Citation: Yannick Fanchette, Harry Ramenah, Camel Tanougast, Michel Benne. Applying Johansen VECM cointegration approach to propose a forecast model of photovoltaic power output plant in Reunion Island[J]. AIMS Energy, 2020, 8(2): 179-213. doi: 10.3934/energy.2020.2.179
[1] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[2] | C. Connell McCluskey . Global stability for an model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences and Engineering, 2016, 13(2): 381-400. doi: 10.3934/mbe.2015008 |
[3] | Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297 |
[4] | Maria Guadalupe Vazquez-Peña, Cruz Vargas-De-León, Jorge Velázquez-Castro . Global stability for a mosquito-borne disease model with continuous-time age structure in the susceptible and relapsed host classes. Mathematical Biosciences and Engineering, 2024, 21(11): 7582-7600. doi: 10.3934/mbe.2024333 |
[5] | Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372 |
[6] | Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227 |
[7] | Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390 |
[8] | Zhisheng Shuai, P. van den Driessche . Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences and Engineering, 2012, 9(2): 393-411. doi: 10.3934/mbe.2012.9.393 |
[9] | Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073 |
[10] | Andrey V. Melnik, Andrei Korobeinikov . Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Mathematical Biosciences and Engineering, 2011, 8(4): 1019-1034. doi: 10.3934/mbe.2011.8.1019 |
[1] |
Selosse S, Garabedian S, Ricci O, et al. (2018) The renewable energy revolution of reunion island. Renewable Sustainable Energy Rev 89: 99-105. doi: 10.1016/j.rser.2018.03.013
![]() |
[2] | Omubo-Pepple VB, Israel-Cookey C, Alaminokuma GI (2009) Effects of temperature, solar flux and relative humidity on the efficient conversion of solar energy to electricity. Eur J Sci Res 35: 173-180. |
[3] | Laronde R, Charki A, Bigaud D (2010) Reliability of photovoltaic modules based on climatic measurement data. International Metrology Conference CAFMET, 1-6. |
[4] |
Wan C, Zhao J, Song Y, et al. (2015) Photovoltaic and solar power forecasting for smart grid energy management. CSEE J Power Energy Syst 1: 38-46. doi: 10.17775/CSEEJPES.2015.00046
![]() |
[5] |
Antonanzas J, Osorio N, Escobar R, et al. (2016) Review of photovoltaic power forecasting. Sol Energy 136: 78-111. doi: 10.1016/j.solener.2016.06.069
![]() |
[6] |
Sobri S, Koohi-Kamali S, Abd Rahim N (2018) Solar photovoltaic generation forecasting methods: A review. Energy Convers Manage 156: 459-497. doi: 10.1016/j.enconman.2017.11.019
![]() |
[7] |
Al-Sabounchi AM (1998) Effect of ambient temperature on the demanded energy of solar sells at different inclinations. Renewable Energy 14: 149-155. doi: 10.1016/S0960-1481(98)00061-5
![]() |
[8] | Chandra S, Agrawal S, Chauhan DS (2018) Effect of ambient temperature and wind speed on performance ratio of polycrystalline solar photovoltaic module: An experimental analysis. Int Energy J 18: 171-180. |
[9] | Amajama J, Ogbulezie JC, Akonjom NA, et al. (2016) Impact of wind on the output of photovoltaic panel and solar illuminance/intensity. Int J Eng Res Gen Sci, 4. |
[10] | Kaldellis JK, Kapsali M, Kavadias KA (2014) Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renewable Energy 66: 612-624. |
[11] |
Ketjoy N, Konyu M (2014) Study of dust effect on photovoltaic module for photovoltaic power plant. Energy Procedia 52: 431-437. doi: 10.1016/j.egypro.2014.07.095
![]() |
[12] |
Barbieri F, Rajakaruna S, Ghosh A (2017) Very short-term photovoltaic power forecasting with cloud modeling: A review. Renewable Sustainable Energy Rev 75: 242-263. doi: 10.1016/j.rser.2016.10.068
![]() |
[13] |
Li Y, Sub Y, Shu L (2014) An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renewable Energy 66: 78-89. doi: 10.1016/j.renene.2013.11.067
![]() |
[14] |
Raza MQ, Nadarajah M, Ekanayake C (2016) On recent advances in PV output power forecast. Sol Energy 136: 125-144. doi: 10.1016/j.solener.2016.06.073
![]() |
[15] |
Zamo M, Mestre O, Arbogast P, et al. (2014) A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: Deterministic forecast of hourly production. Sol Energy 105: 792-803. doi: 10.1016/j.solener.2013.12.006
![]() |
[16] | Zamo M, Mestre O, Arbogast P, et al. (2014) A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production. Part II: Probabilistic forecast of daily production. Sol Energy 105: 804-816. |
[17] |
AlSkaif T, Dev S, Visser L, et al. (2020) A systematic analysis of meteorological variables for PV output power estimation. Renewable Energy 153: 12-22. doi: 10.1016/j.renene.2020.01.150
![]() |
[18] | Gujarati DN (2004) Basic of econometric. The McGraw-Hill Econometrics, Fourth Edition, Fourth Companies. |
[19] | Enders W (1995) Applied economic time series. Wiley Series in Probability and Statistics. |
[20] |
Bacher P, Madsen H, Nielsen H (2009) Online short-term solar power forecasting. Sol Energy 83: 1772-1783. doi: 10.1016/j.solener.2009.05.016
![]() |
[21] |
Li Y, Shu Y (2014) An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renewable Energy 66: 78-89. doi: 10.1016/j.renene.2013.11.067
![]() |
[22] |
Chu Y, Urguhart B, Gohari S, et al. (2015) Short-term reforecasting of power output from a 48MWe solar PV plant. Sol Energy 112: 68-77. doi: 10.1016/j.solener.2014.11.017
![]() |
[23] |
Bessa R, Trindade A, Silva C, et al. (2015) Probabilistic solar power forecasting in smart grids using distributed information. Int J Electr Power Energy Syst 72: 16-23. doi: 10.1016/j.ijepes.2015.02.006
![]() |
[24] |
Pedro H, Coimbra C (2012) Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol Energy 86: 2017-2028. doi: 10.1016/j.solener.2012.04.004
![]() |
[25] |
Bouzerdoum M, Mellit A, Massi Pavan A (2013) A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. Sol Energy 98: 226-235. doi: 10.1016/j.solener.2013.10.002
![]() |
[26] |
Jing H, Korolkiewicz M, Agrawal M, et al. (2013) Forecasting solar radiation on an hourly time scale using Coupled Auto-Regressive and Dynamical System (CARDS) model. Sol Energy 87: 136-149. doi: 10.1016/j.solener.2012.10.012
![]() |
[27] |
Zamo M, Mestre O, Arbogast P, et al. (2014) A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: Deterministic forecast of hourly production. Sol Energy 105: 792-803. doi: 10.1016/j.solener.2013.12.006
![]() |
[28] | Kostylev V, Pavlovski A (2011) Solar power forecasting performance towards industry standards. 1st International Workshop on the Integration of Solar Power into Power Systems, Denmark. |
[29] |
Das UK, Soon Tey K, Seyedmahmoudian M, et al. (2018) Forecasting of photovoltaic power generation and model optimization: A review. Renewable Sustainable Energy Rev 81: 912-928. doi: 10.1016/j.rser.2017.08.017
![]() |
[30] |
Diagne M, David M, Lauret P, et al. (2013) Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renewable Sustainable Energy Rev 27: 65-76. doi: 10.1016/j.rser.2013.06.042
![]() |
[31] |
Ramenah H, Casin P, Ba M, et al. (2018) Accurate determination of parameters relationship for photovoltaic power output by augmented dickey fuller and engle granger method. AIMS Energy 6: 19-48. doi: 10.3934/energy.2018.1.19
![]() |
[32] | Marcinkiewicz E (2014) Some aspects of application of VECM analysis for modeling causal relationships between spot and futures prices. Optimum Stud Ekon 71: 114-125. |
[33] |
Andrei D, Andrei L (2015) Vector error correction model in explaining the association of some macroeconomic variables in Romania. Procedia Econ finance 22: 568-576. doi: 10.1016/S2212-5671(15)00261-0
![]() |
[34] |
Katircioglu ST (2009) Revisiting the tourism-led-growth hypothesis for Turkey using the bounds test and Johansen approach for cointegration. Tourism Manage 30: 17-20. doi: 10.1016/j.tourman.2008.04.004
![]() |
[35] |
Skoplaki E, Palyvos JA (2009) Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renewable Energy 34: 23-29. doi: 10.1016/j.renene.2008.04.009
![]() |
[36] |
Dubey S, Sarvaiya JN, Seshadri B (2013) Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world-A Review. Energy Procedia 33: 311-321. doi: 10.1016/j.egypro.2013.05.072
![]() |
[37] |
Luo Y, Zhang L, Liu Z, et al. (2017) Performance analysis of a self-adaptive building integrated photovoltaic thermoelectric wall system in hot summer and cold winter zone of China. Energy 140: 584-600. doi: 10.1016/j.energy.2017.09.015
![]() |
[38] | Amajama J, Oku DE (2016) Wind versus UHF Radio signal. Int J Sci Eng Technol Res 5: 583-585. |
[39] |
Qasem H, Betts TR, Müllejans H, et al. (2014) Application dust-induced shading on photovoltaic modules. Photovolt Res 22: 218-226. doi: 10.1002/pip.2230
![]() |
[40] | Jalil A, Rao NH (2019) Chapter 8-Time series analysis (Stationarity, Cointegration, and Causality). Özcan B, Öztürk I, Éds. Environmental Kuznets Curve (EKC), Academic Press, 85-99. |
[41] | Granger CWJ, Weiss AA (1983) Time series analysis of error-correction. Karlin S, Amemiya T, Goodman LA, Éds. Studies in Econometrics, Time Series, and Multivariate Statistics, Academic Press, 255-278. |
[42] | Mills TC (2019) Chapter 14-Error correction, spurious regressions, and cointegration. Mills TC, Ed. Applied Time Series Analysis, Academic Press, 233-253. |
[43] | Davinson R, MacKinnon JG (2009) Econometric Theory and Methods, Oxford University Press. |
[44] |
Hassani H, Yeganegi MR (2019) Sum of squared ACF and the Ljung-Box statistics. Phys A: Stat Mech Appl 520: 81-86. doi: 10.1016/j.physa.2018.12.028
![]() |
[45] |
Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65: 297-303. doi: 10.1093/biomet/65.2.297
![]() |
[46] | Hoffman JIE (2015) Chapter 6-Normal distribution. Hoffman JIE, Ed. Biostatistics for Medical and Biomedical Practitioners, Academic Press, 101-119. |
[47] |
Johansen S (1988) Statistical analysis of cointegration vectors. J Econ Dyn Control 12: 231-254. doi: 10.1016/0165-1889(88)90041-3
![]() |
[48] |
Johansen S (1991) Estimation and hypothesis testing of cointegration vectors in gaussian vector autoregressive models. Econometrica 59: 1551-1580. doi: 10.2307/2938278
![]() |
[49] | Johansen S (1995) Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. New York: Oxford University Press. |
[50] |
Fu T, Tang X, Cai Z, et al. (2020) Correlation research of phase angle variation and coating performance by means of Pearson's correlation coefficient. Prog Org Coat 139: 105459. doi: 10.1016/j.porgcoat.2019.105459
![]() |
1. | Xia Wang, Yuming Chen, Shengqiang Liu, Global dynamics of a vector-borne disease model with infection ages and general incidence rates, 2018, 37, 0101-8205, 4055, 10.1007/s40314-017-0560-8 | |
2. | Cruz Vargas-De-León, Global stability properties of age-dependent epidemic models with varying rates of recurrence, 2016, 39, 01704214, 2057, 10.1002/mma.3621 | |
3. | Edwin Setiawan Nugraha, Janson Naiborhu, Nuning Nuraini, 2017, 1825, 0094-243X, 020015, 10.1063/1.4978984 | |
4. | Gang Huang, Chenguang Nie, Yueping Dong, Global stability for an SEI model of infectious diseases with immigration and age structure in susceptibility, 2019, 12, 1793-5245, 1950042, 10.1142/S1793524519500426 | |
5. | Xia Wang, Ying Zhang, Xinyu Song, An age-structured epidemic model with waning immunity and general nonlinear incidence rate, 2018, 11, 1793-5245, 1850069, 10.1142/S1793524518500699 | |
6. | Rui Xu, Zhili Wang, Fengqin Zhang, Global stability and Hopf bifurcations of an SEIR epidemiological model with logistic growth and time delay, 2015, 269, 00963003, 332, 10.1016/j.amc.2015.07.084 | |
7. | Danga Duplex Elvis Houpa, Tagne Eric Miamdjo, Tchaptchie Yannick Kouakep, A General Model for Hepatitis B Disease with Age-Dependent Susceptibility and Transmission Probabilities, 2014, 05, 2152-7385, 707, 10.4236/am.2014.54068 | |
8. | Lili Liu, Xianning Liu, Mathematical Analysis for an Age-Structured Heroin Epidemic Model, 2019, 164, 0167-8019, 193, 10.1007/s10440-018-00234-0 | |
9. | Carles Barril, Andrei Korobeinikov, 2014, Chapter 18, 978-3-319-08137-3, 99, 10.1007/978-3-319-08138-0_18 | |
10. | Jinliang Wang, Ran Zhang, Toshikazu Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, 2015, 432, 0022247X, 289, 10.1016/j.jmaa.2015.06.040 | |
11. | Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020 | |
12. | Kosaku Kitagawa, Toshikazu Kuniya, Shinji Nakaoka, Yusuke Asai, Koichi Watashi, Shingo Iwami, Mathematical Analysis of a Transformed ODE from a PDE Multiscale Model of Hepatitis C Virus Infection, 2019, 81, 0092-8240, 1427, 10.1007/s11538-018-00564-y | |
13. | Chuncheng Wang, Dejun Fan, Ling Xia, Xiaoyu Yi, Global stability for a multi-group SVIR model with age of vaccination, 2018, 11, 1793-5245, 1850068, 10.1142/S1793524518500687 | |
14. | Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba, A multi-group SIR epidemic model with age structure, 2016, 21, 1531-3492, 3515, 10.3934/dcdsb.2016109 | |
15. | Xia Wang, Yijun Lou, Xinyu Song, Age-Structured Within-Host HIV Dynamics with Multiple Target Cells, 2017, 138, 00222526, 43, 10.1111/sapm.12135 | |
16. | Jinliang Wang, Min Guo, Shengqiang Liu, SVIR epidemic model with age structure in susceptibility, vaccination effects and relapse, 2017, 82, 0272-4960, 945, 10.1093/imamat/hxx020 | |
17. | Cruz Vargas-De-León, Lourdes Esteva, Andrei Korobeinikov, Age-dependency in host-vector models: The global analysis, 2014, 243, 00963003, 969, 10.1016/j.amc.2014.06.042 | |
18. | Xia Wang, Yuming Chen, Xinyu Song, Global dynamics of a cholera model with age structures and multiple transmission modes, 2019, 12, 1793-5245, 1950051, 10.1142/S1793524519500517 | |
19. | Leonid Shaikhet, Andrei Korobeinikov, Stability of a stochastic model for HIV-1 dynamics within a host, 2016, 95, 0003-6811, 1228, 10.1080/00036811.2015.1058363 | |
20. | Xia Wang, Yuming Chen, Shengqiang Liu, Dynamics of an age‐structured host‐vector model for malaria transmission, 2018, 41, 0170-4214, 1966, 10.1002/mma.4723 | |
21. | Raúl Peralta, Cruz Vargas-De-León, Pedro Miramontes, Global Stability Results in a SVIR Epidemic Model with Immunity Loss Rate Depending on the Vaccine-Age, 2015, 2015, 1085-3375, 1, 10.1155/2015/341854 | |
22. | Shengfu Wang, Lin-Fei Nie, Global Dynamics for a Vector-Borne Disease Model with Class-Age-Dependent Vaccination, Latency and General Incidence Rate, 2020, 19, 1575-5460, 10.1007/s12346-020-00407-z | |
23. | Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang, Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility, 2017, 22, 1553-524X, 2795, 10.3934/dcdsb.2017151 | |
24. | Toshikazu Kuniya, Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients, 2014, 27, 08939659, 15, 10.1016/j.aml.2013.08.008 | |
25. | Toshikazu Kuniya, Global Behavior of a Multi-Group SIR Epidemic Model with Age Structure and an Application to the Chlamydia Epidemic in Japan, 2019, 79, 0036-1399, 321, 10.1137/18M1205947 | |
26. | Hisashi Inaba, 2017, Chapter 6, 978-981-10-0187-1, 287, 10.1007/978-981-10-0188-8_6 | |
27. | Toshikazu Kuniya, Hopf bifurcation in an age-structured SIR epidemic model, 2019, 92, 08939659, 22, 10.1016/j.aml.2018.12.010 | |
28. | Xia Wang, Yuming Chen, Maia Martcheva, Libin Rong, Asymptotic analysis of a vector-borne disease model with the age of infection, 2020, 14, 1751-3758, 332, 10.1080/17513758.2020.1745912 | |
29. | Faïçal Ndaïrou, Delfim F. M. Torres, Mathematical Analysis of a Fractional COVID-19 Model Applied to Wuhan, Spain and Portugal, 2021, 10, 2075-1680, 135, 10.3390/axioms10030135 | |
30. | Suxia Zhang, Yanna Liu, Hui Cao, Bifurcation analysis of an age‐structured epidemic model with two staged‐progressions, 2021, 44, 0170-4214, 11482, 10.1002/mma.7508 | |
31. | Manoj Kumar, Syed Abbas, Age-Structured SIR Model for the Spread of Infectious Diseases Through Indirect Contacts, 2022, 19, 1660-5446, 10.1007/s00009-021-01925-z | |
32. | Jiaji Pan, Zhongxiang Chen, Yixuan He, Tongliang Liu, Xi Cheng, Jun Xiao, Hao Feng, Why Controlling the Asymptomatic Infection Is Important: A Modelling Study with Stability and Sensitivity Analysis, 2022, 6, 2504-3110, 197, 10.3390/fractalfract6040197 | |
33. | Ruyan Su, Wensheng Yang, Global stability of a diffusive HCV infections epidemic model with nonlinear incidence, 2022, 68, 1598-5865, 2685, 10.1007/s12190-021-01637-3 | |
34. | Xin Jiang, Global Dynamics for an Age-Structured Cholera Infection Model with General Infection Rates, 2021, 9, 2227-7390, 2993, 10.3390/math9232993 | |
35. | Chunrong Xue, Xin Ning, Study on the Global Stability for a Generalized SEIR Epidemic Model, 2022, 2022, 1687-5273, 1, 10.1155/2022/8215214 | |
36. | Xiaogang Liu, Yuming Chen, Xiaomin Li, Jianquan Li, Global stability of latency-age/stage-structured epidemic models with differential infectivity, 2023, 86, 0303-6812, 10.1007/s00285-023-01918-4 | |
37. | Yi Chen, Lianwen Wang, Jinhui Zhang, Global asymptotic stability of an age-structured tuberculosis model: An analytical method to determine kernel coefficients in Lyapunov functional, 2024, 181, 09600779, 114649, 10.1016/j.chaos.2024.114649 | |
38. | Abderrazak NABTi, Dynamical analysis of an age-structured SEIR model with relapse, 2024, 75, 0044-2275, 10.1007/s00033-024-02227-6 | |
39. | Qian Jiang, Zhijun Liu, Lianwen Wang, Global threshold dynamics of an HIV/AIDS model with multi-class-age structure, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024068 | |
40. | Kailong Zhao, Zhijun Liu, Caihong Guo, Huili Xiang, Lili Liu, Lianwen Wang, Modeling and analysis of transmission dynamics of tuberculosis with preventive treatment and vaccination strategies in China, 2025, 138, 0307904X, 115779, 10.1016/j.apm.2024.115779 | |
41. | Abderrazak Nabti, Salih Djilali, Malek Belghit, Dynamics of a Double Age-Structured SEIRI Epidemic Model, 2025, 196, 0167-8019, 10.1007/s10440-025-00723-z |