Research article

A novel approach to hesitant multi-fuzzy soft set based decision-making

  • Received: 03 November 2019 Accepted: 13 February 2020 Published: 21 February 2020
  • MSC : 06D72, 90B50, 94D05

  • In this article, we present the idea of a hesitant multi-fuzzy set. We join the characteristics of a hesitant multi-fuzzy set with the parametrization of the soft set and constructs the hesitant multi-fuzzy soft set. We center around the fundamental operations for the instance of the hesitant multi-fuzzy soft subsets. Also, we look at the root mean square sum level soft set or RMSS-level soft set to deal with uncertainties. We also provide the utilization of hesitant multi-fuzzy soft set into the decision-making issues. Finally, we deliver a standard algorithm to resolve decision-making issues and test the effectiveness of it by a socialistic decision-making problem.

    Citation: Asit Dey, Tapan Senapati, Madhumangal Pal, Guiyun Chen. A novel approach to hesitant multi-fuzzy soft set based decision-making[J]. AIMS Mathematics, 2020, 5(3): 1985-2008. doi: 10.3934/math.2020132

    Related Papers:

    [1] Awatif Nadia, Abdul Hasib Chowdhury, Esheta Mahfuj, Md. Sanwar Hossain, Khondoker Ziaul Islam, Md. Istianatur Rahman . Determination of transmission reliability margin using AC load flow. AIMS Energy, 2020, 8(4): 701-720. doi: 10.3934/energy.2020.4.701
    [2] Malhar Padhee, Rajesh Karki . Bulk system reliability impacts of forced wind energy curtailment. AIMS Energy, 2018, 6(3): 505-520. doi: 10.3934/energy.2018.3.505
    [3] Awatif Nadia, Md. Sanwar Hossain, Md. Mehedi Hasan, Sinthia Afrin, Md Shafiullah, Md. Biplob Hossain, Khondoker Ziaul Islam . Determination of transmission reliability margin for brownout. AIMS Energy, 2021, 9(5): 1009-1026. doi: 10.3934/energy.2021046
    [4] Armando L. Figueroa-Acevedo, Michael S. Czahor, David E. Jahn . A comparison of the technological, economic, public policy, and environmental factors of HVDC and HVAC interregional transmission. AIMS Energy, 2015, 3(1): 144-161. doi: 10.3934/energy.2015.1.144
    [5] Li Bin, Muhammad Shahzad, Qi Bing, Muhammad Ahsan, Muhammad U Shoukat, Hafiz MA Khan, Nabeel AM Fahal . The probabilistic load flow analysis by considering uncertainty with correlated loads and photovoltaic generation using Copula theory. AIMS Energy, 2018, 6(3): 414-435. doi: 10.3934/energy.2018.3.414
    [6] Gul Ahmad Ludin, Mohammad Amin Amin, Ahmad Shah Irshad, Soichiro Ueda, Zakirhussain Farhad, M. H. Elkholy, Tomonobu Senjyu . Power transmission in Afghanistan: Challenges, opportunities and proposals. AIMS Energy, 2024, 12(4): 840-871. doi: 10.3934/energy.2024040
    [7] Baseem Khan, Hassan Haes Alhelou, Fsaha Mebrahtu . A holistic analysis of distribution system reliability assessment methods with conventional and renewable energy sources. AIMS Energy, 2019, 7(4): 413-429. doi: 10.3934/energy.2019.4.413
    [8] Albert K. Awopone, Ahmed F. Zobaa . Analyses of optimum generation scenarios for sustainable power generation in Ghana. AIMS Energy, 2017, 5(2): 193-208. doi: 10.3934/energy.2017.2.193
    [9] Arben Gjukaj, Rexhep Shaqiri, Qamil Kabashi, Vezir Rexhepi . Renewable energy integration and distributed generation in Kosovo: Challenges and solutions for enhanced energy quality. AIMS Energy, 2024, 12(3): 686-705. doi: 10.3934/energy.2024032
    [10] Gerardo Guerra, Juan A. Martinez-Velasco . A review of tools, models and techniques for long-term assessment of distribution systems using OpenDSS and parallel computing. AIMS Energy, 2018, 6(5): 764-800. doi: 10.3934/energy.2018.5.764
  • In this article, we present the idea of a hesitant multi-fuzzy set. We join the characteristics of a hesitant multi-fuzzy set with the parametrization of the soft set and constructs the hesitant multi-fuzzy soft set. We center around the fundamental operations for the instance of the hesitant multi-fuzzy soft subsets. Also, we look at the root mean square sum level soft set or RMSS-level soft set to deal with uncertainties. We also provide the utilization of hesitant multi-fuzzy soft set into the decision-making issues. Finally, we deliver a standard algorithm to resolve decision-making issues and test the effectiveness of it by a socialistic decision-making problem.


    The classical beta function

    B(δ1,δ2)=0tδ11(1t)δ21dt,((δ1)>0,(δ2)>0) (1.1)

    and its relation with well known gamma function is given by

    B(δ1,δ2)=Γ(δ1)Γ(δ2)Γ(δ1+δ2),(δ1)>0,(δ2)>0.

    The Gauss hypergeometric, confluent hypergeometric and Appell's functions which are respectively defined by(see [27])

    2F1(δ1,δ2;δ3;z)=n=0(δ1)n(δ2)n(δ3)nznn!,(|z|<1),    (δ1,δ2,δ3C  and  δ30,1,2,3,), (1.2)

    and

    1Φ1(δ2;δ3;z)=n=0(δ2)n(δ3)nznn!,(|z|<1),    (δ2,δ3C  and  δ30,1,2,3,). (1.3)

    The Appell's series or bivariate hypergeometric series is defined by

    F1(δ1,δ2,δ3;δ4;x,y)=m,n=0(δ1)m+n(δ2)m(δ3)nxmyn(δ4)m+nm!n!; (1.4)

    for all δ1,δ2,δ3,δ4C,δ40,1,2,3,,|x|,|y|<1<1.

    The integral representation of hypergeometric, confluent hypergeometric and Appell's functions are respectively defined by

    2F1(δ1,δ2;δ3;z)=Γ(δ3)Γ(δ2)Γ(δ3δ2)10tδ21(1t)δ3δ21(1zt)δ1dt, (1.5)
    ((δ3)>(δ2)>0,|arg(1z)|<π),

    and

    1Φ1(δ2;δ3;z)=Γ(δ3)Γ(δ2)Γ(δ3δ2)10tδ21(1t)δ3δ21eztdt, (1.6)
    ((δ3)>(δ2)>0).
    F1(δ1,δ2,δ3;δ4;x,y)=Γ(δ4)Γ(δ1)Γ(δ4δ1)10tδ11(1t)δ4δ11(1xt)δ2(1yt)δ3dt. (1.7)

    The k-gamma function, k-beta function and the k-Pochhammer symbol introduced and studied by Diaz and Pariguan [5]. The integral representation of k-gamma function and k-beta function respectively given by

    Γk(z)=kzk1Γ(zk)=0tz1ezkkdt,(z)>0,k>0 (1.8)
    Bk(x,y)=1k10txk1(1t)yk1dt,(x)>0,(y)>0. (1.9)

    Here, we recall the following relations (see [5]).

    Bk(x,y)=Γk(x)Γk(y)Γk(x+y), (1.10)
    (z)n,k=Γk(z+nk)Γk(z), (1.11)

    where (z)n,k=(z)(z+k)(z+2k)(z+(n1)k);(z)0,k=1 and k>0

    and

    n=0(α)n,kznn!=(1kz)αk. (1.12)

    These studies were followed by Mansour [16], Kokologiannaki [13], Krasniqi [14] and Merovci [17]. In 2012, Mubeen and Habibullah [18] defined the k-hypergeometric function as

    2F1,k(δ1,δ2;δ3;z)=n=0(δ1)n,k(δ2)n,k(δ3)n,kznn!, (1.13)

    where δ1,δ2,δ3C and δ30,1,2, and its integral representation is given by

    2F1,k(δ1,δ2;δ3;z)=1kBk(δ2,δ3δ2)×10tδ2k1(1t)δ3δ2k1(1ktz)δ1kdt. (1.14)

    The k-Riemann-Liouville (R-L) fractional integral using k-gamma function introduced in [19]:

    (Iαkf(t))(x)=1kΓk(α)x0f(t)(xt)αk1dt,k,αR+. (1.15)

    Later on Mubeen and Iqbal [11] established the improved version of Gruss type inequalities by utilizing k-fractional integrals. In [1], Agarwal et al. presented certain Hermite-Hadamard type inequalities for generalized k-fractional integrals. Set et al. [29] presented an integral identity and generalized Hermite–Hadamard type inequalities for Riemann–Liouville fractional integral. Mubeen et al. [24] established integral inequalities of Ostrowski type for k-fractional Riemann–Liouville integrals. Recently, many researchers have introduced generalized version of k-fractional integrals and investigated a large bulk of various inequalities via the said fractional integrals. The interesting readers are referred to see the work of [9,10,26,30]. Farid et al. [7] introduced Hadamard k-fractional integrals. In [8] introduced Hadamard-type inequalities for k-fractional Riemann-Liouville integrals. In [12,31], the authors established certain inequalities by utilizing Hadamard-type inequalities for k-fractional Riemann-Liouville integrals. In [25], Nisar et al. established certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications. In [25], they presented dependence solutions of certain k-fractional differential equations of arbitrary real order with initial conditions. Recently, Samraiz et al. [28] defined an extension of Hadamard k-fractional derivative and proved its various properties.

    The solution of some integral equations involving confluent k-hypergeometric functions and k-analogue of Kummer's first formula are given in [22,23]. While the k-hypergeometric and confluent k-hypergeometric differential equations are introduced in [20]. In 2015, Mubeen et al. [21] introduced k-Appell hypergeometric function as

    F1,k(δ1,δ2,δ3;δ4;z1,z2)=m,n=0(δ1)m+n,k(δ2)m,k(δ3)m,k(δ4)m+n,kzm1zn2m!n! (1.16)

    for all δ1,δ2,δ3,δ4C,δ40,1,2,3,,max{|z1|,|z2|}<1k and k>0. Also, Mubeen et al. defined its integral representation as

    F1,k(δ1,δ2,δ3;δ4;z1,z2)=1kBk(δ1,δ4δ1)10tδ1k1(1t)δ4δ1k1(1kz1t)δ2k(1kz2t)δ3kdt, (1.17)
    ((δ4)>(δ1)>0).

    In this section, we recall the following definition of fractional derivatives from and give a new extension called Riemann-Liouville k-fractional derivative.

    Definition 2.1. The well-known R-L fractional derivative of order μ is defined by

    Dμx{f(x)}=1Γ(μ)x0f(t)(xt)μ1dt,(μ)<0. (2.1)

    For the case m1<(μ)<m where m=1,2,, it follows

    Dμx{f(x)}=dmdxmDμmx{f(x)}=dmdxm{1Γ(μ+m)x0f(t)(xt)μ+m1dt}. (2.2)

    For further study and applications, we refer the readers to the work of [2,3,4,15,32]. In the following, we define Riemann-Liouville k-fractional derivative of order μ as

    Definition 2.2.

    kDμx{f(x)}=1kΓk(μ)x0f(t)(xt)μk1dt,(μ)<0,kR+. (2.3)

    For the case m1<(μ)<m where m=1,2,, it follows

    kDμx{f(x)}=dmdxmkDμmkx{f(x)}=dmdxm{1kΓk(μ+mk)x0f(t)(xt)μk+m1dt}. (2.4)

    Note that for k=1, definition 2.2 reduces to the classical R-L fractional derivative operator given in definition 2.1.

    Now, we are ready to prove some theorems by using the new definition 2.2.

    Theorem 1. The following formula holds true,

    kDμz{zηk}=zημkΓk(μ)Bk(η+k,μ),(μ)<0. (2.5)

    Proof. From (2.3), we have

    kDμz{zηk}=1kΓk(μ)z0tηk(zt)μk1dt. (2.6)

    Substituting t=uz in (2.6), we get

    kDμz{zηk}=1kΓk(μ)10(uz)ηk(zuz)μk1zdu=zημkkΓk(μ)10uηk(1u)μk1du.

    Applying definition (1.9) to the above equation, we get the desired result.

    Theorem 2. Let (μ)>0 and suppose that the function f(z) is analytic at the origin with its Maclaurin expansion given by f(z)=n=0anzn where |z|<ρ for some ρR+. Then

    kDμz{f(z)}=n=0ankDμz{zn}. (2.7)

    Proof. Using the series expansion of the function f(z) in (2.3) gives

    kDμz{f(z)}=1kΓk(μ)z0n=0antn(zt)μk1dt.

    As the series is uniformly convergent on any closed disk centered at the origin with its radius smaller then ρ, therefore the series so does on the line segment from 0 to a fixed z for |z|<ρ. Thus it guarantee terms by terms integration as follows

    kDμz{f(z)}=n=0an{1kΓk(μ)z0tn(zt)μk1dt=n=0ankDμz{zn},

    which is the required proof.

    Theorem 3. The following result holds true:

    kDημz{zηk1(1kz)βk}=Γk(η)Γk(μ)zμk12F1,k(β,η;μ;z), (2.8)

    where (μ)>(η)>0 and |z|<1.

    Proof. By direct calculation, we have

    kDημz{zηk1(1kz)βk}=1kΓk(μη)z0tηk1(1kt)βk(zt)μηk1dt=zμηk1kΓk(μη)z0tηk1(1kt)βk(1tz)μηk1dt.

    Substituting t=zu in the above equation, we get

    kDημz{zηk1(1kz)βk}=zμk1kΓk(μη)10uηk1(1kuz)βk(1u)μηk1zdu.

    Applying (1.14) and after simplification we get the required proof.

    Theorem 4. The following result holds true:

    kDημz{zηk1(1kaz)αk(1kbz)βk}=Γk(η)Γk(μ)zμk1F1,k(η,α,β;μ;az,bz), (2.9)

    where (μ)>(η)>0, (α)>0, (β)>0, max{|az|,|bz|}<1k.

    Proof. To prove (2.9), we use the power series expansion

    (1kaz)αk(1kbz)βk=m=0n=0(α)m,k(β)n,k(az)mm!(bz)nn!.

    Now, applying Theorem 1, we obtain

    kDημz{zηk1(1kaz)αk(1kbz)βk}=m=0n=0(α)m,k(β)n,k(a)mm!(b)nn!kDημz{zηk+m+n1}=m=0n=0(α)m,k(β)n,k(a)mm!(b)nn!βk(η+mk+nk,μη)Γk(μη)zμk+m+n1=m=0n=0(α)m,k(β)n,k(a)mm!(b)nn!Γk(η+mk+nk)Γk(μ+mk+nk)zμk+m+n1.

    In view of (1.16), we get

    kDημz{zηk1(1kaz)αk(1kbz)βk}=Γk(η)Γk(μ)zμk1F1,k(η,α,β;μ;az,bz).

    Theorem 5. The following Mellin transform formula holds true:

    M{exkDμz(zηk);s}=Γ(s)Γk(μ)Bk(η+k,μ)zημk, (2.10)

    where (η)>1, (μ)<0, (s)>0.

    Proof. Applying the Mellin transform on definition (2.3), we have

    M{exkDμz(zηk);s}=0xs1exkDμz(zη);s}dx=1kΓk(μ)0xs1ex{z0tηk(zt)μk1dt}dx=zμk1kΓk(μ)0xs1ex{z0tηk(1tz)μk1dt}dx=zημkkΓk(μ)0xs1ex{10uηk(1u)μk1du}dx

    Interchanging the order of integrations in above equation, we get

    M{exkDμz(zηk);s}=zημkkΓk(μ)10uηk(1u)μk1(0xs1exdx)du.=zημkkΓk(μ)Γ(s)10uηk(1u)μk1du=Γ(s)Γk(μ)Bk(η+k,μ)zημk,

    which completes the proof.

    Theorem 6. The following Mellin transform formula holds true:

    M{exkDμz((1kz)αk);s}=zμkΓ(s)Γk(μ)Bk(k,μ)2F1,k(α,k;μ+k;z), (2.11)

    where (α)>0, (μ)<0, (s)>0, and |z|<1.

    Proof. Using the power series for (1kz)αk and applying Theorem 5 with η=nk, we can write

    M{exkDμz((1kz)αk);s}=n=0(α)n,kn!M{exkDμz(zn);s}=Γ(s)kΓk(μ)n=0(α)n,kn!Bk(nk+k,μ)znμk=Γ(s)zμkΓk(μ)n=0Bk(nk+k,μ)(α)n,kznn!=Γ(s)zμkn=0Γk(k+nk)Γk(μ+k+nk)(α)n,kznn!=Γ(s)Γk(μ+k)zμkn=0(k)n,k(μ+k)n,k(α)n,kznn!=Γ(s)zμkΓk(μ)Bk(k,μ)2F1,k(α,k;μ+k;z),

    which is the required proof.

    Theorem 7. The following result holds true:

    kDημz[zηk1Eμk,γ,δ(z)]=zμk1kΓk(μη)n=0(μ)n,kΓk(γn+δ)Bk(η+nk,μη)znn!, (2.12)

    where γ,δ,μC, (p)>0, (q)>0, (μ)>(η)>0 and Eμk,γ,δ(z) is k-Mittag-Leffler function (see [6]) defined as:

    Eμk,γ,δ(z)=n=0(μ)n,kΓk(γn+δ)znn!. (2.13)

    Proof. Using (2.13), the left-hand side of (2.12) can be written as

    kDημz[zηk1Eμk,γ,δ(z)]=kDημz[zηk1{n=0(μ)n,kΓk(γn+δ)znn!}].

    By Theorem 2, we have

    kDημz[zηk1Eμk,γ,δ(z)]=n=0(μ)n,kΓk(γn+δ){kDμz[zηk+n1]}.

    In view of Theorem 1, we get the required proof.

    Theorem 8. The following result holds true:

    kDημz{zηk1mΨn[(αi,Ai)1,m;|z(βj,Bj)1,n;]}=zμk1kΓk(μη)×n=0mi=1Γ(αi+Ain)nj=1Γ(βj+BjnBk(η+nk,μη)znn!, (2.14)

    where (p)>0, (q)>0, (μ)>(η)>0 and mΨn(z) is the Fox-Wright function defined by (see [15], pages 56–58)

    mΨn(z)=mΨn[(αi,Ai)1,m;|z(βj,Bj)1,n;]=n=0mi=1Γ(αi+Ain)nj=1Γ(βj+Bjnznn!. (2.15)

    Proof. Applying Theorem 1 and followed the same procedure used in Theorem 7, we get the desired result.

    Recently, many researchers have introduced various generalizations of fractional integrals and derivatives. In this line, we have established a k-fractional derivative and its various properties. If we letting k1 then all the results established in this paper will reduce to the results related to the classical Reimann-Liouville fractional derivative operator.

    The author K.S. Nisar thanks to Deanship of Scientific Research (DSR), Prince Sattam bin Abdulaziz University for providing facilities and support.

    The authors declare no conflict of interest.



    [1] M. Akram, A. Adeel, J. C. R. Alcantud, Group decision-making methods based on hesitant N-soft sets, Expert Syst. Appl., 115 (2019), 95-105. doi: 10.1016/j.eswa.2018.07.060
    [2] J. C. R. Alcantud, A. Giarlotta, Necessary and possible hesitant fuzzy sets: A novel model for group decision making, Inform. Fusion, 46 (2019), 63-76. doi: 10.1016/j.inffus.2018.05.005
    [3] M. Ali, F. Feng, X. Liu, et al. On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547-1553. doi: 10.1016/j.camwa.2008.11.009
    [4] B. Bedregal, R. Reiser, H. Bustince, et al. Aggregation functions for typical hesitant fuzzy elements and the action of automorphisms, Inform. Sci., 255 (2014), 82-99. doi: 10.1016/j.ins.2013.08.024
    [5] N. Cagman, S. Enginoglu, Soft set theory and uni-int decision making, Eur. J. Oper. Res., 207 (2010), 848-855. doi: 10.1016/j.ejor.2010.05.004
    [6] N. Cagman, S. Enginoglu, Soft matrix theory and its decision making, Comput. Math. Appl., 59 (2010), 3308-3314. doi: 10.1016/j.camwa.2010.03.015
    [7] D. Chen, E. C. C. Tsang, D. S. Yeung, et al. The parameterization reduction of soft sets and its applications, Comput. Math. Appl., 49 (2005), 757-763. doi: 10.1016/j.camwa.2004.10.036
    [8] J. Chen, X. Huang, J. Tang, Distance measures for higher order dual hesitant fuzzy sets, Comput. Appl. Math., 37 (2018), 1784-1806. doi: 10.1007/s40314-017-0423-3
    [9] N. Chen, Z. S. Xu, M. M. Xia, Interval-valued hesitant preference relations and their applications to group decision making, Knowl. Based Syst., 37 (2013), 528-540. doi: 10.1016/j.knosys.2012.09.009
    [10] A. Dey, M. Pal, Genelalised multi-fuzzy soft set and its application in decision making, Pac. Sci. Rev. A, 17 (2015), 23-28.
    [11] A. Dey, M. Pal, On hesitant multi-fuzzy soft topology, Pac. Sci. Rev. B, 1 (2015), 124-130.
    [12] F. Feng, Y. B. Jun, X. Liu, et al. An adjustable approach to fuzzy soft set based decision making, J. Comput. Appl. Math., 234 (2010), 10-20. doi: 10.1016/j.cam.2009.11.055
    [13] F. Feng, Y. Li, N. Cagman, Generalized uni-int decision making schemes based on choice value soft sets, Eur. J. Oper. Res., 220 (2012), 162-170. doi: 10.1016/j.ejor.2012.01.015
    [14] X. Guan, Y. Li, F. Feng, A new order relation on fuzzy soft sets and its application, Soft Comput., 17 (2013), 63-70. doi: 10.1007/s00500-012-0903-8
    [15] J. Ignatius, S. Motlagh, M. Sepehri, et al. Hybrid models in decision making under uncertainty: The case of training provider evaluation, J. Intell. Fuzzy Syst., 21 (2010), 147-162. doi: 10.3233/IFS-2010-0443
    [16] P. Kakati, S. Borkotokey, S. Rahman, et al. Interval neutrosophic hesitant fuzzy Einstein Choquet integral operator for multicriteria decision making, Artif. Intell. Rev., (2019), 1-36.
    [17] Z. Kong, L. Gao, L. Wang, A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math., 223 (2009), 540-542. doi: 10.1016/j.cam.2008.01.011
    [18] Z. Kong, L. Wang, Z. Wu, Application of fuzzy soft set in decision making problems based on grey theory, J. Comput. Appl. Math., 236 (2011), 1521-1530. doi: 10.1016/j.cam.2011.09.016
    [19] D. C. Liang, D. Liu, A novel risk decision making based on decision-theoretic rough sets under hesitant fuzzy information, IEEE Trans. Fuzzy Syst., 23 (2015), 237-247. doi: 10.1109/TFUZZ.2014.2310495
    [20] D. C. Liang, Z. S. Xu, D. Liu, Three-way decisions based on decision-theoretic rough sets with dual hesitant fuzzy information, Inform. Sci., 396 (2017), 127-143. doi: 10.1016/j.ins.2017.02.038
    [21] D. C. Liang, M. W. Wang, Z. S. Xu, et al. Risk appetite dual hesitant fuzzy three-way decisions with todim, Inform. Sci., 507 (2020), 585-605. doi: 10.1016/j.ins.2018.12.017
    [22] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589-602.
    [23] P. K. Maji, R. Biswas, A. R. Roy, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083. doi: 10.1016/S0898-1221(02)00216-X
    [24] P. Majumdar, S. K. Samanta, Generalised fuzzy soft sets, Comput. Math. Appl., 59 (2010), 1425-1432. doi: 10.1016/j.camwa.2009.12.006
    [25] D. A. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19-31.
    [26] S. Naz, M. Akram, Novel decision-making approach based on hesitant fuzzy sets and graph theory, Comput. Appl. Math., 38 (2019), 7.
    [27] B. Ozkan, E. Ozceylan, M. Kabak, et al. Evaluating the websites of academic departments through SEO criteria: A hesitant fuzzy linguistic MCDM approach, Artif. Intell. Rev., 53 (2020), 875-905. doi: 10.1007/s10462-019-09681-z
    [28] X. Qi, D. Liang, J. Zhang, Multiple attribute group decision making based on generalized power aggregation operators under interval-valued dual hesitant fuzzy linguistic environment, Int. J. Mach. Learn. Cybern., 7 (2016), 1147-1193. doi: 10.1007/s13042-015-0445-3
    [29] Z. Ren, C. Wei, A multi-attribute decision-making method with prioritization relationship and dual hesitant fuzzy decision information, Int. J. Mach. Learn. Cybern., 8 (2017), 755-763. doi: 10.1007/s13042-015-0356-3
    [30] R. M. Rodryguez, L. Martynez, V. Torra, et al. Hesitant fuzzy sets: state of the art and future directions, Int. J. Intell. Syst., 29 (2014), 495-524. doi: 10.1002/int.21654
    [31] A. R. Roy, P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math., 203 (2007), 412-418. doi: 10.1016/j.cam.2006.04.008
    [32] S. Sebastian, T. V. Ramakrishnan, Multi-fuzzy sets: An extension of fuzzy sets, Fuzzy Inf. Eng., 1 (2011), 35-43.
    [33] C. Song, Y. Zhang, Z. Xu, An improved structure learning algorithm of Bayesian Network based on the hesitant fuzzy information flow, Appl. Soft Comput., 82 (2019), 105549.
    [34] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529-539.
    [35] F. Wang, X. Li, X. Chen, Hesitant fuzzy soft set and its applications in multicriteria decision making, J. Appl. Math., 2014 (2014), 643785.
    [36] G. Wei, X. Zhao, R. Lin, Some hesitant intervalvalued fuzzy aggregation operators and their applications to multiple attribute decision making, Knowl. Based Syst, 46 (2013), 43-53. doi: 10.1016/j.knosys.2013.03.004
    [37] G. Wei, X. Zhao, Induced hesitant interval-valued fuzzy Einstein aggregation operators and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 24 (2013), 789-803. doi: 10.3233/IFS-2012-0598
    [38] G. Wei, Interval valued hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute decision making, Int. J. Mach. Learn. Cybern., 7 (2016), 1093-1114. doi: 10.1007/s13042-015-0433-7
    [39] M. Xia, Z. S. Xu, Hesitant fuzzy information aggregation in decision making, Int. J. Approx. Reason., 52 (2011), 395-407. doi: 10.1016/j.ijar.2010.09.002
    [40] M. Xia, Z. S. Xu, Some studies on properties of hesitant fuzzy sets, Int. J. Mach. Learn. Cybern., 8 (2017), 489-495. doi: 10.1007/s13042-015-0340-y
    [41] Z. S. Xu, M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inform. Sci., 181 (2011), 2128-2138. doi: 10.1016/j.ins.2011.01.028
    [42] Z. Xu, W. Zhou, Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment, Fuzzy Optim. Decis. Ma., 16 (2017), 481-503. doi: 10.1007/s10700-016-9257-5
    [43] W. Xue, Z. Xu, H. Wang, et al. Hazard assessment of landslide dams using the evidential reasoning algorithm with multi-scale hesitant fuzzy linguistic information, Appl. Soft Comput., 79 (2019), 74-86. doi: 10.1016/j.asoc.2019.03.032
    [44] Y. Yang, X. Tan, C. Meng, The multi-fuzzy soft set and its application in decision making, Appl. Math. Model., 37 (2013), 4915-4923. doi: 10.1016/j.apm.2012.10.015
    [45] Y. Yang, X. Peng, H. Chen, A decision making approach based on bipolar multi-fuzzy soft set theory, J. Intell. Fuzzy Syst., 27 (2014), 1861-1872. doi: 10.3233/IFS-141152
    [46] D. Yu, D. F. Li, J. M. Merigo, Dual hesitant fuzzy group decision making method and its application to supplier selection, Int. J. Mach. Learn. Cybern., 7 (2016), 819-831. doi: 10.1007/s13042-015-0400-3
    [47] C. Zhang, D. Li, J. Liang, Hesitant fuzzy linguistic rough set over two universes model and its applications, Int. J. Mach. Learn. Cybern., 9 (2018), 577-588. doi: 10.1007/s13042-016-0541-z
    [48] C. Zhang, D. Li, J. Liang, Multi-granularity three-way decisions with adjustable hesitant fuzzy linguistic multigranulation decision-theoretic rough sets over two universes, Inform. Sci., 507 (2020), 665-683. doi: 10.1016/j.ins.2019.01.033
    [49] C. Zhang, D. Li, J. Liang, Interval-valued hesitant fuzzy multi-granularity three-way decisions in consensus processes with applications to multi-attribute group decision making, Inform. Sci., 511 (2020), 192-211. doi: 10.1016/j.ins.2019.09.037
    [50] Z. Zhang, Hesitant fuzzy power aggregation operators and their application to multiple attribute group decision making, Inform. Sci., 234 (2013), 150-181. doi: 10.1016/j.ins.2013.01.002
    [51] Z. Zhang, C. Wang, D. Tian, et al. Induced generalized hesitant fuzzy operators and their application to multiple attribute group decision making, Comput. Ind. Eng., 67 (2014), 116-138. doi: 10.1016/j.cie.2013.10.011
    [52] Z. Zhang, H. Dong, S. Lan, Possibility multi-fuzzy soft set and its application in decision making, J. Intell. Fuzzy Syst., 27 (2013), 2115-2125.
    [53] H. Zhang, L. Xiong, W. Ma, On interval-valued hesitant fuzzy soft sets, Math. Probl. Eng., 2015 (2015), 254764.
    [54] F. Zhang, J. Ignatius, C. P. Lim, et al. A new method for ranking fuzzy numbers and its application to group decision making, Appl. Math. Model., 38 (2014), 1563-1582. doi: 10.1016/j.apm.2013.09.002
    [55] W. Zhou, Z. Xu, Hesitant fuzzy linguistic portfolio model with variable risk appetite and its application in the investment ratio calculation, Appl. Soft Comput., 84 (2019), 105719.
  • This article has been cited by:

    1. Hamza Abunima, Jiashen Teh, Ching-Ming Lai, Hussein Jabir, A Systematic Review of Reliability Studies on Composite Power Systems: A Coherent Taxonomy Motivations, Open Challenges, Recommendations, and New Research Directions, 2018, 11, 1996-1073, 2417, 10.3390/en11092417
    2. Wook-Won Kim, Jong-Keun Park, Yong-Tae Yoon, Mun-Kyeom Kim, Transmission Expansion Planning under Uncertainty for Investment Options with Various Lead-Times, 2018, 11, 1996-1073, 2429, 10.3390/en11092429
    3. O Kuzmin, N Stanasiuk, S Maiti, Relationship between сonflict management strategies and economic growth of organisation, 2020, 7, 23123435, 1, 10.23939/eem2020.02.001
    4. Panlong Jin, Zongchuan Zhou, Xue Feng, Zhiyuan Wang, Tengmu Li, Pierluigi Siano, Hazlie Mokhlis, 2024, Game study of power system reconstruction planning after extreme disaster, 9781510679795, 172, 10.1117/12.3024421
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5126) PDF downloads(487) Cited by(35)

Figures and Tables

Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog