begin{equation} \begin{split} \mathcal{N}_\Omega & = \left\{ {u \in {H^1_0(\Omega)} \setminus \{ 0 \}:J_\lambda'(u)u = 0} \right\}\\ & = \left\{ {u \in {H^1_0(\Omega)} \setminus \{0\}:\int _{\Omega\cup\partial\Omega }|\nabla u|^2d\mu+\int_{\Omega}{u^2} d\mu = {\int _{\Omega}}\left(\sum\limits_{y\ne x \atop y \in \Omega } {\frac{|u(y)|^p}{|x - y|^{N-\alpha}}}\right )|u|^pd\mu} \right\}. \end{split} \end{equation} | (5.6) |
Let m_\Omega be
\begin{equation*} m_\Omega: = \inf\limits_{u\in\mathcal{N}_\Omega}J_\Omega(u). \end{equation*} |
Since \Omega contains only finite vertices, the proofs of the previous results can be easily applied to the Eq (1.4). Moreover, p > 1 is enough for us to prove Theorem 1.4. Here we omit the details of the proofs.
In the current section, we mainly focus on the asymptotical properties of the solution. That is, we show that the ground state solutions u_\lambda of (1.3) converge to a ground state solution of (1.4) as \lambda\rightarrow \infty . To accomplish this we first prove that any solution of (1.3) is bounded away from zero.
Lemma 6.1. There exists a constant \sigma > 0 which is independent of \lambda , such that for any critical point u\in E_\lambda(\mathbb{Z}^{N}) of J_\lambda , we have \|u\|_{E_\lambda(\mathbb{Z}^{N})}\geq \sigma .
Proof. From Lemma 2.5 and the inequality (Eq 3.9), one has
\begin{equation*} \begin{split} 0 = J'(u)u & = {\int _{\mathbb{Z}^{N}}}\left( {|\nabla u|^2 + (\lambda a(x)+1)u^2} \right)d\mu -{\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u(y)|^p}{|x - y|^{N-\alpha}}}\right ){|u|}^pd\mu\\ &\geq\|u\|^2_{E_\lambda(\mathbb{Z}^{N})}-C^{2p}\|u\|^{2p}_{E_\lambda(\mathbb{Z}^{N})}, \end{split} \end{equation*} |
where C is independent of \lambda . Then we can choose \sigma = (\frac{1}{C})^{\frac{p}{p-1}} and Lemma 6.1 is proved.
The next lemma studies the property of (PS)_c sequence of J_\lambda .
Lemma 6.2. For any (PS)_c sequence \{u_k\} of J_\lambda , there holds
\begin{equation} \lim\limits_{k \to \infty}\|u_k\|^2_{E_\lambda(\mathbb{Z}^{N})} = \frac{2p}{p-1}c. \end{equation} | (6.1) |
Furthermore, there would exist a constant C_1 > 0 independent of \lambda , such that either c\geq C_1 or c = 0 .
Proof. Since J_\lambda(u_k) \to c and J'_\lambda(u_k) \to 0 as k \to \infty , we have
\begin{equation*} c = \lim\limits_{k \to \infty}\left(J_\lambda(u_k)-\frac{1}{2p}J'_\lambda(u_k)u_k\right) = \lim\limits_{k \to \infty}\left(\frac{1}{2}-\frac{1}{2p}\right)\|u_k\|^2_{E_\lambda(\mathbb{Z}^{N})} = \frac{p-1}{2p}\lim\limits_{k \to \infty}\|u_k\|^2_{E_\lambda(\mathbb{Z}^{N})}, \end{equation*} |
which gives (6.1). By Lemma 2.5 and (3.9), for any u\in E_\lambda(\mathbb{Z}^{N}) , we obtain
\begin{equation} J'_\lambda(u)u = \|u\|^2_{E_\lambda(\mathbb{Z}^{N})}-{\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u(y)|^p}{|x - y|^{N-\alpha}}}\right ){|u|}^pd\mu \geq\|u\|^2_{E_\lambda(\mathbb{Z}^{N})}-C^{2p}\|u\|^{2p}_{E_\lambda(\mathbb{Z}^{N})}. \end{equation} | (6.2) |
Take \rho = (\frac{1}{2C^{2p}})^\frac{1}{2p-2} . If \|u\|_{E_\lambda(\mathbb{Z}^{N})}\leq \rho , we get
\begin{equation*} J'_\lambda(u)u \geq \frac{1}{2} \|u\|^2_{E_\lambda(\mathbb{Z}^{N})}. \end{equation*} |
Take C_1 = \frac{p-1}{2p}\rho^2 and suppose c < C_1 . Since \{u_k\} is a (PS)_c sequence, it yields
\begin{equation*} \lim\limits_{k \to \infty}\|u_k\|^2_{E_\lambda(\mathbb{Z}^{N})} = \frac{2p}{p-1}c < \frac{2p}{p-1}C_1 = \rho^2. \end{equation*} |
Hence, for large k , we have
\begin{equation*} \frac{1}{2}\|u_k\|^2_{E_\lambda(\mathbb{Z}^{N})}\leq J'_\lambda(u_k)u_k = o_k(1)\|u_k\|_{E_\lambda(\mathbb{Z}^{N})}, \end{equation*} |
which implies that \|u_k\|_{E_\lambda(\mathbb{Z}^{N})}\to 0 as k \to \infty . It follows immediately that J_\lambda(u_k) \to c = 0 and the positive constant can be taken as C_1 = \frac{p-1}{2p}\rho^2 = (\frac{1}{2C^{2p}})^\frac{1}{p-1} .
Remark 6.3. If we take c = m_\lambda , then there would exist a (PS)_c sequence {u_k} such that u_k\rightharpoonup u_\lambda when proving the existence of a ground state solutions u_\lambda . Since the E_{\lambda_k} norm of {u_{\lambda_k}} is weakly lower semi-continuous, then \|u_\lambda\|_{E_\lambda(\mathbb{Z}^{N})} is bounded by \tfrac{2p}{p-1} m_\lambda .
Next, we study the relationship between the ground states m_\lambda and m_\Omega .
Lemma 6.4. m_\lambda \to m_\Omega as \lambda \to \infty .
Proof. Notice that m_\lambda \leq m_\Omega for every positive \lambda owing to \mathcal{N}_\Omega \subset \mathcal{N}_\lambda . Take a sequence \lambda_k \to \infty satisfying
\begin{equation} \lim\limits_{k \to\infty}m_{\lambda_k} = M \leq m_\Omega, \end{equation} | (6.3) |
where m_{\lambda_k} is the ground state and u_{\lambda_k}\in \mathcal{N}_{\lambda_k} is the corresponding ground state solution of (1.3). Then it follows M > 0 from Lemma 6.2. According to Remark 6.3, we know that the E_{\lambda_k} norm of {u_{\lambda_k}} is controlled by the constant \tfrac{2p}{p-1} m_\Omega , which is independent of \lambda_k . Up to a subsequence, we can assume that u_{\lambda_k}(x)\rightarrow u_0(x) on \mathbb{Z}^{N} and for any q \in [2, +\infty) , u_{\lambda_k}\rightarrow u_0 in \ell^q(\mathbb{Z}^{N}) . Moreover, we get that u_0\not\equiv 0 from Lemma 6.1.
We first claim that u_0|_{\Omega^c} = 0 . If it is not true, we can find a point x_0 satisfying u_0(x_0) \neq0 . Since u_{\lambda_k}\in \mathcal{N}_{\lambda_k} , then
\begin{equation*} J_{\lambda_k}(u_{\lambda_k}) = \frac{p-1}{2p}\|u_{\lambda_k}\|^2_{E_{\lambda_k}(\mathbb{Z}^{N})} \geq\frac{p-1}{2p}\lambda_k\int_{\mathbb{Z}^{N}}a(x)u^2_{\lambda_k} d\mu \geq\frac{p-1}{2p}\lambda_k a(x_0)u^2_{\lambda_k}(x_0). \end{equation*} |
Since a(x_0) > 0, u_{\lambda_k}(x_0) \to u_0(x_0)\neq0 and \lambda_k \to \infty , we get
\begin{equation*} \lim\limits_{k \to \infty}J_{\lambda_k}(u_{\lambda_k}) = \infty, \end{equation*} |
which contradicts with the conclusion m_{\lambda_k} \leq m_\Omega . Since the norm \|\cdot\|_{H^1(\mathbb{Z}^{N})} is weakly lower semi-continuous and (5.2), we get
\begin{equation*} \begin{split} \int_{\Omega \cup \partial\Omega}{|\nabla u_0|}^2d\mu+\int_{\Omega}u_0^2d\mu &\leq\int_{\mathbb{Z}^{N}}\left({|\nabla u_0|}^2+{u^2_0}\right)d\mu\\ &\leq\liminf\limits_{k \to \infty}\int_{\mathbb{Z}^{N}}\left(|\nabla u_{\lambda_k}|^2+{u_{\lambda_k}^2}\right)d\mu\\ &\leq\liminf\limits_{k \to \infty}\int_{\mathbb{Z}^{N}}\left(|\nabla u_{\lambda_k}|^2+(\lambda_ka(x)+1){u_{\lambda_k}^2}\right)d\mu\\ & = \liminf\limits_{k \to \infty}\int _{\mathbb{Z}^{N}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_{\lambda_k}(y)|^p}{|x - y|^{N-\alpha}}}\right ){|u_{\lambda_k}|}^pd\mu \\ & = \int _{\mathbb{Z}^{N}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_0(y)|^p}{|x - y|^{N-\alpha}}}\right ){|u_0|}^pd\mu. \end{split} \end{equation*} |
Noticing that u_0|_{\Omega^c} = 0 , we get
\begin{equation} \int_{\Omega \cup \partial\Omega}|\nabla u_0|^2d\mu+\int_{\Omega}u_0^2d\mu \leq\int _{\Omega}\left(\sum\limits_{y\ne x \atop y \in \Omega } {\frac{|u_0(y)|^p}{|x - y|^{N-\alpha}}}\right ){|u_0|}^pd\mu. \end{equation} | (6.4) |
Then there exists \alpha\in(0, 1] such that \alpha u_0 \in \mathcal{N}_\Omega , i.e.,
\begin{equation*} \int_{\Omega \cup \partial\Omega}|\alpha\nabla u_0|^2 d\mu+\int_{\Omega} |\alpha u_0|^2 d\mu = \int _{\Omega}\left(\sum\limits_{y\ne x \atop y \in \Omega } {\frac{|\alpha u_0(y)|^p}{|x - y|^{N-\alpha}}}\right )|\alpha u_0|^pd\mu. \end{equation*} |
This implies that
\begin{equation*} \begin{split} J_{\Omega}(\alpha u_0) & = \frac{p-1}{2p}\left(\int_{\Omega \cup \partial\Omega}|\alpha\nabla u_0|^2 d\mu+\int_{\Omega} |\alpha u_0|^2d\mu\right)\\ &\leq\frac{p-1}{2p}\int_{\mathbb{Z}^{N}}\left(|\alpha \nabla u_0|^2+|\alpha u_0|^2\right)d\mu\\ &\leq\frac{p-1}{2p}\int_{\mathbb{Z}^{N}}\left(|\nabla u_0|^2+|u_0|^2\right)d\mu\\ &\leq\liminf\limits_{k \to \infty}\frac{p-1}{2p}\int_{\mathbb{Z}^{N}}\left(|\nabla u_{\lambda_k}|^2+(\lambda_ka(x)+1){u_{\lambda_k}^2}\right)d\mu\\ & = \liminf\limits_{k \to \infty}J_{\lambda_k}(u_{\lambda_k}) = M. \end{split} \end{equation*} |
Consequently, M \geq m_{\Omega} . Combining with (6.3), we get that
\begin{equation*} \lim\limits_{\lambda \to \infty}m_\lambda = m_\Omega. \end{equation*} |
Next, we are devoted to proving Theorem 1.5.
Proof of Theorem 1.5. We need to prove that for any sequence \lambda_k \to \infty , the corresponding u_{\lambda_k} \in\mathcal{N}_{\lambda_k} satisfying J_{\lambda_k}(u_{\lambda_k}) = m_{\lambda_k} converges in H^1(\mathbb{Z}^{N}) to a ground state solution u_\Omega of (1.4) along a subsequence. According to Remark 6.3, the E_{\lambda_k} norm of {u_{\lambda_k}} is uniformly bounded by the constant \tfrac{2p}{p-1} m_\Omega , which is independent of \lambda_k . Consequently, we can assume that there would exist some u_0 satisfying u_{\lambda_k}(x)\rightarrow u_0(x) in \mathbb{Z}^{N} and for any q \in [2, +\infty) , u_{\lambda_k}\rightarrow u_0 in \ell^q(\mathbb{Z}^{N}) . Moreover, we get that u_0\not\equiv 0 from Lemma 6.1. As what we have done in Lemma 6.4, we can prove that u_0|_{\Omega^c} = 0 .
First, we claim that
\begin{equation} \lambda_k \int_{\mathbb{Z}^{N}}a(x)u^2_{\lambda_k}d\mu \to 0, \quad\text{as}\ k\to \infty \end{equation} | (6.5) |
and
\begin{equation} \int_{\mathbb{Z}^{N}}|\nabla u_{\lambda_k}|^2 d\mu \to \int_{\mathbb{Z}^{N}}|\nabla u_0|^2 d\mu . \end{equation} | (6.6) |
If for some \delta > 0 , there holds
\begin{equation*} \lim\limits_{k \to \infty}\lambda_k \int_{\mathbb{Z}^{N}}a(x)u^2_{\lambda_k}d\mu = \delta > 0, \end{equation*} |
we have
\begin{equation*} \begin{split} \int_{\Omega \cup \partial\Omega}\left({|\nabla u_0|}^2+u_0^2 \right)d\mu & < \int_{\mathbb{Z}^{N}}\left(|\nabla u_0|^2+u_0^2\right)d\mu+\delta \\ &\leq\liminf\limits_{k \to \infty}\int_{\mathbb{Z}^{N}}\left(|\nabla u_{\lambda_k}|^2+(\lambda_ka(x)+1)u_{\lambda_k}^2\right)d\mu\\ & = \liminf\limits_{k \to \infty}\int _{\mathbb{Z}^{N}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_{\lambda_k}(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_{\lambda_k}|^pd\mu \\ & = \int _{\Omega}\left(\sum\limits_{y\ne x \atop y \in \Omega } {\frac{{|u_0(y)|}^p}{|x - y{|^{N-\alpha}}}}\right ){|u_0|}^pd\mu. \end{split} \end{equation*} |
Then there exists \alpha\in(0, 1) such that \alpha u_0 \in \mathcal{N}_\Omega . On the other hand, if
\begin{equation*} \liminf\limits_{k \to \infty}\int_{\mathbb{Z}^{N}}|\nabla u_{\lambda_k}|^2 d\mu > \int_{\mathbb{Z}^{N}}{|\nabla u_0|}^2 d\mu, \end{equation*} |
we also have \int_{\Omega \cup \partial\Omega}\left({|\nabla u_0|}^2+{u_0^2}\right)d\mu < \int _{\Omega}\left(\sum\limits_{y\ne x \atop y \in \Omega } {\frac{|u_0(y)|^p}{|x - y|^{N-\alpha}}}\right){|u_0|}^p d\mu . Then in both cases, we can find \alpha\in(0, 1) such that \alpha u_0 \in \mathcal{N}_\Omega . Consequently, we have
\begin{equation*} \begin{split} m_{\Omega}\leq J_{\Omega}(\alpha u_0) & = \frac{p-1}{2p}\left(\int_{\Omega \cup \partial\Omega}|\alpha\nabla u_0|^2 d\mu+\int_{\Omega} |\alpha u_0|^2d\mu\right)\\ & = \frac{p-1}{2p}\alpha^2\left(\int_{\Omega \cup \partial\Omega}|\nabla u_0|^2 d\mu+\int_{\Omega}|u_0|^2d\mu\right)\\ & < \frac{p-1}{2p}\int_{\mathbb{Z}^{N}}\left(|\nabla u_0|^2+|u_0|^2\right)d\mu\\ &\leq\liminf\limits_{k \to \infty}\frac{p-1}{2p}\int_{\mathbb{Z}^{N}}\left(|\nabla u_{\lambda_k}|^2+(\lambda_ka(x)+1){u_{\lambda_k}^2}\right)d\mu\\ & = \liminf\limits_{k \to \infty}J_{\lambda_k}(u_{\lambda_k}) = m_{\Omega}, \end{split} \end{equation*} |
which arrives at a contradiction.
To prove Theorem 1.5, we also need verify that u_0 is a ground state solution of (1.4). The first step is to prove that u_0 is a critical point of J_\Omega . Since J'_{\lambda_k}(u_{\lambda_k})\phi = 0 , for any \phi \in H_0^1(\Omega)\subset H^1(\mathbb{Z}^{N}) , we have
\begin{equation} \int _{\mathbb{Z}^{N}}\nabla u_{\lambda_k} \nabla\phi d\mu+\int _{\mathbb{Z}^{N}} (\lambda_k a(x)+1)u_{\lambda_k}\phi d\mu = \int_{\mathbb{Z}^{N}} {\left( \sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_{\lambda_k}(y)|^p}{|x-y|^{N - \alpha}}} \right )|u_{\lambda_k}|^{p - 2}u_{\lambda_k}\phi d\mu}. \end{equation} | (6.7) |
Since a(x) = 0 in \Omega and \phi = 0 in \Omega^c , there holds
\begin{equation} \int _{\Omega \cup \partial\Omega}\nabla u_{\lambda_k} \nabla\phi d\mu+\int _{\Omega}u_{\lambda_k}\phi d\mu = \int_{\Omega} {\left( {\sum\limits_{y \ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_{\lambda_k}(y)|^p}{|x-y|^{N-\alpha }}} }\right )|u_{\lambda_k}|^{p - 2}u_{\lambda_k}\phi d\mu}. \end{equation} | (6.8) |
Let k\to \infty , the above equality becomes
\begin{equation} \int _{\Omega \cup \partial\Omega}\nabla u_0 \nabla\phi d\mu+\int _{\Omega}u_0\phi d\mu = \int_{\Omega} {\lim\limits_{k\to\infty}\left( {\sum\limits_{y \ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_{\lambda_k}(y)|^p}{|x-y|^{N-\alpha}}} }\right ){|u_0|}^{p - 2}u_0\phi d\mu}. \end{equation} | (6.9) |
Since u_{\lambda_k}\rightarrow u_0 in \ell^p(\mathbb{Z}^{N}) with p\geq2 and Lemma 3.4, we obtain
\begin{equation} \int _{\Omega \cup \partial\Omega}\nabla u_0 \nabla\phi d\mu+\int _{\Omega}u_0\phi d\mu = \int_{\Omega} {\left( {\sum\limits_{y \ne x \atop y \in \Omega } {\frac{|u_0(y)|^p}{|x-y|^{N-\alpha}}} }\right ){|u_0|}^{p - 2}u_0\phi d\mu}, \end{equation} | (6.10) |
which yields u_0\in\mathcal{N}_\Omega , and u_0 is a solution of (1.4).
Finally, we prove that u_0 achieves the infimum of J_\Omega in \mathcal{N}_\Omega .
\begin{equation} \begin{split} J_{\lambda_k}(u_{\lambda_k})\ & = \frac{1}{2}{\int _{\mathbb{Z}^{N}}}\left(|\nabla u_{\lambda_k}|^2 + (\lambda _k a(x)+1){u_{\lambda_k}^2}\right) d\mu-\frac{1}{2p}{\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y \ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_{\lambda_k}(y)|^p}{|x-y|^{N-\alpha}}}\right ){|u_{\lambda_k}|}^p d\mu\\ & = \frac{1}{2}\int _{\mathbb{Z}^{N}}\left(|\nabla u_0|^2+{u_0^2}\right) d\mu-\frac{1}{2p}{\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y \ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_0(y)|^p}{|x-y|^{N-\alpha}}}\right )|u_0|^p d\mu+o_k(1)\\ & = \frac{1}{2}\int_{\Omega \cup \partial\Omega}{|\nabla u_0|}^2 d\mu+\int_{\Omega}{u_0^2} d\mu -\frac{1}{2p}\int_{\Omega}\left(\sum\limits_{y \ne x \atop y \in \Omega } {\frac{|u_0(y)|^p}{|x-y|^{N-\alpha}}}\right )|u_0|^p d\mu+o_k(1)\\ & = J_{\Omega}(u_0)+o_k(1). \end{split} \end{equation} | (6.11) |
Since J_{\lambda_k}(u_{\lambda_k}) = m_{\lambda_k} , we get J_{\Omega}(u_0) = m_{\Omega} by Lemma 6.4. Hence the function u_0 is a ground state solution of (1.4).
Finally, we have the following lemma for the convergence of the sequence \{u_{\lambda_k}\} .
Corollary 6.5. Furthermore, we have \lim\limits_{k \to \infty}\|u_{\lambda_k}-u_0\|_{E_{\lambda_k}(\mathbb{Z}^{N})} = 0 .
Proof. Indeed, since u_{\lambda_k} \in\mathcal{N}_{\lambda_k} and u_0|_{\Omega^c} = 0 , we have
\begin{equation*} \begin{split} \|u_{\lambda_k}-u_0\|^2_{E_{\lambda_k}(\mathbb{Z}^{N})} & = {\int _{\mathbb{Z}^{N}}}\left({|\nabla( u_{\lambda_k}-u_0)|}^2 + (\lambda _k a(x)+1)( u_{\lambda_k}-u_0)^2\right) d\mu\\ & = \|u_{\lambda_k}\|^2_{E_{\lambda_k}(\mathbb{Z}^{N})}+\|u_0\|^2_{E_{\lambda_k}(\mathbb{Z}^{N})}-2\int_{\mathbb{Z}^{N}}\nabla u_{\lambda_k} \nabla u_0d\mu-2\int_{\mathbb{Z}^{N}}u_{\lambda_k} u_0 d\mu\\ & = \|u_{\lambda_k}\|^2_{E_{\lambda_k}(\mathbb{Z}^{N})}+\|u_0\|^2_{H_0^1(\Omega)} -2\int_{\Omega\cup\partial\Omega}\nabla u_{\lambda_k} \nabla u_0d\mu -2\int_{\Omega}u_{\lambda_k} u_0 d\mu\\ & = \|u_{\lambda_k}\|^2_{E_{\lambda_k}(\mathbb{Z}^{N})}+\|u_0\|^2_{H_0^1(\Omega)} -2\|u_0\|^2_{H_0^1(\Omega)}+o_k(1)\\ & = \|u_{\lambda_k}\|^2_{E_{\lambda_k}(\mathbb{Z}^{N})}-\|u_0\|^2_{H_0^1(\Omega)}+o_k(1)\\ & = {\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_k(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_k|^pd\mu-{\int _{\Omega}}\left(\sum\limits_{y\ne x \atop y \in \Omega } {\frac{|u_0(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_0|^p d\mu +o_k(1), \\ \end{split} \end{equation*} |
which finishes the proof.
This work was supported by NNSF of China (Grants 11971202), Outstanding Young foundation of Jiangsu Province No. BK20200042.
The authors declare no conflict of interest.
[1] |
Awadh O (2017) Sustainability and green building rating systems: LEED, BREEAM, GSAS and Estidama critical analysis. J Build Eng 11: 25-29. doi:10.1016/j.jobe.2017.03.010. doi: 10.1016/j.jobe.2017.03.010
![]() |
[2] |
Campiglio E (2016) Beyond carbon pricing: The role of banking and monetary policy in financing the transition to a low-carbon economy. Ecol Econ 121: 220-230. doi:10.1016/j.ecolecon.2015.03.020. doi: 10.1016/j.ecolecon.2015.03.020
![]() |
[3] |
Dawson N, Martin A, Sikor T (2016) Green Revolution in Sub-Saharan Africa: Implications of Imposed Innovation for the Wellbeing of Rural Smallholders. World Dev 78: 204-218. doi:10.1016/j.worlddev.2015.10.008. doi: 10.1016/j.worlddev.2015.10.008
![]() |
[4] | de Araujo GJF, de Oliveira S, de Oliveira MMB (2019) Economic Analysis of Internal Circulation Biodigesters and Vinasse Concentrators for the Generation of Electricity, Fertilizers, and Carbon Credits in Various Brazilian Economic Scenarios. Bio Energy Res 12: 1164-1186. doi:10.1007/s12155-019-10030-9. |
[5] |
Emerick K, de Janvry A, Sadoulet E, et al. (2016) Technological Innovations, Downside Risk, and the Modernization of Agriculture. Am Econ Rev 106: 1537-1561. doi:10.1257/aer.20150474. doi: 10.1257/aer.20150474
![]() |
[6] |
Ganda F (2019) The environmental impacts of financial development in OECD countries: a panel GMM approach. Environ Sci Pollut Res 26: 6758-6772. doi:10.1007/s11356-019-04143-z. doi: 10.1007/s11356-019-04143-z
![]() |
[7] |
Gharaei A, Karimi M, Shekarabi SAH (2019) An integrated multi-product, multi-buyer supply chain under penalty, green, and quality control polices and a vendor managed inventory with consignment stock agreement: The outer approximation with equality relaxation and augmented penalty algorithm. Appl Math Model 69: 223-254. doi:10.1016/j.apm.2018.11.035. doi: 10.1016/j.apm.2018.11.035
![]() |
[8] |
Ghisetti C, Mancinelli S, Mazzanti M, et al. (2017) Financial barriers and environmental innovations: evidence from EU manufacturing firms. Clim Policy 17: S131-S147. doi:10.1080/14693062.2016.1242057. doi: 10.1080/14693062.2016.1242057
![]() |
[9] |
Gritzas G, Kavoulakos KI (2016) Diverse economies and alternative spaces: An overview of approaches and practices. Eur Urban Reg Stud 23: 917-934. doi:10.1177/0969776415573778. doi: 10.1177/0969776415573778
![]() |
[10] |
Grydehoj A, Kelman I (2017) The eco-island trap: climate change mitigation and conspicuous sustainability. Area 49: 106-113. doi:10.1111/area.12300. doi: 10.1111/area.12300
![]() |
[11] |
He LY, Zhang LH, Zhong ZQ, et al. (2019) Green credit, renewable energy investment and green economy development: Empirical analysis based on 150 listed companies of China. J Clean Prod 208: 363-372. doi:10.1016/j.jclepro.2018.10.119. doi: 10.1016/j.jclepro.2018.10.119
![]() |
[12] |
Hinson R, Lensink R, Mueller A (2019) Transforming agribusiness in developing countries: SDGs and the role of FinTech. Curr Opin Environ Sustain 41: 1-9. doi:10.1016/j.cosust.2019.07.002. doi: 10.1016/j.cosust.2019.07.002
![]() |
[13] | Hu YQ, Jiang HY, Zhong ZQ (2020) Impact of green credit on industrial structure in China: theoretical mechanism and empirical analysis. Environ Sci Pollut Res, 1-14. doi:10.1007/s11356-020-07717-4. |
[14] |
Illankoon I, Tam VWY, Le KN (2017) Environmental, Economic, and Social Parameters in International Green Building Rating Tools. J Prof Issues Eng Educ Pract 143: 8. doi:10.1061/(asce)ei.1943-5541.0000313. doi: 10.1061/(ASCE)EI.1943-5541.0000313
![]() |
[15] |
Illankoon I, Tam VWY, Le KN, et al. (2017) Key credit criteria among international green building rating tools. J Clean Prod 164: 209-220. doi:10.1016/j.jclepro.2017.06.206. doi: 10.1016/j.jclepro.2017.06.206
![]() |
[16] | Jia F, Zhang TY, Chen LJ (2020) Sustainable supply chain Finance:Towards a research agenda. J Clean Prod 243: 14. doi:10.1016/j.jclepro.2019.118680. |
[17] |
Kang H, Jung SY, Lee H (2020) The impact of Green Credit Policy on manufacturers' efforts to reduce suppliers' pollution. J Clean Prod 248: 8. doi:10.1016/j.jclepro.2019.119271. doi: 10.1016/j.jclepro.2019.119271
![]() |
[18] |
Kok AG, Shang K, Yucel S (2018) Impact of Electricity Pricing Policies on Renewable Energy Investments and Carbon Emissions. Manage Sci 64: 131-148. doi:10.1287/mnsc.2016.2576. doi: 10.1287/mnsc.2016.2576
![]() |
[19] |
Li YM, Zhang Q, Liu BY, et al. (2018) Substitution effect of New-Energy Vehicle Credit Program and Corporate Average Fuel Consumption Regulation for Green-car Subsidy. Energy 152: 223-236. doi:10.1016/j.energy.2018.03.134. doi: 10.1016/j.energy.2018.03.134
![]() |
[20] |
Monasterolo I, Raberto M (2018) The EIRIN Flow-of-funds Behavioural Model of Green Fiscal Policies and Green Sovereign Bonds. Ecol Econ 144: 228-243. doi:10.1016/j.ecolecon.2017.07.029. doi: 10.1016/j.ecolecon.2017.07.029
![]() |
[21] |
Nassani AA, Aldakhil AM, Abro MMQ, et al. (2017) Environmental Kuznets curve among BRICS countries: Spot lightening finance, transport, energy and growth factors. J Clean Prod 154: 474-487. doi:10.1016/j.jclepro.2017.04.025. doi: 10.1016/j.jclepro.2017.04.025
![]() |
[22] |
Ouyang YF, Li P (2018) On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach. Energy Econ 71: 238-252. doi:10.1016/j.eneco.2018.02.015. doi: 10.1016/j.eneco.2018.02.015
![]() |
[23] |
Panja S, Mondal SK (2020) Exploring a two-layer green supply chain game theoretic model with credit linked demand and mark-up under revenue sharing contract. J Clean Prod 250: 23. doi:10.1016/j.jclepro.2019.119491. doi: 10.1016/j.jclepro.2019.119491
![]() |
[24] |
Rastogi A, Choi JK, Hong T, et al. (2017) Impact of different LEED versions for green building certification and energy efficiency rating system: A Multifamily Midrise case study. Appl Energy 205: 732-740. doi:10.1016/j.apenergy.2017.08.149. doi: 10.1016/j.apenergy.2017.08.149
![]() |
[25] |
Rezaee A, Dehghanian F, Fahimnia B, et al. (2017) Green supply chain network design with stochastic demand and carbon price. Ann Oper Res 250: 463-485. doi:10.1007/s10479-015-1936-z. doi: 10.1007/s10479-015-1936-z
![]() |
[26] |
Saxena N, Singh SR, Sana SS (2017) A GREEN SUPPLY CHAIN MODEL OF VENDOR AND BUYER FOR REMANUFACTURING. Rairo-Oper Res 51: 1133-1150. doi:10.1051/ro/2016077. doi: 10.1051/ro/2016077
![]() |
[27] |
Shaw K, Irfan M, Shankar R, et al. (2016) Low carbon chance constrained supply chain network design problem: a Benders decomposition based approach. Comput Ind Eng 98: 483-497. doi:10.1016/j.cie.2016.06.011. doi: 10.1016/j.cie.2016.06.011
![]() |
[28] |
Tadele Z (2017) Raising Crop Productivity in Africa through Intensification. Agronomy-Basel 7: 30. doi:10.3390/agronomy7010022. doi: 10.3390/agronomy7020030
![]() |
[29] |
Taghizadeh-Hesary F, Yoshino N (2019) The way to induce private participation in green finance and investment. Financ Res Lett 31: 98-103. doi:10.1016/j.frl.2019.04.016. doi: 10.1016/j.frl.2019.04.016
![]() |
[30] |
Tiwari S, Ahmed W, Sarkar B (2018) Multi-item sustainable green production system under trade-credit and partial backordering. J Clean Prod 204: 82-95. doi:10.1016/j.jclepro.2018.08.181. doi: 10.1016/j.jclepro.2018.08.181
![]() |
[31] |
Weber O (2017) Corporate sustainability and financial performance of Chinese banks. Sustain Account Manag Policy J 8: 358-385. doi:10.1108/sampj-09-2016-0066. doi: 10.1108/SAMPJ-09-2016-0066
![]() |
[32] | Wu P, Mao C, Wang J, et al. (2016) A decade review of the credits obtained by LEED v2.2 certified green building projects. Build Environ 102: 167-178. doi:10.1016/j.buildenv.2016.03.026. |
[33] |
Wu P, Song YZ, Shou WC, et al. (2017) A comprehensive analysis of the credits obtained by LEED 2009 certified green buildings. Renew Sust Energ Rev 68: 370-379. doi:10.1016/j.rser.2016.10.007. doi: 10.1016/j.rser.2016.10.007
![]() |
1. | Yang Liu, Yunyan Yang, Topological degree for Kazdan–Warner equation in the negative case on finite graph, 2024, 65, 0232-704X, 10.1007/s10455-024-09960-1 | |
2. | Yang Liu, Mengjie Zhang, Existence of solutions for nonlinear biharmonic Choquard equations on weighted lattice graphs, 2024, 534, 0022247X, 128079, 10.1016/j.jmaa.2023.128079 | |
3. | Yang Liu, Mengjie Zhang, The Ground State Solutions to a Class of Biharmonic Choquard Equations on Weighted Lattice Graphs, 2024, 50, 1017-060X, 10.1007/s41980-023-00846-9 | |
4. | Dandan Yang, Zhenyu Bai, Chuanzhi Bai, Existence of Solutions for Nonlinear Choquard Equations with (p, q)-Laplacian on Finite Weighted Lattice Graphs, 2024, 13, 2075-1680, 762, 10.3390/axioms13110762 | |
5. | Yang Liu, The positive solution for the nonlinear p-Laplacian Choquard equation on lattice graphs, 2025, 27, 1661-7738, 10.1007/s11784-025-01187-2 | |
6. | Yong Liu, Jun Wang, Kun Wang, Wen Yang, Yanni Zhu, Existence and nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsäcker model on lattice graph, 2025, 438, 00220396, 113360, 10.1016/j.jde.2025.113360 |