Citation: Mojgan Pouralizadeh, Aliraza Amirtaimoori, Rossana Riccardi, Mohsen Vaez-Ghasemi. Supply chain performance evaluation in the presence of undesirable products: A case on power industry[J]. AIMS Energy, 2020, 8(1): 48-80. doi: 10.3934/energy.2020.1.48
[1] | Fangyuan Chen, Rong Yuan . Dynamic behavior of swine influenza transmission during the breed-slaughter process. Mathematical Biosciences and Engineering, 2020, 17(5): 5849-5863. doi: 10.3934/mbe.2020312 |
[2] | Aurelie Akossi, Gerardo Chowell-Puente, Alexandra Smirnova . Numerical study of discretization algorithms for stable estimation of disease parameters and epidemic forecasting. Mathematical Biosciences and Engineering, 2019, 16(5): 3674-3693. doi: 10.3934/mbe.2019182 |
[3] | Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong . Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337 |
[4] | Meili Li, Ruijun Zhai, Junling Ma . The effects of disease control measures on the reproduction number of COVID-19 in British Columbia, Canada. Mathematical Biosciences and Engineering, 2023, 20(8): 13849-13863. doi: 10.3934/mbe.2023616 |
[5] | Karen R. Ríos-Soto, Baojun Song, Carlos Castillo-Chavez . Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Mathematical Biosciences and Engineering, 2011, 8(1): 199-222. doi: 10.3934/mbe.2011.8.199 |
[6] | Rodolfo Acuňa-Soto, Luis Castaňeda-Davila, Gerardo Chowell . A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences and Engineering, 2011, 8(1): 223-238. doi: 10.3934/mbe.2011.8.223 |
[7] | Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu . The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739 |
[8] | Akhil Kumar Srivastav, Pankaj Kumar Tiwari, Prashant K Srivastava, Mini Ghosh, Yun Kang . A mathematical model for the impacts of face mask, hospitalization and quarantine on the dynamics of COVID-19 in India: deterministic vs. stochastic. Mathematical Biosciences and Engineering, 2021, 18(1): 182-213. doi: 10.3934/mbe.2021010 |
[9] | Hiroshi Nishiura . Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 49-64. doi: 10.3934/mbe.2011.8.49 |
[10] | Oren Barnea, Rami Yaari, Guy Katriel, Lewi Stone . Modelling seasonal influenza in Israel. Mathematical Biosciences and Engineering, 2011, 8(2): 561-573. doi: 10.3934/mbe.2011.8.561 |
[1] |
Hailu A, Veeman TS (2001) Non-parametric productivity analysis with undesirable outputs: An application to the Canadian pulp and paper industry. Am J Agr Econ 83: 605-616. doi: 10.1111/0002-9092.00181
![]() |
[2] |
Färe R, Grosskopf S (2003) Nonparametric productivity analysis with undesirable outputs. Am J Agr Econ 85: 1070-1074. doi: 10.1111/1467-8276.00510
![]() |
[3] |
Färe R, Grosskopf S (2009) A comment on weak disposability in nonparametric production analysis. Am J Agr Econ 91: 535-538. doi: 10.1111/j.1467-8276.2008.01237.x
![]() |
[4] |
Kuosmanen T (2005) Weak disposability in nonparametric production analysis with undesirable outputs. Am J Agr Econ 87: 1077-1082. doi: 10.1111/j.1467-8276.2005.00788.x
![]() |
[5] |
Chavas JP, Cox TL (1997) Production Analysis: A non-parametric time series application to US agriculture. J Agr Econ 48: 330-348. doi: 10.1111/j.1477-9552.1997.tb01158.x
![]() |
[6] | Shephard RW (1970) Theory of cost and production functions. Princeton: Princeton University Press. |
[7] |
Podinovski VV (2004) Bridging the gap between the constant and variable returns-to-scale models: selective proportionality in data envelopment analysis. J Oper Res Soc 55: 265-276. doi: 10.1057/palgrave.jors.2601691
![]() |
[8] |
Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2: 429-444. doi: 10.1016/0377-2217(78)90138-8
![]() |
[9] |
Färe R, Grosskopf S (2000) Network DEA. Socio-econ Plan Sci 34: 35-49. doi: 10.1016/S0038-0121(99)00012-9
![]() |
[10] |
Färe R, Grabowski R, Grosskopf S, et al. (1997) Efficiency of a fixed but allocatable input: A non-parametric approach. Econ Lett 56: 187-193. doi: 10.1016/S0165-1765(97)81899-X
![]() |
[11] |
Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage Sci 30: 1078-1092. doi: 10.1287/mnsc.30.9.1078
![]() |
[12] |
Tone K, Tsutsui M (2009) Network DEA: A slacks-based measure approach. Eur J Oper Res 197: 243-252. doi: 10.1016/j.ejor.2008.05.027
![]() |
[13] |
Zhu J (2011) Airlines performance via two-stage network DEA approach. J Centrum Cathedra: Bus Econ Res J 4: 260-269. doi: 10.7835/jcc-berj-2011-0063
![]() |
[14] |
Kao C, Hwang SN (2008) Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Eur J Oper Res 185: 418-429. doi: 10.1016/j.ejor.2006.11.041
![]() |
[15] |
Kao C (2009) Efficiency decomposition in network data envelopment analysis: A relational model. European journal of operational research. 192: 949-1962. doi: 10.1016/j.ejor.2007.10.008
![]() |
[16] |
Tone K, Tsutsui M (2010) An epsilon-based measure of efficiency in DEA-a third pole of technical efficiency. Eur J Oper Res 207: 1554-1563. doi: 10.1016/j.ejor.2010.07.014
![]() |
[17] |
Chen C, Yan H (2011) Network DEA model for supply chain performance evaluation. Eur J Oper Res 213: 147-155. doi: 10.1016/j.ejor.2011.03.010
![]() |
[18] |
Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc: Ser A 120: 253-281. doi: 10.2307/2343100
![]() |
[19] |
Tavana M, Mirzagoltabar H, Mirhedayatian SM, et al. (2013) A new network epsilon-based DEA model for supply chain performance evaluation. Comput Ind Eng 66: 501-513. doi: 10.1016/j.cie.2013.07.016
![]() |
[20] | Mirhedayatian SM, Azadi M, Saen RF(2014) A novel network data envelopment analysis model for evaluating green supply chain management. Int J Prod Econ 147: 544-554. |
[21] |
Tajbakhsh A, Hassini E (2015) A data envelopment analysis approach to evaluate sustainability in supply chain networks. J Clean Prod 105: 74-85. doi: 10.1016/j.jclepro.2014.07.054
![]() |
[22] | Plan and Budget Organization, Statistical Center of Iran. Available from: https://www.amar.org.ir/english. |
[23] |
Riccardi R, Oggioni G, Toninelli R (2012) Efficiency analysis of world cement industry in presence of undesirable output: application of data envelopment analysis and directional distance function. Energy Policy 44: 140-152. doi: 10.1016/j.enpol.2012.01.030
![]() |
1. | Md. Samsuzzoha, Manmohan Singh, David Lucy, A numerical study on an influenza epidemic model with vaccination and diffusion, 2012, 219, 00963003, 122, 10.1016/j.amc.2012.04.089 | |
2. | S. Dorjee, Z. Poljak, C. W. Revie, J. Bridgland, B. McNab, E. Leger, J. Sanchez, A Review of Simulation Modelling Approaches Used for the Spread of Zoonotic Influenza Viruses in Animal and Human Populations, 2013, 60, 18631959, 383, 10.1111/zph.12010 | |
3. | Jon Brugger, Christian L. Althaus, Transmission of and susceptibility to seasonal influenza in Switzerland from 2003 to 2015, 2020, 30, 17554365, 100373, 10.1016/j.epidem.2019.100373 | |
4. | Hiroshi Nishiura, Ping Yan, Candace K. Sleeman, Charles J. Mode, Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks, 2012, 294, 00225193, 48, 10.1016/j.jtbi.2011.10.039 | |
5. | Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 9, 978-1-4939-9826-5, 311, 10.1007/978-1-4939-9828-9_9 | |
6. | Rodolfo Acuna-Soto, 2009, Chapter 9, 978-90-481-2312-4, 189, 10.1007/978-90-481-2313-1_9 | |
7. | Parameter estimation and uncertainty quantification for an epidemic model, 2012, 9, 1551-0018, 553, 10.3934/mbe.2012.9.553 | |
8. | Y. Yang, J. D. Sugimoto, M. E. Halloran, N. E. Basta, D. L. Chao, L. Matrajt, G. Potter, E. Kenah, I. M. Longini, The Transmissibility and Control of Pandemic Influenza A (H1N1) Virus, 2009, 326, 0036-8075, 729, 10.1126/science.1177373 | |
9. | Gerardo Chowell, Fred Brauer, 2009, Chapter 1, 978-90-481-2312-4, 1, 10.1007/978-90-481-2313-1_1 | |
10. | Chaeshin Chu, Junehawk Lee, Dong Hoon Choi, Seung-Ki Youn, Jong-Koo Lee, Sensitivity Analysis of the Parameters of Korea’s Pandemic Influenza Preparedness Plan, 2011, 2, 22109099, 210, 10.1016/j.phrp.2011.11.048 | |
11. | Tridip Sardar, Soumalya Mukhopadhyay, Amiya Ranjan Bhowmick, Joydev Chattopadhyay, Alessandro Vespignani, An Optimal Cost Effectiveness Study on Zimbabwe Cholera Seasonal Data from 2008–2011, 2013, 8, 1932-6203, e81231, 10.1371/journal.pone.0081231 | |
12. | Lisa Sattenspiel, Regional patterns of mortality during the 1918 influenza pandemic in Newfoundland, 2011, 29, 0264410X, B33, 10.1016/j.vaccine.2011.02.046 | |
13. | Ian York, Ruben O. Donis, 2012, Chapter 221, 978-3-642-36870-7, 241, 10.1007/82_2012_221 | |
14. | Charlotte Jackson, Emilia Vynnycky, Punam Mangtani, The Relationship Between School Holidays and Transmission of Influenza in England and Wales, 2016, 184, 0002-9262, 644, 10.1093/aje/kww083 | |
15. | Gerardo Chowell, Hiroshi Nishiura, Quantifying the transmission potential of pandemic influenza, 2008, 5, 15710645, 50, 10.1016/j.plrev.2007.12.001 | |
16. | Maciej F Boni, Bui Huu Manh, Pham Quang Thai, Jeremy Farrar, Tran Tinh Hien, Nguyen Tran Hien, Nguyen Van Kinh, Peter Horby, Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses, 2009, 7, 1741-7015, 10.1186/1741-7015-7-43 | |
17. | Nadhem Selmi, A model of the 2014 Ebola virus: Evidence of West Africa, 2019, 010, 10.29328/journal.ijcv.1001004 | |
18. | Leonardo López, Germán Burguerner, Leonardo Giovanini, Addressing population heterogeneity and distribution in epidemics models using a cellular automata approach, 2014, 7, 1756-0500, 10.1186/1756-0500-7-234 | |
19. | I. De Falco, A. Della Cioppa, U. Scafuri, E. Tarantino, 2021, 9780128245361, 75, 10.1016/B978-0-12-824536-1.00005-8 | |
20. | Imelda Trejo, Nicolas W. Hengartner, Alberto d’Onofrio, A modified Susceptible-Infected-Recovered model for observed under-reported incidence data, 2022, 17, 1932-6203, e0263047, 10.1371/journal.pone.0263047 | |
21. | Ella Ziegler, Katarina L. Matthes, Peter W. Middelkamp, Verena J. Schuenemann, Christian L. Althaus, Frank Rühli, Kaspar Staub, Retrospective modelling of the disease and mortality burden of the 1918–1920 influenza pandemic in Zurich, Switzerland, 2025, 50, 17554365, 100813, 10.1016/j.epidem.2025.100813 |