Citation: Matthew Johnston, Michael McBride, Divakar Dahiya, Richard Owusu-Apenten, Poonam Singh Nigam. Antibacterial activity of Manuka honey and its components: An overview[J]. AIMS Microbiology, 2018, 4(4): 655-664. doi: 10.3934/microbiol.2018.4.655
[1] | Xudong Shang . Normalized ground states to the nonlinear Choquard equations with local perturbations. Electronic Research Archive, 2024, 32(3): 1551-1573. doi: 10.3934/era.2024071 |
[2] | Xiaoguang Li . Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189 |
[3] | Xiaoli Wang, Peter Kloeden, Meihua Yang . Asymptotic behaviour of a neural field lattice model with delays. Electronic Research Archive, 2020, 28(2): 1037-1048. doi: 10.3934/era.2020056 |
[4] | Ping Yang, Xingyong Zhang . Existence of nontrivial solutions for a poly-Laplacian system involving concave-convex nonlinearities on locally finite graphs. Electronic Research Archive, 2023, 31(12): 7473-7495. doi: 10.3934/era.2023377 |
[5] | Senli Liu, Haibo Chen . Existence and asymptotic behaviour of positive ground state solution for critical Schrödinger-Bopp-Podolsky system. Electronic Research Archive, 2022, 30(6): 2138-2164. doi: 10.3934/era.2022108 |
[6] | Hui Jian, Min Gong, Meixia Cai . Global existence, blow-up and mass concentration for the inhomogeneous nonlinear Schrödinger equation with inverse-square potential. Electronic Research Archive, 2023, 31(12): 7427-7451. doi: 10.3934/era.2023375 |
[7] | Shuai Yuan, Sitong Chen, Xianhua Tang . Normalized solutions for Choquard equations with general nonlinearities. Electronic Research Archive, 2020, 28(1): 291-309. doi: 10.3934/era.2020017 |
[8] | Haijun Luo, Zhitao Zhang . Existence and stability of normalized solutions to the mixed dispersion nonlinear Schrödinger equations. Electronic Research Archive, 2022, 30(8): 2871-2898. doi: 10.3934/era.2022146 |
[9] | Zhiyan Ding, Hichem Hajaiej . On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29(5): 3449-3469. doi: 10.3934/era.2021047 |
[10] | Chungen Liu, Huabo Zhang . Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electronic Research Archive, 2021, 29(5): 3281-3295. doi: 10.3934/era.2021038 |
In the present paper, we proved the existence of a ground state solution of the following nonlinear Choquard equation
$ {−Δu+V(x)u=(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|p−2u x∈ZN,u∈H1(ZN), $ | (1.1) |
on lattice graph $ \mathbb {Z}^{N} $. This equation can be viewed as a discrete version of the following Choquard equation
$ −Δu+V(x)u=(Iα∗|u|p)|u|p−2u x∈RN, $ | (1.2) |
where $ \alpha\in(0, N) $, $ p > 1 $ and $ I_{\alpha}:\mathbb{R}^{N}\rightarrow \mathbb{R} $ is the Riesz potential defined at $ x\in\mathbb{R}^{N}\setminus\{0\} $ by
$ Iα(x)=Aα|x|N−αandAα=Γ(N−α2)Γ(α2)πN/22α, $ |
with $ \Gamma $ being the Euler gamma function.
In the past few decades, many mathematicians have been devoted to studying the Eq (1.2), for example, see [1,2,3,4,5,6]. In particular, if $ N = 3 $, $ V = 1 $ and $ p = 2 $, i.e., $ -\Delta u+u = (I_2*|u|^2)u, $ appeared in the literature at least as early as in 1954's work by Pekar on quantum theory of a Polaron at rest [7]. Later in the 1970s, Choquard utilized model (1.2) to describe an electron caught in its own hole, in an approximation to Hartree-Fock theory of one-component plasma [1]. Particularly, the equation is also knows as the Schrödinger-Newton equation, which was used to a model of self-gravitating matter [8]. Also, the article [9] used this system to study the pseudo-relativistic boson stars. In a pioneering work, Lieb [1] proved the existence and uniqueness of the ground state to the Eq (1.2) in $ \mathbb{R}^{3} $ with $ V = 1 $, $ \alpha = 2 $ and $ p = 2 $. In the paper [3], Moroz and Van Schaftingen first obtained the sharp range of the parameter for the existence of solutions of the Eq (1.2) with $ \tfrac{N+\alpha}{N} < p < \tfrac{N+\alpha}{N-2} $. If $ V $ is the periodic function, since the nonlocal term is invariant under translation, the paper [10] got the existence results. Furthermore, Alves [11] proved the existence and convergence of nontrivial solutions of the nonlocal Choquard equation. There are tremendous results on this direction in [12,13,14,15,16,17,18] and the references therein.
On the other hand, the analysis on the graph has become more and more popular, for example, see [19,20,21,22,23,24,25,26,27]. In a series of work of Grigor'yan et al. [19,20,21], they studied the Yamabe type equations, Kazdan-Warner equation and some other nonlinear equations on graph by using the variational methods. In [27], Zhang and Zhao investigated the existence of nontrivial solution of the equation $ -\Delta u+(\lambda a(x)+1)u = |u|^{p - 1}u $ on the locally finite graphs by using Nehari methods (see [28]) and the asymptotic properties of the solution. Later, the paper [22] generalized the results of [27] to higher order. Furthermore, Hua and Xu [] obtained the existence results of nonlinear equation $ -\Delta u+V(x)u = f $ on the lattice graph $ \mathbb{Z}^{N} $. Recently, Huang et al. investigated extensively the Mean field equation and the relativistic Abelian Chern-Simons equations on the finite graphs by using the variational method in [23]. For other related results about the graph, we refer the reader to [29,30,31,32,33,34] and references therein.
Inspired by the poineering works, in this paper we study the existence and asymptotical behavior of solution for the Choquard equation (1.2) on the lattice graph $ \mathbb{Z}^{N} $. For clarity, let us introduce the basic setting on the lattice graph $ \mathbb{Z}^{N} $. The graph $ \mathbb{Z}^{N} $ consists of the set of vertices
$ V={x=(x1,⋯,xN):xi∈Z,1≤i≤N}, $ |
and the set of edges
$ E={{x,y}:x,y∈ZN,N∑i=1|xi−yi|=1}. $ |
For any two vertices $ x, y \in \mathbb{Z}^{N} $, the distance $ d(x, y) $ between them is defined by
$ d(x,y):=inf{k:x=x1∼x2∼…∼xk=y}, $ |
where we write $ y \sim x $ if and only if the edge $ \{x, y\} \in E $. Assume $ \Omega \subset\mathbb{Z}^{N} $, we say $ \Omega $ is bounded if $ d(x, y) $ is uniformly bounded for any $ x, y \in \Omega $. It is easy for us to see that a bounded domain of $ \mathbb{Z}^{N} $ can contain only finite vertices. We denote the boundary of $ \Omega $ is
$ ∂Ω:={y∉Ω:∃x∈Ωsuch that xy∈E}. $ |
$ C(\mathbb{Z}^{N}) $ denotes the set of real-valued functions on $ \mathbb{Z}^{N} $. For any $ u\in C(\mathbb{Z}^{N}) $, its support set is defined as $ {\mathop{\rm supp}\nolimits} (u) = \{ {x \in \mathbb{Z}^{N}, u(x)\ne 0} \} $. Let $ C_{c}(\mathbb{Z}^{N}) $ denote the set of all functions of finite support. We can define the associated gradient for any function $ u, v \in C(\mathbb{Z}^{N}) $ by
$ Γ(u,v)(x):=∑y∼x12(u(y)−u(x))(v(y)−v(x)). $ |
In particular, let $ \Gamma(u) = \Gamma(u, u) $ for simplicity. The length of the gradient of $ u $ is written by
$ |∇u|(x):=√Γ(u)(x)=(∑y∼x12(u(y)−u(x))2)1/2. $ |
Let $ \mu $ be the counting measure on $ \mathbb{Z}^{N} $, i.e., for any subset $ A \subset \mathbb{Z}^{N} $, $ \mu(A): = $ $ \#\{x: x \in A\} $. For any function $ f $ on $ \mathbb{Z}^{N} $, we write
$ ∫ZNfdμ:=∑x∈ZNf(x), $ |
whenever it makes sense. $ \ell^{p} $ is a space endowed with the norm
$ ‖u‖ℓp(ZN):={(∑x∈ZN|u(x)|p)1p1≤p<∞.supx∈ZN|u(x)|p=∞. $ |
Assume $ u \in C(\mathbb{Z}^{N}) $, the Laplacican on $ \mathbb{Z}^{N} $ is defined as
$ Δu=∑y∼x(u(y)−u(x)). $ |
The inner product of the Hilbert space $ H^{1}(\mathbb{Z}^{N}) $ is given by
$ ⟨u,v⟩:=∫ZN(Γ(u,v)+uv)dμ=∫ZN(∇u∇v+uv)dμ. $ |
Therefore, the corresponding norm reads
$ ‖u‖H1(ZN)=(∫ZN(|∇u|2+u2)dμ)12. $ |
For a bounded uniformly positive function $ V:\mathbb{Z}^{N} \to \mathbb{R} $, it is natural for us to consider the equivalent norm in $ H^1(\mathbb{Z}^{N}) $ as
$ ‖u‖2:=∫ZN(|∇u|2+V(x)u2)dμ. $ |
Then we have the conclusions for the Eq (1.1).
Theorem 1.1. Let $ N \in {\mathbb{N}^*} $, $ \alpha\in (0, N)\, $ and $ \, p \in (\tfrac{N+\alpha}{N}, \infty) $. Suppose that $ V(x):\mathbb{Z}^{N}\to \mathbb{R} $ satisfies the conditions:
(i) $ V $ is bounded uniformly positive, i.e. there exist constant $ {C_1}, {C_2} > 0 $ satisfying $ {C_1} < V(x) < {C_2} $ for any $ x \in \mathbb{Z}^{N} $.
(ii) $ V $ is T-periodic, i.e. for the positive integer $ T $, we have $ V(x+T e_{i}) = V(x) $, $ \forall x \in \mathbb{Z}^{N}, 1 \leq i \leq N $, where $ e_{i} $ is the unit vector in the i-th coordinate.
Then there exists a ground state solution of (1.1).
Remark 1.2. The preceding theorem is a discrete version of the results in [3]. As in the paper [24], we use the Concentration-Compactness Principle (P. L. Lions [35,36]) to recover the compactness and prove the existence of ground state solution of (1.1). Interestingly, since the discreteness of the graph, the Sobolev embedding on the lattice graph is different from that in the continuous setting, which allows us to remove the upper critical exponents $ \tfrac{N+\alpha}{N-\alpha} $ in the continuous case.
Next we turn to studying the convergence of the solution for the nonlinear Choquard equation. The results of Schrödinger type equation is already considered in the Euclidean space (see [11,37]). We may expect that the nonlocal Choquard equation on lattice graphs has some similar results. As the paper [22,27], we also consider the confining potential $ V = \lambda a(x)+1 $, i.e.,
$ −Δu+(λa(x)+1)u=(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|p−2u. $ | (1.3) |
To study the problem (1.3), we introduce the following subspace of $ {H^{1}}(\mathbb{Z}^{N}) $:
$ Eλ(ZN)={u∈H1(ZN):∫ZNλa(x)u2dμ<+∞}. $ |
It is easy to recognize that the scalar product of $ E_\lambda(\mathbb{Z}^{N}) $ is
$ ⟨u,v⟩Eλ(ZN):=∫ZN(Γ(u,v)+(λa(x)+1)uv)dμ=∫ZN(∇u∇v+(λa(x)+1)uv)dμ. $ |
Then we have the following conclusions.
Theorem 1.3. Let $ N \in {\mathbb{N}^*} $, $ \alpha\in (0, N)\, $ and $ \, p \in [\tfrac{N+\alpha}{N}, \infty) $. Suppose that $ a(x):\mathbb{Z}^{N}\to \mathbb{R} $ satisfying
(A1) $ a(x)\geq 0 $ and the potential well $ \Omega = \{x\in \mathbb{Z}^{N}:a(x) = 0\} $ is a non-empty, connected and bounded domain in $ \mathbb{Z}^{N} $.
(A2) There exists a point $ x_0 $ satisfying $ a(x) \to \infty $ when $ d(x, x_0)\to \infty $.
Then (1.3) has a ground state solution $ u_\lambda $ for any constant $ \lambda > 1 $.
In order to observe the asymptotical properties of $ u_\lambda $ as $ \lambda \to \infty $, we first study the following Dirichlet problem.
$ {−Δu+u=(∑y≠xy∈Ω|u(y)|p|x−y|N−α)|u|p−2u in Ω.u=0on ∂Ω. $ | (1.4) |
We study the Eq (1.4) in the $ H_0^1(\Omega) $ with the norm:
$ ‖u‖2H10(Ω):=∫Ω∪∂Ω|∇u|2dμ+∫Ωu2dμ. $ |
Similarly, the Eq (1.4) also possess a ground state solution.
Theorem 1.4. Let $ N \in {\mathbb{N}^*} $, $ \alpha\in (0, N)\, $ and $ \, p \in (1, \infty) $. Suppose $ \Omega $ is a non-empty, connected and bounded domain in $ \mathbb{Z}^{N} $. Then the Eq (1.4) has a ground state solution $ u\in H_0^1(\Omega) $.
Finally, we show that the solutions $ u_\lambda $ of (1.3) converge to a solution of (1.4) as $ \lambda\rightarrow \infty $ when the domain in (1.4) is the set of satisfying $ a(x) = 0 $. On the other words, we obtain the following conclusions.
Theorem 1.5. Let $ N \in {\mathbb{N}^*} $, $ \alpha\in (0, N)\, $ and $ \, p \in [2, \infty) $. Assume that $ a(x) $ satisfies $ (A1) $ and $ (A2) $, then for any sequence $ \lambda_k\rightarrow \infty $, up to a subsequence, the corresponding ground state solutions $ u_{\lambda_k} $ of (1.3) converge in $ H^1(\mathbb{Z}^{N}) $ to a ground state solution of (1.4).
The remaining parts of this paper are organized as follows. In Section 2, we give basic definitions and Lemmas on the lattice graph. In Section 3, we establish the discrete Brézis-Lieb Lemma for the nonlocal term and some important conclusions. Section 4 is devoted to proving Theorem 1.1. Then we complete the proof of Theorems 1.3 and 1.4 in Section 5. Finally, we prove Theorem 1.5 in Section 6.
In this section we give some basic results on the lattice graph. Firstly, we present the formula of integration by parts on lattice graph, which is the basic conclusion when we apply variational methods. Here we omit the concrete proofs and one can refer to [22] for more details.
Lemma 2.1. Suppose that $ u \in {H^1}({\mathbb{Z}^{N}}) $. Then for any $ v \in {C_c}({{\mathbb{Z}^{N}}}) $, we obtain
$ ∫ZN∇u⋅∇vdμ=∫ZNΓ(u,v)dμ=−∫ZNΔu⋅vdμ. $ | (2.1) |
Lemma 2.2. Suppose $ \Omega \subset \mathbb{Z}^{N} $ is a bounded domain and $ u \in {H_0^1}(\Omega) $. Then for any $ v \in {C_c}(\Omega) $, we have
$ ∫Ω∪∂Ω∇u⋅∇vdμ=∫Ω∪∂ΩΓ(u,v)dμ=−∫ΩΔu⋅vdμ. $ | (2.2) |
Now we are ready to define the weak solution as follows.
Definition 1. Assume $ u \in {H^1}({\mathbb{Z}^{N}}) $. A function $ u $ is called a weak solution of (1.1) if for any $ \varphi \in{H^1}({\mathbb{Z}^{N}}) $,
$ ∫ZN∇u∇φdμ+∫ZNV(x)uφdμ=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|p−2uφdμ. $ | (2.3) |
Definition 2. Assume $ u \in {E_\lambda}({\mathbb{Z}^{N}}) $. A function $ u $ is called a weak solution of (1.3) if for any $ \varphi \in {E_\lambda}(\mathbb{Z}^{N}) $,
$ ∫ZN∇u∇φdμ+∫ZN(λa(x)+1)uφdμ=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|p−2uφdμ. $ | (2.4) |
Definition 3. Assume $ u \in H_0^1(\Omega) $. A function $ u $ is called a weak solution of (1.4) if for any $ \varphi \in H_0^1(\Omega) $,
$ ∫Ω∪∂Ω∇u∇φdμ+∫Ωuφdμ=∫Ω(∑y≠xy∈Ω|u(y)|p|x−y|N−α)|u|p−2uφdμ. $ | (2.5) |
Notice that if u is a weak solution of (1.1), we infer from Lemma 2.1 that for any test function $ \varphi \in H^1(\mathbb{Z}^{N}) $,
$ ∫ZN(−Δuφdμ+V(x)uφ)dμ=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|p−2uφdμ. $ | (2.6) |
For any fixed $ x_0\in \mathbb{Z}^{N} $, choosing a test function $ \varphi : {\mathbb{Z}^{N}}\to\mathbb{R} $ in (2.6) which is defined as
$ φ(x)={1,x=x0,0,x≠x0, $ |
we obtain
$ −Δu(x0)+V(x0)u(x0)=(∑y≠x0y∈ZN|u(y)|p|x0−y|N−α)|u(x0)|p−2u(x0), $ |
which implies that $ u $ is a point wise solution of (1.1). Thus, we have the following conclusion for the relationship between the weak solution and the point wise solution.
Proposition 2.3. If $ u $ is a weak solution of (1.1), then $ u $ is a point wise solution. Similarly, if $ u $ is a weak solution of (1.3) or (1.4), then u is also a point wise solution of the corresponding equation.
Finally, we state the following conclusions for the Sobolev embedding.
Lemma 2.4. ([38]) $ {H^1}({\mathbb{Z}^{N}}) $ is continuously embedded into $ {\ell^q(\mathbb{Z}^{N})} $ for any $ q \in [2, \infty] $. Namely, for any $ u \in {H^1}(\mathbb{Z}^{N}) $, there exists a constant $ C_q $ depending only on q such that
$ ‖u‖ℓq(ZN)≤Cq‖u‖H1(ZN). $ | (2.7) |
Lemma 2.5. ([27,Lemma 2.6]) Assume that $ \lambda > 1 $ and $ a(x) $ satisfies $ (A1) $ and $ (A2) $. Then $ E_\lambda(\mathbb{Z}^{N}) $ is continuously embedded into $ \ell^q(\mathbb{Z}^{N}) $ for any $ q\in [2, \infty] $ and the embedding is independent of $ \lambda $. Namely, there exists a constant $ C_q $ depending only on $ q $ such that for any $ u \in E_\lambda(\mathbb{Z}^{N}) $, $ \|u\|_{\ell^q(\mathbb{Z}^{N})} \leq C_q\|u\|_{E_\lambda(\mathbb{Z}^{N})} $. Moreover, for any bounded sequence $ \{u_k\} \in E_\lambda(\mathbb{Z}^{N}) $, there exists $ u \in E_\lambda(\mathbb{Z}^{N}) $ such that, up to a subsequence,
$ {uk⇀u in Eλ(ZN).uk(x)→u(x) ∀x∈ZN.uk→u in ℓq(ZN). $ |
Lemma 2.6. ([27,Lemma 2.7]) Assume that $ \Omega $ is a bounded domain in $ \mathbb{Z}^{N} $. Then $ H_0^1(\Omega) $ is continuously embedded into $ \ell^q(\Omega) $ for any $ q\in [1, \infty] $. Namely, there exists a constant $ C_q $ depending only on $ q $ such that for any $ u \in H_0^1(\Omega) $, $ \|u\|_{\ell^q(\Omega)} \leq C_q\|u\|_{H_0^1(\Omega)} $. Moreover, for any bounded sequence $ \{u_k\} \in H_0^1(\Omega) $, there exists $ u \in H_0^1(\Omega) $ such that, up to a subsequence,
$ {uk⇀u in H10(Ω).uk(x)→u(x) ∀x∈Ω.uk→u in ℓq(Ω). $ |
In this section, we give a proof of the discrete Brézis-Lieb Lemma(see [3,39,40] for the continuous case) for the nonlocal term on the lattice graph. First, let us recall the discrete Brézis-Lieb Lemma [38] for the local case.
Lemma 3.1. ([38,Lemma 9]) Let $ \Omega \subset \mathbb{Z}^{N} $ be a domain and $ \{u_n\} \subset \ell^{q}(\Omega) $ with $ 0 < q < \infty $. If $ \{u_n\} $ is bounded in $ \ell^{q}(\Omega) $ and $ u_{n} \rightarrow u $ pointwise on $ \Omega $ as $ n \to \infty $, then
$ limn→∞(‖un‖qℓq(Ω)−‖un−u‖qℓq(Ω))=‖u‖qℓq(Ω). $ | (3.1) |
From Lemma 3.1 and [38,Corollary 10], it is not hard for us to get the following corollary.
Corollary 3.2. Assume $ V $ is a uniformly bounded positive function. If $ \{u_n\} $ is bounded in $ H^1(\mathbb{Z}^{N}) $ and $ u_{n} \rightarrow u $ pointwise on $ \mathbb{Z}^{N} $, then
$ limn→∞(∫ZN(|∇un|2+V(x)u2n)dμ−∫ZN(|∇(un−u)|2+V(x)(un−u)2)dμ)=∫ZN(|∇u|2+V(x)u2)dμ. $ | (3.2) |
Next, we prove a variant of the discrete Brézis-Lieb Lemma.
Lemma 3.3. Let $ \Omega \subset \mathbb{Z}^{N} $ be a domain, $ 1 \leq q < \infty $. If the sequence $ \{u_n\} $ is bounded in $ \ell^{r}(\Omega) $ and $ u_{n} \rightarrow u $ pointwise on $ \Omega $ as $ n \to \infty $, then for every $ q\in [1, r] $,
$ limn→∞∫Ω||un|q−|un−u|q−|u|q|rqdμ=0. $ | (3.3) |
Proof. Applying the Fatou's Lemma, we obtain
$ ‖u‖ℓr(Ω)≤lim_n→∞‖un‖ℓr(Ω)<∞. $ | (3.4) |
Fix $ \varepsilon > 0 $ and for all $ a, b \in \mathbb{R} $, there exists $ C_\varepsilon $ satisfying
$ ||a+b|q−|a|q|≤ε|a|q+Cε|b|q. $ |
Hence we obtain
$ fεn:=(||un|q−|un−u|q−|u|q|−ε|un−u|q)+≤(||un|q−|un−u|q|+|u|q−ε|un−u|q)+≤(ε|un−u|q+Cε|u|q+|u|q−ε|un−u|q)+=(1+Cε)|u|q. $ |
Thus
$ (fnε)rq≤(1+Cε)rq|u|r. $ | (3.5) |
It follows from the Dominated Convergence Theorem that
$ limn→∞∫Ω(fnε)rqdμ=∫Ωlimn→∞(fnε)rqdμ=0. $ | (3.6) |
From the definition of $ f_n^{\varepsilon} $, we obtain
$ ||un|q−|un−u|q−|u|q|≤fεn+ε|un−u|q. $ |
Moreover, one deduces from the basic inequality $ {(a+b)^p}\le{C_p}({a^p}+{b^p})(\forall a, b, p > 0) $ that
$ ||un|q−|un−u|q−|u|q|rq≤(fεn+ε|un−u|q)rq≤Cq,r((fεn)rq+εrq|un−u|r). $ | (3.7) |
Therefore, from (3.6) and (3.7), we get
$ ¯limn→∞∫Ω||un|q−|un−u|q−|u|q|rqdμ≤¯limn→∞Cq,r(∫Ω(fnε)rqdμ+∫ZNεrq|un−u|rdμ)≤Cq,rεrqsupn∈N‖un−u‖rℓr(Ω). $ |
Then let $ \varepsilon \rightarrow 0 $,
$ ¯limn→∞∫Ω||un|q−|un−u|q−|u|q|rqdμ=0. $ |
This finishes the proof.
Next, we state the discrete Brézis-Lieb type Lemma.
Lemma 3.4. Suppose $ \Omega \subset \mathbb{Z}^{N} $ and $ 1 \leq p < \infty $. If the sequence $ \{u_n\} $ is bounded in $ \ell^{p}(\Omega) $ and $ u_{n} \rightarrow u $ pointwise on $ \Omega $ as $ n \to \infty $, then for every $ x\in \mathbb{Z}^{N} $, we have
$ limn→∞(∑y≠xy∈Ω|un(y)|p|x−y|N−α−∑y≠xy∈Ω|un(y)−u(y)|p|x−y|N−α)=∑y≠xy∈Ω|u(y)|p|x−y|N−α. $ | (3.8) |
Proof. Since $ x\neq y $ and $ x, y\in \mathbb{Z}^{N} $, we obtain $ |x-y|\geq1 $ and it follows that
$ ∑y≠xy∈Ω||un(y)|p−|un(y)−u(y)|p−|u(y)|p||x−y|N−α≤∑y∈Ω||un(y)|p−|un(y)−u(y)|p−|u(y)|p|. $ |
Thus the proof is complete as $ n\to \infty $ from Lemma 3.3.
Now we are in position to establish the discrete Brézis-Lieb Lemma for the nonlocal term of the functional. To this purpose we first present an important inequality on the lattice graph which is studied by many authors in the continuous setting.
Lemma 3.5. ([41]) (Discrete Hardy-Littlewood-Sobolev Inequality) Let $ 0 < \alpha < N $, $ 1 < r, s < \infty $ and $ \tfrac{1}{r} + \tfrac{1}{s} + \tfrac{{N - \alpha }}{N} \ge 2 $. Assume $ f \in \ell^r(\mathbb{Z}^{N}) $ and $ g \in \ell^s(\mathbb{Z}^{N}) $. Then there exists a positive constant $ C_{r, s, \alpha} $ depending only on $ r, s, \alpha $ such that
$ ∑x,y∈ZNy≠xf(x)g(y)|x−y|N−α≤Cr,s,α‖f‖ℓr(ZN)‖g‖ℓs(ZN). $ | (3.9) |
The paper [38] also give the following equivalent form of (3.9).
Lemma 3.6. Let $ 0 < \alpha < N $, $ 1 < r, t < \infty $ and $ \tfrac{1}{t} + \tfrac{\alpha}{N}\leq\tfrac{1}{r} $. Assume $ f \in \ell^r(\mathbb{Z}^{N}) $, then there exists a positive constant $ C_{r, t, \alpha} $ depending only on $ r, t, \alpha $ such that
$ ‖∑y∈ZNy≠xf(y)|x−y|N−α‖ℓt(ZN)≤Cr,t,α‖f‖ℓr(ZN). $ | (3.10) |
The next lemma states the discrete Brézis-Lieb Lemma for the nonlocal term.
Lemma 3.7. Let $ 1 \leq p < \infty $ and the sequence $ \{u_n\} $ is bounded in $ \ell^{\frac{2Np}{N+ \alpha}}(\mathbb{Z}^{N}) $. Suppose $ u_n \rightarrow u $ pointwise on $ {\mathbb{Z}^{N}} $ as $ n \to \infty $, then
$ limn→∞(∫ZN(∑y≠xy∈ZN|un(y)|p|x−y|N−α)|un|pdμ−∫ZN(∑y≠xy∈ZN|un(y)−u(y)|p|x−y|N−α)|un−u|pdμ)=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ. $ | (3.11) |
Proof. For every $ n $, we can divide the left-hand side of (3.11) into two parts,
$ ∫ZN(∑y≠xy∈ZN|un(y)|p|x−y|N−α)|un|pdμ−∫ZN(∑y≠xy∈ZN|un(y)−u(y)|p|x−y|N−α)|un−u|pdμ=∫ZN(∑y≠xy∈ZN|un(y)|p−|un(y)−u(y)|p|x−y|N−α)(|un|p−|un−u|p)dμ+2∫ZN(∑y≠xy∈ZN|un(y)|p−|un(y)−u(y)|p|x−y|N−α)|un−u|pdμ=:J1+2J2, $ | (3.12) |
where
$ J1=∫ZN(∑y≠xy∈ZN|un(y)|p−|un(y)−u(y)|p|x−y|N−α)(|un|p−|un−u|p)dμ,J2=∫ZN(∑y≠xy∈ZN|un(y)|p−|un(y)−u(y)|p|x−y|N−α)|un−u|pdμ. $ |
By Lemma 3.3, taking $ q = p $, $ r = \tfrac{{2Np}}{{N + \alpha }} $, one has
$ limn→∞∫ZN||un|p−|un−u|p−|u|p|2NN+αdμ=0. $ | (3.13) |
We first give the estimate for the term $ {J_1} $. From the Hardy-Littlewood-Sobolev inequality (Eq 3.9), one deduces that
$ |J1−∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ|≤∫ZN(∑y≠xy∈ZN||un(y)|p−|un(y)−u(y)|p−|u(y)|p||x−y|N−α)||un|p−|un−u|p−|u|p|dμ+2∫ZN(∑y≠xy∈ZN||un(y)|p−|un(y)−u(y)|p−|u(y)|p||x−y|N−α)|u|pdμ≤‖|un|p−|un−u|p−|u|p‖2ℓ2NN+α(ZN)+2‖|un|p−|un−u|p−|u|p‖ℓ2NN+α(ZN)‖|u|p‖ℓ2NN+α(ZN). $ |
From (3.13) and $ \|u\|_{\ell^\frac{2Np}{N+\alpha}(\mathbb{Z}^{N})}\le \mathop {\liminf }\limits_{n \to \infty }\|u_n\|_{\ell^\frac{2Np}{N+\alpha}(\mathbb{Z}^{N})} < \infty $, it gives that
$ limn→∞J1=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ. $ | (3.14) |
Now we give the estimate for $ {J_2} $. From the Banach-Alaoglu theorem, $ {\left|u_n-u\right|^p} \rightharpoonup 0 $ weakly in $ {\ell^{\frac{2N}{N+\alpha}}}(\mathbb{Z}^{N}) $ as $ {n \rightarrow \infty } $ and (3.9), we deduce that
$ J2=∫ZN(∑y≠xy∈ZN|un(y)|p−|un(y)−u(y)|p−|u(y)|p|x−y|N−α)|un−u|pdμ+∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|un−u|pdμ≤‖|un|p−|un−u|p−|u|p‖ℓ2NN+α(ZN)‖|un−u|p‖ℓ2NN+α(ZN)+∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|un−u|pdμ. $ |
We infer from (3.10) that
$ ‖∑y≠xy∈ZN|u(y)|p|x−y|N−α‖ℓ2NN−α(ZN)≤CN,p,α‖u‖pℓ2NpN+α(ZN). $ |
Moreover, $ |u_n-u|^p\rightharpoonup0 $ in $ \ell^{\frac{2N}{N+\alpha}}(\mathbb{Z}^{N}) $. Hence we know that
$ limn→∞∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|un−u|pdμ=0. $ |
Then one deduces from (3.13) that $ \mathop {\lim }\limits_{n \to \infty } {J_2} = 0 $. This together with (3.14), we get the results.
In the present section we are devoted to the proof of Theorem 1.1. Obviously, for any function $ u:\mathbb{Z}^{N} \to \mathbb{R} $, the energy functional related to (1.1) is given by
$ J(u)=12∫ZN(|∇u|2+V(x)u2)dμ−12p∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ. $ | (4.1) |
Notice that the functional $ J $ is well defined in $ H^1(\mathbb{Z}^{N}) $. Indeed, assume that $ u \in \ell^{\frac{2NP}{N+\alpha}}(\mathbb{Z}^{N}) $, then by applying the Hardy-littlewood-Sobolev inequality (Eq 3.9) to the function $ f = |u|^p\in {\ell^{\frac{2N}{N + \alpha}}}(\mathbb{Z}^{N}) $, we obtain
$ ∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ≤CN,p,α(∫ZN|u|2NpN+αdμ)N+αN. $ | (4.2) |
It sufficient for us to confirm when the condition $ u \in \ell^{\frac{2NP}{N+\alpha }}(\mathbb{Z}^{N}) $ is satisfied. According to the Lemma 2.4, $ H^1(\mathbb{Z}^{N}) $ is continuously embedded into $ \ell^{\frac{2Np}{N+\alpha }}(\mathbb{Z}^{N}) $ if and only if $ p \ge \tfrac{N+\alpha}{N} $. Moreover, we infer from the inequality (Eq 3.9) that
$ ∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ≤CN,p,α‖u‖2pH1(ZN), $ | (4.3) |
where the constant $ C_{N, p, \alpha} $ depends only on $ N, \alpha $ and $ p $. Based on the previous argument, the function $ J $ is meaningful.
Next, we define the Nehari manifold related to (4.1) by
$ N:={u∈H1(ZN)∖{0}:J′(u)u=0}={u∈H1(ZN)∖{0}:∫ZN(|∇u|2+V(x)u2)dμ=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ}. $ |
Let
$ m=infu∈NJ(u). $ |
If there exists a function $ u \in \mathcal{N} $ satisfying $ J(u) = m $, then the function $ u $ is called a ground state solution. Obviously, $ u $ is a critical point of $ J $.
Next, we shall find the critical point of the functional (4.1).
Proposition 4.1. Let $ N \in\mathbb{N}^* $, $ \alpha \in (0, N) $ and $ p \in (1, \infty) $. If $ u \in {H^1}(\mathbb{Z}^{N}) \cap {\ell^{\frac{2Np}{N+\alpha}}}(\mathbb{Z}^{N}) \setminus \{0 \} $ and $ V $ is a uniformly bounded positive function, there holds
$ maxt>0J(tu)=(12−12p)S(u)pp−1, $ |
where
$ S(u)=∫ZN(|∇u|2+V(x)u2)dμ(∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ)1p. $ |
Proof. For any $ t > 0 $, we set
$ s(t):=J(tu)=t22∫ZN(|∇u|2+V(x)u2)dμ−t2p2p∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ. $ |
By a direct computation,
$ s′(t)=t∫ZN(|∇u|2+V(x)u2)dμ−t2p−1∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ. $ |
When $ s'(t) = 0 $, we can obtain a unique $ {t_u} $ such that $ s'(t_u) = 0 $. Moreover, one has
$ tu=(∫ZN(|∇u|2+V(x)u2)dμ∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ)12p−2. $ |
Since as $ 0 < t < {t_u} $, $ s'(t) > 0 $ and as $ t > {t_u} $, $ s'(t) < 0 $, thus
$ maxt>0J(tu)=J(tuu)=(12−12p)(∫ZN(|∇u|2+V(x)u2)dμ(∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ)1p)pp−1. $ |
This finishes the proof.
Note that the ground state energy of $ J $ can be characterized as
$ m=infu∈NJ(u)=infu∈H1(ZN)∖{0}maxt>0J(tu)=infu∈H1(ZN)∖{0}(12−12p)S(u)pp−1. $ |
In the next conclusion we show the infirmum of $ S(u) $ can be achieved by some nontrivial function.
Proposition 4.2. Let $ N \in\mathbb{N}^* $, $ \alpha \in (0, N) $ and $ p \in \left(\tfrac{N+\alpha}{N}, \infty \right) $. Suppose that $ V $ is a uniformly bounded positive function, then there exists $ u \in {H^1}(\mathbb{Z}^{N}) $ satisfying
$ S(u)=inf{S(v):v∈H1(ZN)∖{0}}. $ |
Combining with Propositions 4.1 and 4.2, we complete the proof of Theorem 1.1. Then we only need to focus on the proof Proposition 4.2 in the next. In the Euclidean space, we are familiar with the different kinds of the proof of Proposition 4.2. For example, a strategy consists in minimizing among radial functions and then prove with the symmetrization by rearrangement that a radial minimizer is a global minimizer. In our setting, the main difficulty for the analysis is that there is no proper counterpart for radial functions on $ \mathbb{Z}^{N} $ and moreover we do not have the compactness in this problem. To overcome the difficulty we borrow an idea of [42,Section 4](also see [24]) and use the constraint method to prove Proposition 4.2.
Proof of Proposition $ 4.2 $. Set
$ m=inf{S(u):u∈H1(ZN)∖{0}}, $ |
then we can get
$ 1m=sup{1S(u):u∈H1(ZN)and∫ZN(|∇u|2+V(x)u2)dμ=1}. $ |
Let $ \{u_n\} $ be a minimizing sequence in $ {H^1}(\mathbb{Z}^{N}) $ such that
$ ∫ZN(|∇un|2+V(x)u2n)dμ=1, $ |
and $ \mathop{\lim}\limits_{n\rightarrow \infty}\frac{1}{S(u_n)} = \frac{1}{m} $. By the discrete Hardy-Littlewood-Sobolev inequality (Eq 3.9), we obtain
$ CN,p,α(∫ZN(∑y≠xy∈ZN|un(y)|p|x−y|N−α)|un|pdμ)1p≤‖un‖ℓ2NpN+α(ZN)≤‖un‖N+αNpℓ2(ZN)‖un‖1−N+αNpℓ∞(ZN)≤‖un‖N+αNpH1(ZN)‖un‖1−N+αNpℓ∞(ZN). $ | (4.4) |
Taking the limit from both sides, one can see
$ CN,p,α(1m)1p≤lim_n→∞‖un‖1−N+αNpℓ∞(ZN). $ | (4.5) |
Since $ p > \tfrac{N+\alpha}{N} $, we obtain
$ lim_n→∞‖un‖ℓ∞(ZN)≥C>0. $ | (4.6) |
Hence, there exists a subsequence $ \{u_n\} $ and a sequence $ \{y_n\} \subset \mathbb{Z}^{N} $ such that $ | {u_n(y_n)}| \ge C $ for each $ n $. By translations, we define $ \widetilde{u}_n = :{u_n}(y+{k_n}T) $ with $ {k_n} = (k_n^1, \cdots k_n^N) $ to ensure that $ (y_n-{k_n}T) \subset \Omega $ where $ \Omega = [0, T)^N \cap \mathbb{Z}^{N} $ is a bounded domain in $ \mathbb{Z}^{N} $. Then for each $ \widetilde{u}_n $,
$ ‖˜un‖ℓ∞(Ω)≥|un(yn)|≥C>0. $ |
Moreover, by translation invariance, we infer from $ V(x) $ is T-periodic in $ x $ that
$ 1=∫ZN(|∇un|2+V(x)u2n)dμ=∫ZN(|∇˜un|2+V(x)˜un2)dμ $ |
and
$ S(un)=S(˜un). $ |
Without loss of generality, we can get a minimizing sequence $ \{u_n\} $ satisfying $ {\|u_n\|_{{\ell^\infty }(\Omega)}} \ge C > 0 $. Since $ \Omega $ is bounded, there exists at least one point, say $ x_0 $, such that $ {u_n}(x_0)\to u(x_0)\ge C > 0 $. Since the sequence $ \{u_n\} $ is bounded in $ {H^1}(\mathbb{Z}^{N}) $, it follows that $ {u_n} \rightharpoonup u $ in $ {H^1}(\mathbb{Z}^{N}) $ and $ {u_n} \to u\ne 0 $ pointwise on $ \mathbb{Z}^{N} $. Then it follows from Corollary 3.2 and Lemma 3.7 that
$ 1m=limn→∞(∫ZN(∑y≠xy∈ZN|un(y)|p|x−y|N−α)|un|pdμ)1p∫ZN(|∇un|2+V(x)u2n)dμ=¯limn→∞(∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ+∫ZN(∑y≠xy∈ZN|un(y)−u(y)|p|x−y|N−α)|un−u|pdμ)1p∫ZN(|∇u|2+V(x)u2)dμ+∫ZN(|∇(un−u)|2+V(x)(un−u)2)dμ≤¯limn→∞(∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ)1p+(∫ZN(∑y≠xy∈ZN|un(y)−u(y)|p|x−y|N−α)|un−u|pdμ)1p∫ZN(|∇u|2+V(x)u2)dμ+∫ZN(|∇(un−u)|2+V(x)(un−u)2)dμ. $ | (4.7) |
For every $ n $, we have
$ (∫ZN(∑y≠xy∈ZN|un(y)−u(y)|p|x−y|N−α)|un−u|pdμ)1p≤1m∫ZN(|∇(un−u)|2+V(x)(un−u)2)dμ. $ |
Since $ u\neq0 $, one has
$ (∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ)1p≥1m∫ZN(|∇(u)|2+V(x)(u)2)dμ, $ |
which yields
$ (∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ.)1p=1m∫ZN(|∇(u)|2+V(x)(u)2)dμ. $ |
By (4.7), one has
$ limn→∞(∫ZN(∑y≠xy∈ZN|un(y)−u(y)|p|x−y|N−α)|un−u|pdμ)1p=limn→∞1m∫ZN(|∇(un−u)|2+V(x)(un−u)2)dμ. $ |
By Fatou's Lemma, one gets
$ ∫ZN(|∇u|2+V(x)u2)dμ≤lim infn→∞∫ZN(|∇un|2+V(x)u2n)dμ≤1. $ |
Then it is enough for us to prove that $ \int_{\mathbb{Z}^{N}} {\left({|\nabla u_n|^2}+V(x)u_n^2 \right)} d\mu = 1 $. Using a contradiction argument, suppose that
$ 0<∫ZN(|∇un|2+V(x)u2n)dμ=K<1. $ |
then by
$ limn→∞∫ZN(|∇(un−u)|2+V(x)(un−u)2)dμ=limn→∞∫ZN(|∇un|2+V(x)u2n)dμ−∫ZN(|∇u|2+V(x)u2)dμ=1−K>0. $ |
However, $ (a+b)^p > a^p+b^p $ if $ a, b > 0 $. This yields a contradiction by (4.7).
In this section we shall prove the existence result for (1.3) and (1.4) by using the standard variational methods. Obviously, the functional associated with the problem (1.3) is given by
$ Jλ(u)=12∫ZN(|∇u|2+(λa(x)+1)u2)dμ−12p∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ, $ |
where $ p \ge \tfrac{N+\alpha}{N} $. The corresponding Nehari manifold is defined as
$ Nλ:={u∈Eλ(ZN)∖{0}:J′λ(u)u=0}={u∈Eλ(ZN)∖{0}:∫ZN(|∇u|2+(λa(x)+1)u2)dμ=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ}. $ |
We define the least energy level $ m_\lambda $ by
$ mλ:=infu∈NλJλ(u). $ |
Then we first prove the Nehari manifold $ \mathcal{N_\lambda} $ is nonempty.
Lemma 5.1. The Nehari manifold $ \mathcal{N_\lambda} $ is non-empty.
Proof. For $ t\in\mathbb{R} $ and fix a function $ u \in E_\lambda(\mathbb{Z}^{N})\backslash\{0\} $ and, we define
$ γ(t):=J′(tu)tu=t2∫ZN(|∇u|2+(λa(x)+1)u2)dμ−t2p∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ. $ |
Since $ p > 1 $ and $ u\neq 0 $, it is obvious that $ \gamma(t) > 0 $ for small $ t > 0 $ and that $ \lim\limits_{t \rightarrow \infty}\gamma(t) = -\infty $. Then there exists $ t_0 \in (0, \infty) $ such that $ \gamma(t_0) = 0 $, which implies that $ t_0u \in\mathcal{N_\lambda} $.
Next, we prove the least energy level $ m_\lambda $ is positive.
Lemma 5.2. We have $ m_\lambda = \inf\limits_{u \in \mathcal{N_\lambda}} J_\lambda(u) > 0 $.
Proof. Since $ u \in \mathcal{N_\lambda} $, then
$ ∫ZN(|∇u|2+(λa(x)+1)u2)dμ=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ. $ |
By Lemma 2.5 and (3.9), we obtain
$ ‖u‖2Eλ(ZN)=∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ≤C‖u‖2pℓ2NpN+α(ZN)≤C‖u‖2pEλ(ZN), $ |
where $ C $ is independent of $ \lambda $. It follows from $ p > 1 $ that
$ ‖u‖Eλ(ZN)≥(1C)12(p−1)>0. $ | (5.1) |
This gives
$ mλ=infu∈NλJλ(u)=(12−12p)infu∈Nλ‖u‖2Eλ(ZN)≥(12−12p)(1C)12(p−1)>0. $ |
The next lemma states that the least energy $ m_\lambda $ can be achieved.
Lemma 5.3. The value $ m_\lambda $ can be achieved by some $ u_\lambda \in \mathcal{N_\lambda} $. Namely, there exists some $ u_\lambda \in \mathcal{N_\lambda} $ such that $ J_\lambda(u_\lambda) = m_\lambda $.
Proof. Take a minimizing sequence $ \{u_k\} \subset \mathcal{N_\lambda} $ such that $ \mathop{\lim}\limits_{k\rightarrow \infty}{J_\lambda(u_k)} = m_\lambda $. Since
$ ok(1)+mλ=Jλ(uk)=p−12p‖uk‖2Eλ(ZN), $ |
we have that $ \{u_k\} $ is bounded in $ E_\lambda(\mathbb{Z}^{N}) $, where $ \mathop{\lim}\limits_{k\rightarrow \infty}{o_k(1)} = 0 $. By Lemma 2.5, we can assume that there exists some $ u_\lambda \in E_\lambda(\mathbb{Z}^{N}) $ such that
$ {uk⇀uλ in Eλ(ZN).uk(x)→uλ(x) ∀x∈ZN.uk→uλ in ℓq(ZN). $ |
From the discrete Hardy-Littlewood-Sobolev inequality (Eq 3.9), we infer that
$ ∫ZN(∑y≠xy∈ZN|uk(y)−uλ(y)|p|x−y|N−α)|uk−uλ|pdμ≤C‖uk−uλ‖2pℓ2NpN+α(ZN). $ |
Therefore, one has
$ limk→∞∫ZN(∑y≠xy∈ZN|uk(y)−uλ(y)|p|x−y|N−α)|uk−uλ|pdμ=0. $ |
Then from the Lemma 3.7, we get
$ limk→∞∫ZN(∑y≠xy∈ZN|uk(y)|p|x−y|N−α)|uk|pdμ=∫ZN(∑y≠xy∈ZN|uλ(y)|p|x−y|N−α)|uλ|pdμ. $ | (5.2) |
Since the $ E_\lambda $ norm is weakly lower semi-continuous, one has
$ Jλ(uλ)=12‖uλ‖2Eλ(ZN)−12p∫ZN(∑y≠xy∈ZN|uλ(y)|p|x−y|N−α)|uλ|pdμ≤lim infk→∞(12‖uk‖2Eλ(ZN)−12p∫ZN(∑y≠xy∈ZN|uk(y)|p|x−y|N−α)|uk|pdμ)=lim infk→∞Jλ(uk)=mλ. $ | (5.3) |
Next it suffices to show that $ u_\lambda\in \mathcal{N_\lambda} $. We infer from (5.1) that
$ 0 < c\leq\|u_k\|^2_{E_\lambda(\mathbb{Z}^{N})} = {\int _{\mathbb{Z}^{N}}}\left(\sum\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_k(y)|^p}{|x - y|^{N-\alpha}}}\right )|u_k|^pd\mu. $ |
This together with (5.2) which implies that
$ 0<c≤∫ZN(∑y≠xy∈ZN|uλ(y)|p|x−y|N−α)|uλ|pdμ. $ | (5.4) |
Therefore $ u_\lambda\neq0 $. Since $ u_k \in \mathcal{N_\lambda} $, we infer that
$ ‖uλ‖2Eλ(ZN)≤lim infk→∞‖uk‖2Eλ(ZN)=lim infk→∞∫ZN(∑y≠xy∈ZN|uk(y)|p|x−y|N−α)|uk|pdμ=∫ZN(∑y≠xy∈ZN|uλ(y)|p|x−y|N−α)|uλ|pdμ. $ |
We use the contradiction argument to obtain our results. Assume that
$ \|u_\lambda\|^2_{E_\lambda(\mathbb{Z}^{N})} < {\int _{\mathbb{Z}^{N}}}\left(\mathop{\sum}\limits_{y\ne x \atop y \in \mathbb{Z}^{N} } {\frac{|u_\lambda(y)|^p}{|x - y|^{N-\alpha}}}\right)|u_\lambda|^pd\mu. $ |
Similar as the proof of Lemma 5.1, there would exist a $ t\in(0, 1) $ such that $ tu_\lambda \in \mathcal{N_\lambda} $. This implies that
$ 0<mλ≤Jλ(tuλ)=(12−12p)‖tuλ‖2Eλ(ZN)≤t2lim infk→∞(12−12p)‖uk‖2Eλ(ZN)=t2lim infk→∞Jλ(uk)=t2mλ<mλ. $ |
This contradicts the fact that $ m_\lambda = \mathop{\inf}\limits_{u \in \mathcal{N_\lambda}} J_\lambda(u) $. Therefore we have $ u_\lambda \in \mathcal{N_\lambda} $. Moreover, we infer from (5.3) that $ m_\lambda $ is achieved by $ u_\lambda $.
The following Lemma finishes the proof of Theorem 1.3.
Lemma 5.4. $ u_\lambda \in \mathcal{N_\lambda} $ is a critical point for $ J_\lambda $.
Proof. It is enough for us to prove that for any $ \phi \in E_\lambda(\mathbb{Z}^{N}) $, there holds
$ J′λ(uλ)ϕ=0. $ |
Since $ u_\lambda \not\equiv 0 $, we can choose a constant $ \varepsilon > 0 $ such that $ u_\lambda+s\phi \not\equiv 0 $ for all $ s \in (-\varepsilon, \varepsilon) $. Furthermore, for every given $ s \in (- \varepsilon, \varepsilon) $, we can find some $ t(s) \in (0, \infty) $ satisfying $ t(s)(u_\lambda+s\phi) \in \mathcal{N_\lambda} $. Indeed, $ t(s) $ can be taken as
$ t(s)=(‖uλ+sϕ‖2Eλ(ZN)∫ZN(∑y≠xy∈ZN|(uλ+sϕ)(y)|p|x−y|N−α)|uλ+sϕ|pdμ)12p−2. $ |
Obviously, we can get $ t(0) = 1 $. Take a function $ \gamma(s) :(-\varepsilon, \varepsilon) \rightarrow \mathbb{R} $ which is defined as
$ γ(s):=Jλ(t(s)(uλ+sϕ)). $ |
For $ t(s)(u_\lambda+s\phi) \in \mathcal{N_\lambda} $ and $ J_\lambda(u_\lambda) = \mathop{\inf}\limits_{u\in\mathcal{N_\lambda}} J_\lambda(u) $, $ \gamma(s) $ achieves its minimum at $ s = 0 $. Together with $ u_\lambda\in\mathcal{N_\lambda} $ and $ J'_\lambda (u_\lambda)u_\lambda = 0 $, it follows that
$ 0=γ′(0)=J′λ(t(0)uλ)[t′(0)uλ+t(0)ϕ]=J′λ(uλ)t′(0)uλ+J′λ(uλ)ϕ=J′λ(uλ)ϕ. $ |
Next we focus on the proof of Theorem 1.4. The functional associated with the Eq (1.4) is given by
$ JΩ(u)=12∫Ω∪∂Ω|∇u|2dμ+∫Ωu2dμ−12p∫Ω(∑y≠xy∈Ω|u(y)|p|x−y|N−α)|u|pdμ. $ | (5.5) |
We remark that $ \|u\|_{\ell^q(\Omega)} \leq C\|u\|_{H_0^1(\Omega)} $ for $ q\in [1, \infty] $ by Lemma 2.6. Therefore, the functional $ J_\Omega(u) $ is well defined as $ p\geq\frac{N+\alpha}{2N} $. The corresponding Nehari manifold is defined as
$ NΩ={u∈H10(Ω)∖{0}:J′λ(u)u=0}={u∈H10(Ω)∖{0}:∫Ω∪∂Ω|∇u|2dμ+∫Ωu2dμ=∫Ω(∑y≠xy∈Ω|u(y)|p|x−y|N−α)|u|pdμ}. $ | (5.6) |
Let $ m_\Omega $ be
$ mΩ:=infu∈NΩJΩ(u). $ |
Since $ \Omega $ contains only finite vertices, the proofs of the previous results can be easily applied to the Eq (1.4). Moreover, $ p > 1 $ is enough for us to prove Theorem 1.4. Here we omit the details of the proofs.
In the current section, we mainly focus on the asymptotical properties of the solution. That is, we show that the ground state solutions $ u_\lambda $ of (1.3) converge to a ground state solution of (1.4) as $ \lambda\rightarrow \infty $. To accomplish this we first prove that any solution of (1.3) is bounded away from zero.
Lemma 6.1. There exists a constant $ \sigma > 0 $ which is independent of $ \lambda $, such that for any critical point $ u\in E_\lambda(\mathbb{Z}^{N}) $ of $ J_\lambda $, we have $ \|u\|_{E_\lambda(\mathbb{Z}^{N})}\geq \sigma $.
Proof. From Lemma 2.5 and the inequality (Eq 3.9), one has
$ 0=J′(u)u=∫ZN(|∇u|2+(λa(x)+1)u2)dμ−∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ≥‖u‖2Eλ(ZN)−C2p‖u‖2pEλ(ZN), $ |
where $ C $ is independent of $ \lambda $. Then we can choose $ \sigma = (\frac{1}{C})^{\frac{p}{p-1}} $ and Lemma 6.1 is proved.
The next lemma studies the property of $ (PS)_c $ sequence of $ J_\lambda $.
Lemma 6.2. For any $ (PS)_c $ sequence $ \{u_k\} $ of $ J_\lambda $, there holds
$ limk→∞‖uk‖2Eλ(ZN)=2pp−1c. $ | (6.1) |
Furthermore, there would exist a constant $ C_1 > 0 $ independent of $ \lambda $, such that either $ c\geq C_1 $ or $ c = 0 $.
Proof. Since $ J_\lambda(u_k) \to c $ and $ J'_\lambda(u_k) \to 0 $ as $ k \to \infty $, we have
$ c=limk→∞(Jλ(uk)−12pJ′λ(uk)uk)=limk→∞(12−12p)‖uk‖2Eλ(ZN)=p−12plimk→∞‖uk‖2Eλ(ZN), $ |
which gives (6.1). By Lemma 2.5 and (3.9), for any $ u\in E_\lambda(\mathbb{Z}^{N}) $, we obtain
$ J′λ(u)u=‖u‖2Eλ(ZN)−∫ZN(∑y≠xy∈ZN|u(y)|p|x−y|N−α)|u|pdμ≥‖u‖2Eλ(ZN)−C2p‖u‖2pEλ(ZN). $ | (6.2) |
Take $ \rho = (\frac{1}{2C^{2p}})^\frac{1}{2p-2} $. If $ \|u\|_{E_\lambda(\mathbb{Z}^{N})}\leq \rho $, we get
$ J′λ(u)u≥12‖u‖2Eλ(ZN). $ |
Take $ C_1 = \frac{p-1}{2p}\rho^2 $ and suppose $ c < C_1 $. Since $ \{u_k\} $ is a $ (PS)_c $ sequence, it yields
$ limk→∞‖uk‖2Eλ(ZN)=2pp−1c<2pp−1C1=ρ2. $ |
Hence, for large $ k $, we have
$ 12‖uk‖2Eλ(ZN)≤J′λ(uk)uk=ok(1)‖uk‖Eλ(ZN), $ |
which implies that $ \|u_k\|_{E_\lambda(\mathbb{Z}^{N})}\to 0 $ as $ k \to \infty $. It follows immediately that $ J_\lambda(u_k) \to c = 0 $ and the positive constant can be taken as $ C_1 = \frac{p-1}{2p}\rho^2 = (\frac{1}{2C^{2p}})^\frac{1}{p-1} $.
Remark 6.3. If we take $ c = m_\lambda $, then there would exist a $ (PS)_c $ sequence $ {u_k} $ such that $ u_k\rightharpoonup u_\lambda $ when proving the existence of a ground state solutions $ u_\lambda $. Since the $ E_{\lambda_k} $ norm of $ {u_{\lambda_k}} $ is weakly lower semi-continuous, then $ \|u_\lambda\|_{E_\lambda(\mathbb{Z}^{N})} $ is bounded by $ \tfrac{2p}{p-1} m_\lambda $.
Next, we study the relationship between the ground states $ m_\lambda $ and $ m_\Omega $.
Lemma 6.4. $ m_\lambda \to m_\Omega $ as $ \lambda \to \infty $.
Proof. Notice that $ m_\lambda \leq m_\Omega $ for every positive $ \lambda $ owing to $ \mathcal{N}_\Omega \subset \mathcal{N}_\lambda $. Take a sequence $ \lambda_k \to \infty $ satisfying
$ limk→∞mλk=M≤mΩ, $ | (6.3) |
where $ m_{\lambda_k} $ is the ground state and $ u_{\lambda_k}\in \mathcal{N}_{\lambda_k} $ is the corresponding ground state solution of (1.3). Then it follows $ M > 0 $ from Lemma 6.2. According to Remark 6.3, we know that the $ E_{\lambda_k} $ norm of $ {u_{\lambda_k}} $ is controlled by the constant $ \tfrac{2p}{p-1} m_\Omega $, which is independent of $ \lambda_k $. Up to a subsequence, we can assume that $ u_{\lambda_k}(x)\rightarrow u_0(x) $ on $ \mathbb{Z}^{N} $ and for any $ q \in [2, +\infty) $, $ u_{\lambda_k}\rightarrow u_0 $ in $ \ell^q(\mathbb{Z}^{N}) $. Moreover, we get that $ u_0\not\equiv 0 $ from Lemma 6.1.
We first claim that $ u_0|_{\Omega^c} = 0 $. If it is not true, we can find a point $ x_0 $ satisfying $ u_0(x_0) \neq0 $. Since $ u_{\lambda_k}\in \mathcal{N}_{\lambda_k} $, then
$ Jλk(uλk)=p−12p‖uλk‖2Eλk(ZN)≥p−12pλk∫ZNa(x)u2λkdμ≥p−12pλka(x0)u2λk(x0). $ |
Since $ a(x_0) > 0, u_{\lambda_k}(x_0) \to u_0(x_0)\neq0 $ and $ \lambda_k \to \infty $, we get
$ limk→∞Jλk(uλk)=∞, $ |
which contradicts with the conclusion $ m_{\lambda_k} \leq m_\Omega $. Since the norm $ \|\cdot\|_{H^1(\mathbb{Z}^{N})} $ is weakly lower semi-continuous and (5.2), we get
$ ∫Ω∪∂Ω|∇u0|2dμ+∫Ωu20dμ≤∫ZN(|∇u0|2+u20)dμ≤lim infk→∞∫ZN(|∇uλk|2+u2λk)dμ≤lim infk→∞∫ZN(|∇uλk|2+(λka(x)+1)u2λk)dμ=lim infk→∞∫ZN(∑y≠xy∈ZN|uλk(y)|p|x−y|N−α)|uλk|pdμ=∫ZN(∑y≠xy∈ZN|u0(y)|p|x−y|N−α)|u0|pdμ. $ |
Noticing that $ u_0|_{\Omega^c} = 0 $, we get
$ ∫Ω∪∂Ω|∇u0|2dμ+∫Ωu20dμ≤∫Ω(∑y≠xy∈Ω|u0(y)|p|x−y|N−α)|u0|pdμ. $ | (6.4) |
Then there exists $ \alpha\in(0, 1] $ such that $ \alpha u_0 \in \mathcal{N}_\Omega $, i.e.,
$ ∫Ω∪∂Ω|α∇u0|2dμ+∫Ω|αu0|2dμ=∫Ω(∑y≠xy∈Ω|αu0(y)|p|x−y|N−α)|αu0|pdμ. $ |
This implies that
$ JΩ(αu0)=p−12p(∫Ω∪∂Ω|α∇u0|2dμ+∫Ω|αu0|2dμ)≤p−12p∫ZN(|α∇u0|2+|αu0|2)dμ≤p−12p∫ZN(|∇u0|2+|u0|2)dμ≤lim infk→∞p−12p∫ZN(|∇uλk|2+(λka(x)+1)u2λk)dμ=lim infk→∞Jλk(uλk)=M. $ |
Consequently, $ M \geq m_{\Omega} $. Combining with (6.3), we get that
$ limλ→∞mλ=mΩ. $ |
Next, we are devoted to proving Theorem 1.5.
Proof of Theorem 1.5. We need to prove that for any sequence $ \lambda_k \to \infty $, the corresponding $ u_{\lambda_k} \in\mathcal{N}_{\lambda_k} $ satisfying $ J_{\lambda_k}(u_{\lambda_k}) = m_{\lambda_k} $ converges in $ H^1(\mathbb{Z}^{N}) $ to a ground state solution $ u_\Omega $ of (1.4) along a subsequence. According to Remark 6.3, the $ E_{\lambda_k} $ norm of $ {u_{\lambda_k}} $ is uniformly bounded by the constant $ \tfrac{2p}{p-1} m_\Omega $, which is independent of $ \lambda_k $. Consequently, we can assume that there would exist some $ u_0 $ satisfying $ u_{\lambda_k}(x)\rightarrow u_0(x) $ in $ \mathbb{Z}^{N} $and for any $ q \in [2, +\infty) $, $ u_{\lambda_k}\rightarrow u_0 $ in $ \ell^q(\mathbb{Z}^{N}) $. Moreover, we get that $ u_0\not\equiv 0 $ from Lemma 6.1. As what we have done in Lemma 6.4, we can prove that $ u_0|_{\Omega^c} = 0 $.
First, we claim that
$ λk∫ZNa(x)u2λkdμ→0,as k→∞ $ | (6.5) |
and
$ ∫ZN|∇uλk|2dμ→∫ZN|∇u0|2dμ. $ | (6.6) |
If for some $ \delta > 0 $, there holds
$ limk→∞λk∫ZNa(x)u2λkdμ=δ>0, $ |
we have
$ ∫Ω∪∂Ω(|∇u0|2+u20)dμ<∫ZN(|∇u0|2+u20)dμ+δ≤lim infk→∞∫ZN(|∇uλk|2+(λka(x)+1)u2λk)dμ=lim infk→∞∫ZN(∑y≠xy∈ZN|uλk(y)|p|x−y|N−α)|uλk|pdμ=∫Ω(∑y≠xy∈Ω|u0(y)|p|x−y|N−α)|u0|pdμ. $ |
Then there exists $ \alpha\in(0, 1) $ such that $ \alpha u_0 \in \mathcal{N}_\Omega $. On the other hand, if
$ lim infk→∞∫ZN|∇uλk|2dμ>∫ZN|∇u0|2dμ, $ |
we also have $ \int_{\Omega \cup \partial\Omega}\left({|\nabla u_0|}^2+{u_0^2}\right)d\mu < \int _{\Omega}\left(\sum\limits_{y\ne x \atop y \in \Omega } {\frac{|u_0(y)|^p}{|x - y|^{N-\alpha}}}\right){|u_0|}^p d\mu $. Then in both cases, we can find $ \alpha\in(0, 1) $ such that $ \alpha u_0 \in \mathcal{N}_\Omega $. Consequently, we have
$ mΩ≤JΩ(αu0)=p−12p(∫Ω∪∂Ω|α∇u0|2dμ+∫Ω|αu0|2dμ)=p−12pα2(∫Ω∪∂Ω|∇u0|2dμ+∫Ω|u0|2dμ)<p−12p∫ZN(|∇u0|2+|u0|2)dμ≤lim infk→∞p−12p∫ZN(|∇uλk|2+(λka(x)+1)u2λk)dμ=lim infk→∞Jλk(uλk)=mΩ, $ |
which arrives at a contradiction.
To prove Theorem 1.5, we also need verify that $ u_0 $ is a ground state solution of (1.4). The first step is to prove that $ u_0 $ is a critical point of $ J_\Omega $. Since $ J'_{\lambda_k}(u_{\lambda_k})\phi = 0 $, for any $ \phi \in H_0^1(\Omega)\subset H^1(\mathbb{Z}^{N}) $, we have
$ ∫ZN∇uλk∇ϕdμ+∫ZN(λka(x)+1)uλkϕdμ=∫ZN(∑y≠xy∈ZN|uλk(y)|p|x−y|N−α)|uλk|p−2uλkϕdμ. $ | (6.7) |
Since $ a(x) = 0 $ in $ \Omega $ and $ \phi = 0 $ in $ \Omega^c $, there holds
$ ∫Ω∪∂Ω∇uλk∇ϕdμ+∫Ωuλkϕdμ=∫Ω(∑y≠xy∈ZN|uλk(y)|p|x−y|N−α)|uλk|p−2uλkϕdμ. $ | (6.8) |
Let $ k\to \infty $, the above equality becomes
$ ∫Ω∪∂Ω∇u0∇ϕdμ+∫Ωu0ϕdμ=∫Ωlimk→∞(∑y≠xy∈ZN|uλk(y)|p|x−y|N−α)|u0|p−2u0ϕdμ. $ | (6.9) |
Since $ u_{\lambda_k}\rightarrow u_0 $ in $ \ell^p(\mathbb{Z}^{N}) $ with $ p\geq2 $ and Lemma 3.4, we obtain
$ ∫Ω∪∂Ω∇u0∇ϕdμ+∫Ωu0ϕdμ=∫Ω(∑y≠xy∈Ω|u0(y)|p|x−y|N−α)|u0|p−2u0ϕdμ, $ | (6.10) |
which yields $ u_0\in\mathcal{N}_\Omega $, and $ u_0 $ is a solution of (1.4).
Finally, we prove that $ u_0 $ achieves the infimum of $ J_\Omega $ in $ \mathcal{N}_\Omega $.
$ Jλk(uλk) =12∫ZN(|∇uλk|2+(λka(x)+1)u2λk)dμ−12p∫ZN(∑y≠xy∈ZN|uλk(y)|p|x−y|N−α)|uλk|pdμ=12∫ZN(|∇u0|2+u20)dμ−12p∫ZN(∑y≠xy∈ZN|u0(y)|p|x−y|N−α)|u0|pdμ+ok(1)=12∫Ω∪∂Ω|∇u0|2dμ+∫Ωu20dμ−12p∫Ω(∑y≠xy∈Ω|u0(y)|p|x−y|N−α)|u0|pdμ+ok(1)=JΩ(u0)+ok(1). $ | (6.11) |
Since $ J_{\lambda_k}(u_{\lambda_k}) = m_{\lambda_k} $, we get $ J_{\Omega}(u_0) = m_{\Omega} $ by Lemma 6.4. Hence the function $ u_0 $ is a ground state solution of (1.4).
Finally, we have the following lemma for the convergence of the sequence $ \{u_{\lambda_k}\} $.
Corollary 6.5. Furthermore, we have $ \lim\limits_{k \to \infty}\|u_{\lambda_k}-u_0\|_{E_{\lambda_k}(\mathbb{Z}^{N})} = 0 $.
Proof. Indeed, since $ u_{\lambda_k} \in\mathcal{N}_{\lambda_k} $ and $ u_0|_{\Omega^c} = 0 $, we have
$ ‖uλk−u0‖2Eλk(ZN)=∫ZN(|∇(uλk−u0)|2+(λka(x)+1)(uλk−u0)2)dμ=‖uλk‖2Eλk(ZN)+‖u0‖2Eλk(ZN)−2∫ZN∇uλk∇u0dμ−2∫ZNuλku0dμ=‖uλk‖2Eλk(ZN)+‖u0‖2H10(Ω)−2∫Ω∪∂Ω∇uλk∇u0dμ−2∫Ωuλku0dμ=‖uλk‖2Eλk(ZN)+‖u0‖2H10(Ω)−2‖u0‖2H10(Ω)+ok(1)=‖uλk‖2Eλk(ZN)−‖u0‖2H10(Ω)+ok(1)=∫ZN(∑y≠xy∈ZN|uk(y)|p|x−y|N−α)|uk|pdμ−∫Ω(∑y≠xy∈Ω|u0(y)|p|x−y|N−α)|u0|pdμ+ok(1), $ |
which finishes the proof.
This work was supported by NNSF of China (Grants 11971202), Outstanding Young foundation of Jiangsu Province No. BK20200042.
The authors declare no conflict of interest.
[1] |
Linder K, Nicolau D, Nailor M (2016) Predicting and preventing antimicrobial resistance utilizing pharmacodynamics: Part I Gram positive bacteria. Expert Opin Drug Met 12: 267–280. doi: 10.1517/17425255.2016.1141197
![]() |
[2] |
Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406: 775–781. doi: 10.1038/35021219
![]() |
[3] |
Pagès JM, Amaral L (2009) Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. BBA-Proteins Proteom 1794: 826–833. doi: 10.1016/j.bbapap.2008.12.011
![]() |
[4] |
Coates R, Moran J, Horsburgh M (2014) Staphylococci: colonizers and pathogens of human skin. Future Microbiol 9: 75–91. doi: 10.2217/fmb.13.145
![]() |
[5] |
Tong S, Davis J, Eichenberger E, et al. (2015) Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28: 603–661. doi: 10.1128/CMR.00134-14
![]() |
[6] |
Miragaia M, Thomas J, Couto I, et al. (2007) Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol 189: 2540–2552. doi: 10.1128/JB.01484-06
![]() |
[7] |
Uckay I, Pittet D, Vaudaux P, et al. (2009) Foreign body infections due to Staphylococcus epidermidis. Ann Med 41: 109–119. doi: 10.1080/07853890802337045
![]() |
[8] |
Otto M (2009) Staphylococcus epidermidis-the 'accidental' pathogen. Nat Rev Microbiol 7: 555–567. doi: 10.1038/nrmicro2182
![]() |
[9] | Saeed S, Farkhondeh T, Fariborz S (2018) Honey and health: A review of recent clinical research. Pharmacogn Res 9: 121–127. |
[10] | Wijesinghe M, Weatherall M, Perrin K, et al. (2009) Honey in the treatment of burns: a systematic review and meta-analysis of its efficacy. NZ Med J 122: 47–60. |
[11] |
Alvarez-Suarez J, Gasparrini M, Forbes-Hernández T, et al. (2014) The composition and biological activity of honey: a focus on Manuka honey. Foods 3: 420–432. doi: 10.3390/foods3030420
![]() |
[12] |
Mavric E, Wittmann S, Barth G, et al. (2008) Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res 52: 483–489. doi: 10.1002/mnfr.200700282
![]() |
[13] |
Adams CJ, Manley-Harris M, Molan PC (2009) The origin of methylglyoxal in New Zealand Manuka (Leptospermum scoparium) honey. Carbohyd Res 344: 1050–1053. doi: 10.1016/j.carres.2009.03.020
![]() |
[14] |
Atrott J, Henle T (2009) Methylglyoxal in Manuka honey-correlation with antibacterial properties. Czech J Food Sci 27: S163–S165. doi: 10.17221/911-CJFS
![]() |
[15] |
Kato Y, Fujinaka R, Ishisaka A, et al. (2014) Plausible authentication of Manuka honey and related products by measuring leptosperin with methyl syringate. J Agr Food Chem 62: 6400–6407. doi: 10.1021/jf501475h
![]() |
[16] | Molan PC (2008) An explanation of why the MGO level in Manuka honey does not show the antibacterial activity. New Zeal Beekeeper 16: 11–13. |
[17] | Tonks AJ, Dudley E, Porter N, et al. (2007) A 5.8-kDa component of Manuka honey stimulates immune cells via TLR4. J Leukocyte Biol 82: 1147–1155. |
[18] | Henderson K, Aldhirgham T, Nigam P, et al. (2016) Evaluation of Manuka honey estrogen activity using the MCF-7 cell proliferation assay. J Adv Biol Biotechnol 10: 1–11. |
[19] | Portokalakis I, Yusof H, Ghanotakis D, et al. (2016) Manuka honey-induced cytotoxicity against MCF7 breast cancer cells is correlated to total phenol content and antioxidant power. J Adv Biol Biotechnol 8: 1–10. |
[20] |
Fernandez-Cabezudo M, El-Kharrag R, Torab F, et al. (2013) Intravenous administration of Manuka honey inhibits tumour growth and improves host survival when used in combination with chemotherapy in a melanoma mouse model. PLoS One 8: e55993. doi: 10.1371/journal.pone.0055993
![]() |
[21] | Kwok T, Kirkpatrick G, Yusof H, et al. (2016) Rapid colorimetric determination of methylglyoxal equivalents for Manuka honey. J Adv Biol Biotechnol 7: 1–6. |
[22] |
Henderson T, Nigam PS, Owusu-Apenten RK, et al. (2015) A universally calibrated microplate ferric reducing antioxidant power (FRAP) assay for foods and applications to Manuka honey. Food Chem 174: 119–123. doi: 10.1016/j.foodchem.2014.11.009
![]() |
[23] |
Al-Waili N, Ghamdi AA, Ansari MJ, et al. (2013) Differences in composition of honey samples and their impact on the antimicrobial activities against drug multi-resistant bacteria and pathogenic fungi. Arch Med Res 44: 307–316. doi: 10.1016/j.arcmed.2013.04.009
![]() |
[24] |
Tonks A (2003) Honey stimulates inflammatory cytokine production from monocytes. Cytokine 21: 242–247. doi: 10.1016/S1043-4666(03)00092-9
![]() |
[25] |
Lu J, Carter D, Turnball L, et al. (2013) The effect of New Zealand Kanuka, Manuka and clover honeys on bacterial growth dynamics and cellular morphology varies according to the species. PLoS One 8: e55898. doi: 10.1371/journal.pone.0055898
![]() |
[26] |
Henriquez A, Jenkins R, Burton N, et al. (2010) The intracellular effects of Manuka honey on Staphylococcus aureus. Eur J Clin Microbiol 29: 45–50. doi: 10.1007/s10096-009-0817-2
![]() |
[27] | Lu J, Turnball L, Burke CM, et al. (2014) Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities. Peer J 2: e326. |
[28] |
Cooper R, Jenkins L, Henriquez A, et al. (2010) Absence of bacterial resistance to medical-grade Manuka honey. Eur J Clin Microbiol 29: 1237–1241. doi: 10.1007/s10096-010-0992-1
![]() |
[29] |
Bonifacio M, Cometa S, Cochis A, et al. (2018) Antibacterial effectiveness meets improved mechanical properties: Manuka honey/gellan gum composite hydrogels for cartilage repair. Carbohyd Polym 198: 462–472. doi: 10.1016/j.carbpol.2018.06.115
![]() |
[30] |
Almasaudi SB, Al-Nahari AAM, EI Sayd M, et al. (2017) Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi J Biol Sci 24: 1255–1261. doi: 10.1016/j.sjbs.2016.08.007
![]() |
[31] |
Alsarra I (2009) Chitosan topical gel formulation in the management of burn wounds. Int J Biol Macromol 45: 16–21. doi: 10.1016/j.ijbiomac.2009.03.010
![]() |
[32] | Chau T, Owusu-Apenten R, Nigam P (2017) Total phenols, antioxidant capacity and antibacterial activity of Manuka honey extract. J Adv Biol Biotech 15: 1–6. |
[33] | Kirkpatrick G, Nigam P, Owusu-Apenten R (2017) Total phenols, antioxidant capacity and antibacterial activity of Manuka honey chemical constituents. J Adv Biol Biotech 15: 1–7. |
[34] |
Irish J, Blair S, Carter D (2011) The antibacterial activity of honey derived from Australian flora. PLoS One 6: e18229. doi: 10.1371/journal.pone.0018229
![]() |
[35] | Kumar N (2014) Comparison of the antibacterial efficacy of Manuka honey against E. faecalis and E. coli-An in vitro study. JCDR 8: ZC29–ZC31. |
[36] |
Paramasivan S, Drilling A, Jardeleza C, et al. (2014) Methylglyoxal-augmented Manuka honey as a topical anti-Staphylococcus aureus biofilm agent: safety and efficacy in an in vivo model. Int Forum Allergy Rh 4: 187–195. doi: 10.1002/alr.21264
![]() |
[37] | Schneider M, Coyle S, Warnock M, et al. (2012) Anti-microbial activity and composition of Manuka and Portobello honey. Phytother Res 27: 1162–1168. |
[38] |
Jenkins R, Cooper R (2012) Synergy between oxacillin and Manuka honey sensitizes methicillin-resistant Staphylococcus aureus to oxacillin. J Antimicrob Chemoth 67: 1405–1407. doi: 10.1093/jac/dks071
![]() |
[39] |
Müller P, Alber D, Turnbull L, et al. (2013) Synergism between Medihoney and Rifampicin against Methicillin-Resistant Staphylococcus aureus (MRSA). PLoS One 8: e57679. doi: 10.1371/journal.pone.0057679
![]() |
[40] | Liu M, Cokcetin N, Lu J, et al. (2017) Rifampicin-Manuka honey combinations are superior to other Antibiotic-Manuka honey combinations in eradicating Staphylococcus aureus biofilms. Front Microbiol 8: 1–12. |
1. | Yang Liu, Yunyan Yang, Topological degree for Kazdan–Warner equation in the negative case on finite graph, 2024, 65, 0232-704X, 10.1007/s10455-024-09960-1 | |
2. | Yang Liu, Mengjie Zhang, Existence of solutions for nonlinear biharmonic Choquard equations on weighted lattice graphs, 2024, 534, 0022247X, 128079, 10.1016/j.jmaa.2023.128079 | |
3. | Yang Liu, Mengjie Zhang, The Ground State Solutions to a Class of Biharmonic Choquard Equations on Weighted Lattice Graphs, 2024, 50, 1017-060X, 10.1007/s41980-023-00846-9 | |
4. | Dandan Yang, Zhenyu Bai, Chuanzhi Bai, Existence of Solutions for Nonlinear Choquard Equations with (p, q)-Laplacian on Finite Weighted Lattice Graphs, 2024, 13, 2075-1680, 762, 10.3390/axioms13110762 | |
5. | Yang Liu, The positive solution for the nonlinear p-Laplacian Choquard equation on lattice graphs, 2025, 27, 1661-7738, 10.1007/s11784-025-01187-2 | |
6. | Yong Liu, Jun Wang, Kun Wang, Wen Yang, Yanni Zhu, Existence and nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsäcker model on lattice graph, 2025, 438, 00220396, 113360, 10.1016/j.jde.2025.113360 |