Citation: Akira Nishimura, Tadaki Inoue, Yoshito Sakakibara, Masafumi Hirota, Akira Koshio, Fumio Kokai, Eric Hu. Optimum molar ratio of H2 and H2O to reduce CO2 using Pd/TiO2[J]. AIMS Materials Science, 2019, 6(4): 464-483. doi: 10.3934/matersci.2019.4.464
[1] | Verónica Martínez-Fernández, Francisco Navarro . Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI. AIMS Genetics, 2018, 5(1): 63-74. doi: 10.3934/genet.2018.1.63 |
[2] | Jue Er Amanda Lee, Linda May Parsons, Leonie M. Quinn . MYC function and regulation in flies: how Drosophila has enlightened MYC cancer biology. AIMS Genetics, 2014, 1(1): 81-98. doi: 10.3934/genet.2014.1.81 |
[3] | Carlos García-Padilla, Amelia Aránega, Diego Franco . The role of long non-coding RNAs in cardiac development and disease. AIMS Genetics, 2018, 5(2): 124-140. doi: 10.3934/genet.2018.2.124 |
[4] | Tú Nguyen-Dumont, Jenna Stewart, Ingrid Winship, Melissa C. Southey . Rare genetic variants: making the connection with breast cancer susceptibility. AIMS Genetics, 2015, 2(4): 281-292. doi: 10.3934/genet.2015.4.281 |
[5] | Valeriia Mikhailova, Valeriia Gulaia, Vladlena Tiasto, Stanislav Rybtsov, Margarita Yatsunskaya, Alexander Kagansky . Towards an advanced cell-based in vitro glioma model system. AIMS Genetics, 2018, 5(2): 91-112. doi: 10.3934/genet.2018.2.91 |
[6] | Shafagh A. Waters, Paul D. Waters . Imprinted X chromosome inactivation: evolution of mechanisms in distantly related mammals. AIMS Genetics, 2015, 2(2): 110-126. doi: 10.3934/genet.2015.2.110 |
[7] | Jeffrey M. Marcus . Our love-hate relationship with DNA barcodes, the Y2K problem, and the search for next generation barcodes. AIMS Genetics, 2018, 5(1): 1-23. doi: 10.3934/genet.2018.1.1 |
[8] | Vladlena Tiasto, Valeriia Mikhailova, Valeriia Gulaia, Valeriia Vikhareva, Boris Zorin, Alexandra Kalitnik, Alexander Kagansky . Esophageal cancer research today and tomorrow: Lessons from algae and other perspectives. AIMS Genetics, 2018, 5(1): 75-90. doi: 10.3934/genet.2018.1.75 |
[9] | Ke-Sheng Wang, Xuefeng Liu, Daniel Owusu, Yue Pan, Changchun Xie . Polymorphisms in the ANKS1B gene are associated with cancer, obesity and type 2 diabetes. AIMS Genetics, 2015, 2(3): 192-203. doi: 10.3934/genet.2015.3.192 |
[10] | Asaad M Mahmood, Jim M Dunwell . Evidence for novel epigenetic marks within plants. AIMS Genetics, 2019, 6(4): 70-87. doi: 10.3934/genet.2019.4.70 |
Colon cancer is one of the leading causes of mortality and morbidity worldwide [1], with a dramatic rise in incidence and mortality rates over the past 3 decades, both worldwide and in China [2]. Surgery is the principal therapy for early-stage colon cancer because it offers the only method for complete tumor removal, thereby chance for cure [3]. However, there is still proportions of colon cancer patients that develop recurrence even after radical resection [4]. Unfortunately, long term control of the recurrent colon cancer has been a difficult dilemma to tackle and the clinical outcomes of these patients are poor [5],[6]. Adjuvant chemotherapy in colon cancer is able to complement curative surgery to reduce the risk of recurrence and death from relapsed or metastatic disease [7],[8]. However, patient willingness to be adjuvantly treated has been limited due to its associated financial burden, treatment toxicity and debatable prolongation of survival that need to be carefully balanced against the associated-toxicity. Therefore, the identification of robust biomarkers to assess the risk of postoperative recurrence in colon cancer has been a longing need.
Circular RNAs (circRNAs), a recently discovered type of noncoding RNA, have a special circular structure formed by 3′- and 5′-ends linking covalently [9]. Because they do not have 5′ or 3′ ends, they are resistant to exonuclease-mediated degradation [10]. Therefore, circRNAs are characterized by their high stability, expression level, and evolutionary conservation. Recent literatures [11]–[13] have confirmed circRNAs as playing an important role in cancer initiation and progression. Additionally, they are differentially expressed in cancer tissues and circulation of cancer patients. Due to these characteristics, circRNAs have gained recognition as a promising novel biomarker for cancer [14]. However, till now little is known about circRNAs and their relationship with colon cancer. In a recent study published in EMBO Molecular Medicine, entitled “A circRNA signature predicts postoperative recurrence in stage II/III colon cancer”, Ju et al. [15] identified and validated a circRNA-based signature that could improve postoperative prognostic stratification of patients with stage II/III colon cancer.
In that study, 437 colon cancer circRNAs were examined in tumoral and adjacent normal tissues. The authors found that 103 circRNAs were differentially expressed in recurrent colon cancer patients as compared to non-recurrent counterparts. Among them, 100 up-regulated circRNAs were validated in patients with stage II/III colon cancer to test whether they could be used as prognostic biomarkers. Four circRNAs, including hsa_circ_0122319, hsa_circ_0087391, hsa_circ_0079480, and hsa_circ_0008039, showed strong predictive values for disease-free survival (DFS) in the validation cohort. The following circRNA-based prognostic model was thereby generated:
After adjusting for baseline clinicopathological factors, the cirScore was found suitable for serving as predictive biomarkers of postoperative recurrence in stage II/III colon cancer. Patients in the high-risk group (cirScore ≥ −0.323) had poorer DFS (hazard ratio [HR], 2.89, 95% confidence interval [CI], 1.37–6.09, P < 0.001) and overall survival (OS; HR, 4.22, 95% CI, 1.61–11.03, P < 0.001) than those in the low-risk group (cirScore < −0.323). Based on this circRNA-based prognostic model, the authors further established a nomogram which exhibited good performance for estimating the 3- or 5-year DFS and OS.
To further explore the biological functions of hsa_circ_0122319, hsa_circ_0087391, and hsa_circ_0079480 (the abundance of hsa_circ_0008039 was found to be low in colon cancer cell line was therefore not further explored), the authors performed a series of functional in vitro and in vivo experiments. They found that suppression of these three circRNAs in colon cancer cells could significantly alter in vitro migration capacity. Additionally, the knockdown of hsa_circ_0079480 in colon cancer cells could both inhibit in vivo lung and liver metastasis.
The strengths of this study include the well-designed identification approaches, mature clinical data with clinical outcome and long-term follow-up, and well-characterized tissue samples for colon cancer. Limitations included that the prognostic model was only applicable for the patients with stage II/III colon cancer. In summary, this study identified a 4-circRNA-based expression signature as highly predictive for cancer recurrence in stage II/III colon cancer, with the potential of identification of high-risk early-stage colon cancer individuals who would benefit most from adjuvant chemotherapy.
[1] | Greenhouse Gases Observing Satellite GOSAT "IBUSUKI", 2019. Available from: http://www.gosat.nies.go.jp/en/. |
[2] |
Tahir M, Amin NS (2015) Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl Catal B-Environ 162: 98–109. doi: 10.1016/j.apcatb.2014.06.037
![]() |
[3] |
Abdulah H, Khan MMR, Ong HR, et al. (2017) Modified TiO2 photocatalyst for CO2 photocatalytic reduction: an overview. J CO2 Util 22: 15–32. doi: 10.1016/j.jcou.2017.08.004
![]() |
[4] |
Sohn Y, Huang W, Taghipour F (2017) Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials. Appl Surf Sci 396: 1696–1711. doi: 10.1016/j.apsusc.2016.11.240
![]() |
[5] |
Nahar S, Zain MF, Kadhum AAH, et al. (2017) Advances in photocatalytic CO2 reduction with water: A Review. Materials 10: 629. doi: 10.3390/ma10060629
![]() |
[6] |
Ola O, Maroto-Valer MM (2015) Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J Photoch Photobio C 24: 16–42. doi: 10.1016/j.jphotochemrev.2015.06.001
![]() |
[7] |
Xie S, Wang Y, Zhang Q, et al. (2014) MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the prefential reduction of carbon dioxide in the presence of water. ACS Catal 4: 3644–3653. doi: 10.1021/cs500648p
![]() |
[8] |
Khalid NR, Ahmed E, Niaz NA, et al. (2017) Highly visible light responsive metal loaded N/TiO2 nanoparticles for photocatalytic conversion of CO2 into methane. Ceram Int 43: 6771–6777. doi: 10.1016/j.ceramint.2017.02.093
![]() |
[9] | Tan LL, Ong WJ, Chai SP, et al. (2015) Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane. Appl Catal B-Environ 166–167: 251–259. |
[10] |
Cmarillo R, Toston S, Martinez F, et al. (2018) Improving the photo-reduction of CO2 to fuels with catalysts synthesized under high pressure: Cu/TiO2. J Chem Technol Biot 93: 1237–1248. doi: 10.1002/jctb.5477
![]() |
[11] |
Aguirre ME, Zhou R, Eugene AJ, et al. (2017) Cu2O/TiO2 heterostructures for CO2 reduction through a direct z-scheme: protecting Cu2O from photocorrosion. Appl Catal B-Environ 217: 485–493. doi: 10.1016/j.apcatb.2017.05.058
![]() |
[12] |
Marci G, Garcia-Lopez EI, Palmisano L (2014) Photocatalytic CO2 reduction in gas-solid regime in the presence of H2O by using GaP/TiO2 composite as photocatalyst under simulated solar light. Catal Commun 53: 38–41. doi: 10.1016/j.catcom.2014.04.024
![]() |
[13] |
Beigi AA, Fatemi S, Salehi Z (2014) Synthesis of nanocomposite CdS/TiO2 and investigation of its photocatalytic activity of CO2 reduction to CO and CH4 under visible light irradiation. J CO2 Util 7: 23–29. doi: 10.1016/j.jcou.2014.06.003
![]() |
[14] |
Fang Z, Li S, Gong Y, et al. (2014) Comparison of catalytic activity of carbon-based AgBr nanocomposites for conversion of CO2 under visible light. J Saudi Chem Soc 18: 299–307. doi: 10.1016/j.jscs.2013.08.003
![]() |
[15] |
Xu F, Zhang J, Zhu B, et al. (2018) CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl Catal B-Environ 230: 194–202. doi: 10.1016/j.apcatb.2018.02.042
![]() |
[16] |
Camarillo R, Toston S, Martinez F, et al. (2017) Preparation of TiO2-based catalysts with supercritical fluid technology: characterization and photocatalytic activity in CO2 reduction. J Chem Technol Biot 92: 1710–1720. doi: 10.1002/jctb.5169
![]() |
[17] | Wei Y, Jiao J, Zhao Z, et al. (2015) 3D ordered macroporous TiO2-supported Pt@CdS core-shell nanoparticles: design, synthesis and efficient photocatalytic conversion of CO2 with water to methane. J Mater Chem A 20: 11074–11085. |
[18] |
Zhao Y, Wei Y, Wu X, et al. (2018) Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4. Appl Catal B-Environ 226: 360–372. doi: 10.1016/j.apcatb.2017.12.071
![]() |
[19] |
Toston S, Camarillo R, Martinez F, et al. (2017) Supercritical synthesis of platinum-modified titanium dioxide for solar fuel production from carbon dioxide. Chinese J Catal 38: 636–650. doi: 10.1016/S1872-2067(17)62766-9
![]() |
[20] |
Jiao J, Wei Y, Zhao Y, et al. (2017) AuPd/3DOM-TiO2 catalysts for photocatalyic reduction of CO2: high efficient separation of photogenerated charge carriers. Appl Catal B-Environ 209: 228–239. doi: 10.1016/j.apcatb.2017.02.076
![]() |
[21] |
Camrillo R, Toston S, Martinez F, et al. (2017) Enhancing the photocatalytic reduction of CO2 through engineering of catalysts with high pressure technology: Pd/TiO2 photocatalysts. J Supercrit Fluid 123: 18–27. doi: 10.1016/j.supflu.2016.12.010
![]() |
[22] |
Chen W, Wang Y, Shangguan W (2019) Metal (oxide) modified (M = Pd, Ag, Au and Cu) H2SrTa2O7 for photocatalytic CO2 reduction with H2O: the effect of cocatalysts on promoting activity toward CO and H2 evolution. Int J Hydrogen Energ 44: 4123–4132. doi: 10.1016/j.ijhydene.2018.12.166
![]() |
[23] |
Yu Y, Lan Z, Guo L, et al. (2018) Synergistic effects of Zn and Pd species in TiO2 towards efficient photo-reduction of CO2 into CH4. New J Chem 42: 483–488. doi: 10.1039/C7NJ03305B
![]() |
[24] |
Singhal N, Kumar U (2017) Noble metal modified TiO2: selective photoreduction of CO2 to hydrocarbons. Mol Catal 439: 91–99. doi: 10.1016/j.mcat.2017.06.031
![]() |
[25] |
Yui T, Kan A, Saitoh C, et al. (2011) Photochemical reduction of CO2 using TiO2: effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. ACS Appl Mater Inter 3: 2594–2600. doi: 10.1021/am200425y
![]() |
[26] | Li N, Liu M, Yang B, et al. (2017) Enhanced photocatalytic performance toward CO2 hydrogenation over nanosized TiO2-loaded Pd under UV irradiation. J Phys Chem 121: 2923–2932. |
[27] |
Goren Z, Willner I, Nelson AJ, et al. (1990) Selective photoreduction of CO2/HCO3− to formate by aqueous suspensions and colloids of Pd-TiO2. J Phys Chem 94: 3784–3790. doi: 10.1021/j100372a080
![]() |
[28] |
Tseng IH, Chang WC, Wu JCS (2002) Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Appl Catal B-Environ 37: 37–38. doi: 10.1016/S0926-3373(01)00322-8
![]() |
[29] |
Nishimura A, Sugiura N, Fujita M, et al. (2007) Influence of preparation conditions of coated TiO2 film on CO2 reforming performance. Kagaku Kogaku Ronbun 33: 146–153. doi: 10.1252/kakoronbunshu.33.146
![]() |
[30] |
Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordin Chem Rev 257: 171–186. doi: 10.1016/j.ccr.2012.04.018
![]() |
[31] |
Lo CC, Hung CH, Yuan CS, et al. (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol Energ Mat Sol C 91: 1765–1774. doi: 10.1016/j.solmat.2007.06.003
![]() |
[32] |
Mahmodi G, Sharifnia S, Madani M, et al. (2013) Photoreduction of carbon dioxide in the presence of H2, H2O and CH4 over TiO2 and ZnO photocatalysts. Sol Energy 97: 186–194. doi: 10.1016/j.solener.2013.08.027
![]() |
[33] |
Jensen J, Mikkelsen M, Krebs FC (2011) Flexible substrates as basis for photocatalytic reduction of carbon dioxide. Sol Energ Mat Sol C 95: 2949–2958. doi: 10.1016/j.solmat.2011.06.040
![]() |
[34] | Nishimura A, Ishida N, Tatematsu D, et al. (2017) Effect of Fe loading condition and reductants on CO2 reduction performance with Fe/TiO2 photocatalyst. Int J Photoenergy 2017: 1625274. |
[35] | Nishimura A, Tatematsu D, Toyoda R, et al. (2019) Effect of Overlapping Layout of Fe/TiO2 on CO2 Reduction with H2 and H2O. MOJ Sol Photoenergy Syst 3: 1–8. |
[36] | Nishimura A, Toyoda R, Tatematsu D, et al. (2018) Effect of Molar Ratio of H2 and H2O on CO2 Reduction Characteristics of Overlapped Cu/TiO2. Int J Eng Sci Invent 7: 18–28. |
[37] | Japan Society of Mechanical Engineering (1993) Heat Transfer Hand Book, 1 Eds, Tokyo: Maruzen. |
[38] |
Wang D, Zhou WL, McCaughy BF, et al. (2003) Electrodeposition of metallic nanowire thin films using mesoporous silica templates. Adv Mater 15: 130–133. doi: 10.1002/adma.200390025
![]() |
[39] |
Koci K, Matejova L, Reli M, et al. (2014) Sol-gel derived Pd supported TiO2-ZrO2 and TiO2 photocatalysts; their examination in photocatalytic reduction of carbon dioxide. Catal Today 230: 20–26. doi: 10.1016/j.cattod.2013.10.002
![]() |
[40] |
Wei Y, Wu X, Zhao Y, et al. (2018) Efficient photocatalysts of TiO2 nanocrystals-supported PtRu alloy nanoparticles for CO2 reduction with H2O: synergistic effect of Pt-Ru. Appl Catal B-Environ 236: 445–457. doi: 10.1016/j.apcatb.2018.05.043
![]() |
[41] |
Zhang R, Huang Z, Li C, et al. (2019) Monolithic g-C3N4/reduced graphene oxide aerogel with in situ embedding of Pd nanoparticles for hydrogenation of CO2 to CH4. Appl Surf Sci 475: 953–960. doi: 10.1016/j.apsusc.2019.01.050
![]() |
[42] |
Kulandaivalu T, Rashid SA, Sabli N, et al. (2019) Visible light assisted photocatalytic reduction of CO2 to ethane using CQDs/Cu2O nanocomposite photocatalyst. Diam Relat Mater 91: 64–73. doi: 10.1016/j.diamond.2018.11.002
![]() |
[43] |
Zhu Z, Huang WR, Chen CY, et al. (2018) Preparation of Pd-Au/TiO2-WO3 to enhance photoreduction of CO2 to CH4 and CO. J CO2 Util 28: 247–254. doi: 10.1016/j.jcou.2018.10.006
![]() |
[44] |
Tasbihi M, Fresno F, Simon U, et al. (2018) On the selectivity of CO2 photoreduction towards CH4 using Pt/TiO2 catalysts supported on mesoporous silica. Appl Catal B-Environ 239: 68–76. doi: 10.1016/j.apcatb.2018.08.003
![]() |
[45] |
Wei Y, Wu X, Zhao Y, et al. (2018) Efficient photocatalysts of TiO2 nanocrystals-supported PtRu alloy nanoparticles for CO2 reduction with H2O: synergistic effect of Pt-Ru. Appl Catal B-Environ 236: 445–457. doi: 10.1016/j.apcatb.2018.05.043
![]() |
[46] |
Hashemizadeh I, Golovko VB, Choi J, et al. (2018) Photocatalytc reduction of CO2 to hydrocarbons using bio-templated porous TiO2 architectures under UV and visible light. Chem Eng J 347: 64–73. doi: 10.1016/j.cej.2018.04.094
![]() |
[47] |
Hoque MA, Guzman MJ (2018) Photocatalytic activity: experimental features to report in heterogeneous photocatalysis. Materials 11: 1990. doi: 10.3390/ma11101990
![]() |
[48] | Nishimura A, Okano Y, Hirota M, et al. (2011) Effect of preparation condition of TiO2 film and experimental condition on CO2 reduction performance of TiO2 photocatalyst membrane reactor. Int J Photoenergy 2011: 305650. |
[49] |
Tahir M, Amin NS (2013) Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energ Convers Manage 76: 194–214. doi: 10.1016/j.enconman.2013.07.046
![]() |
[50] |
Nagaveni K, Hedge MS, Madras G (2004) Structure and photocatalytic activity of Ti1−xMxO2±d (M = W, V, Ce, Zr, and Cu) synthesized by solution combustion method. J Phys Chem B 108: 20204–20212. doi: 10.1021/jp047917v
![]() |
[51] | Li L, Gao F, Zhao H, et al. (2013) Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl Catal B-Environ 134–135: 349–358. |
[52] |
Song G, Xin F, Chen J, et al. (2014) Photocatalytic reduction of CO2 in cyclohexanol on CdS-TiO2 heterostructured photocatalyst. Appl Catal A-Gen 473: 90–95. doi: 10.1016/j.apcata.2013.12.035
![]() |
[53] |
Song G, Xin F, Yin X (2015) Photocatalytic reduction of carbon dioxide over ZnFe2O4/TiO2 nanobelts heterostructure in cyclohexanol. J Colloid Interf Sci 442: 60–66. doi: 10.1016/j.jcis.2014.11.039
![]() |
1. | Ya’nan Zhen, Guodong Sun, Cunbao Chen, Jianqi Li, Ruixue Xiao, Zhongfa Xu, Circular RNA hsa_circ_0064559 affects tumor cell growth and progression of colorectal cancer, 2023, 21, 1477-7819, 10.1186/s12957-023-03050-5 |