Loading [MathJax]/jax/output/SVG/jax.js
Review

The impact of exclusive enteral nutrition on the intestinal microbiota in inflammatory bowel disease

  • Received: 02 April 2018 Accepted: 18 July 2018 Published: 20 July 2018
  • It is increasingly clear that the intestinal microbiota plays key roles in the pathogenesis of the conditions known as Crohn disease and ulcerative colitis (jointly known as the inflammatory bowel diseases). Perturbations of the microbiota, termed dysbiosis, are present at diagnosis and likely reflect earlier environmental influences along with interactions with intestinal immune responses. Over the last two decades, there has been increasing interest in the use of a nutritional therapy to induce remission of active Crohn disease. Amongst a number of recent studies focusing on the putative mechanisms of action of enteral nutrition in Crohn disease, there have been several reports illustrating profound interactions between this nutritional therapy and the intestinal microbiota. Although at present it is still not clear how these changes relate to concurrent improvements in inflammation, it has become an area of increasing interest. This review article focuses on the impacts of nutritional therapy in individuals with active Crohn disease and overviews the most recent data arising from international studies.

    Citation: Andrew S Day. The impact of exclusive enteral nutrition on the intestinal microbiota in inflammatory bowel disease[J]. AIMS Microbiology, 2018, 4(4): 584-593. doi: 10.3934/microbiol.2018.4.584

    Related Papers:

    [1] Cheng-Cheng Zhu, Jiang Zhu . Spread trend of COVID-19 epidemic outbreak in China: using exponential attractor method in a spatial heterogeneous SEIQR model. Mathematical Biosciences and Engineering, 2020, 17(4): 3062-3087. doi: 10.3934/mbe.2020174
    [2] Cheng-Cheng Zhu, Jiang Zhu, Xiao-Lan Liu . Influence of spatial heterogeneous environment on long-term dynamics of a reaction-diffusion SVIR epidemic model with relaps. Mathematical Biosciences and Engineering, 2019, 16(5): 5897-5922. doi: 10.3934/mbe.2019295
    [3] Shingo Iwami, Shinji Nakaoka, Yasuhiro Takeuchi . Mathematical analysis of a HIV model with frequency dependence and viral diversity. Mathematical Biosciences and Engineering, 2008, 5(3): 457-476. doi: 10.3934/mbe.2008.5.457
    [4] Xiaoqing Wu, Yinghui Shan, Jianguo Gao . A note on advection-diffusion cholera model with bacterial hyperinfectivity. Mathematical Biosciences and Engineering, 2020, 17(6): 7398-7410. doi: 10.3934/mbe.2020378
    [5] Jinhu Xu . Dynamic analysis of a cytokine-enhanced viral infection model with infection age. Mathematical Biosciences and Engineering, 2023, 20(5): 8666-8684. doi: 10.3934/mbe.2023380
    [6] Kazuo Yamazaki, Xueying Wang . Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences and Engineering, 2017, 14(2): 559-579. doi: 10.3934/mbe.2017033
    [7] Yongli Cai, Yun Kang, Weiming Wang . Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1071-1089. doi: 10.3934/mbe.2017056
    [8] Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372
    [9] Xiaohong Tian, Rui Xu, Jiazhe Lin . Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response. Mathematical Biosciences and Engineering, 2019, 16(6): 7850-7882. doi: 10.3934/mbe.2019395
    [10] Wenzhang Huang, Maoan Han, Kaiyu Liu . Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences and Engineering, 2010, 7(1): 51-66. doi: 10.3934/mbe.2010.7.51
  • It is increasingly clear that the intestinal microbiota plays key roles in the pathogenesis of the conditions known as Crohn disease and ulcerative colitis (jointly known as the inflammatory bowel diseases). Perturbations of the microbiota, termed dysbiosis, are present at diagnosis and likely reflect earlier environmental influences along with interactions with intestinal immune responses. Over the last two decades, there has been increasing interest in the use of a nutritional therapy to induce remission of active Crohn disease. Amongst a number of recent studies focusing on the putative mechanisms of action of enteral nutrition in Crohn disease, there have been several reports illustrating profound interactions between this nutritional therapy and the intestinal microbiota. Although at present it is still not clear how these changes relate to concurrent improvements in inflammation, it has become an area of increasing interest. This review article focuses on the impacts of nutritional therapy in individuals with active Crohn disease and overviews the most recent data arising from international studies.


    HIV spreads through either cell-free viral infection or direct transmission from infected to healthy cells (cell-to-cell infection) [1]. It is reported that more than 50$ \% $ of viral infection is caused by the cell-to-cell infection [2]. Cell-to-cell infection can occur when infected cells encounter healthy cells and form viral synapse [3]. Recently, applying reaction-diffusion equations to model viral dynamics with cell-to-cell infection have been received attentions (see, e.g., [4,5,6]). Ren et al. [5] proposed the following reaction-diffusion equation model with cell-to-cell infection:

    $ T(t,x)t=(d1(x)T)+λ(x)β1(x)TTβ2(x)TVd(x)T, t>0, xΩ,T(t,x)t=(d2(x)T)+β1(x)TT+β2(x)TVr(x)T, t>0, xΩ,V(t,x)t=(d3(x)V)+N(x)Te(x)V, t>0, xΩ,T(0,x)=T0(x)>0, T(0,x)=T0(x)0, V(0,x)=V0(x)0, xΩ. $ (1.1)

    In the model (1.1), $ T(t, \, x) $, $ T^*(t, \, x) $ and $ V(t, \, x) $ denote densities of healthy cells, infected cells and virus at time $ t $ and location $ x $, respectively. The detailed biological meanings of parameters for the model (1.1) can be found in [5]. The well-posedness of the classical solutions for the model (1.1) have been studied. The model (1.1) admits a basic reproduction number $ R_0 $, which is defined by the spectral radius of the next generation operator [5]. The model (1.1) defines a solution semiflow $ \varPsi(t) $, which has a global attractor. The model (1.1) admits a unique virus-free steady state $ E_0 = (T_0(x), \, 0, \, 0) $, which is globally attractive if $ R_0 < 1 $. If $ R_0 > 1 $, the model (1.1) admits at least one infection steady state and virus is uniformly persistent [5].

    It is a challenging problem to consider the global stability of $ E_0 $ in the critical case of $ R_0 = 1 $. In [6], Wang et al. studied global stability analysis in the critical case by establishing Lyapunov functions. Unfortunately, the method can not be applied for the model consisting of two or more equations with diffusion terms, which was left it as an open problem.

    Adopting the idea in [7,8,9], the present study is devoted to solving this open problem and shows that $ E_0 $ is globally asymptotically stable when $ R_0 = 1 $ for the model (1.2). For simplicity, in the following, we assume that the diffusion rates $ d_1(x) $, $ d_2(x) $ and $ d_3(x) $ are positive constants. That is, we consider the following model

    $ T(t,x)t=d1ΔT+λ(x)β1(x)TTβ2(x)TVd(x)T, t>0, xΩ,T(t,x)t=d2ΔT+β1(x)TT+β2(x)TVr(x)T, t>0, xΩ,V(t,x)t=d3ΔV+N(x)Te(x)V, t>0, xΩ,T(0,x)=T0(x)>0, T(0,x)=T0(x)0, V(0,x)=V0(x)0, xΩ, $ (1.2)

    with the boundary conditions:

    $ T(t,x)ν=T(t,x)ν=V(t,x)ν=0, t>0, xΩ, $ (1.3)

    where $ \Omega $ is the spatial domain and $ \nu $ is the outward normal to $ \partial\Omega $. We assume that all the location-dependent parameters are continuous, strictly positive and uniformly bounded functions on $ \overline{\Omega} $.

    Let $ \mathbb{Y} = C\left(\overline{\Omega}, \, \mathbb{R}^3\right) $ with the supremum norm $ \parallel\cdot\parallel_{\mathbb{Y}} $, $ \mathbb{Y}^+ = C\left(\overline{\Omega}, \, \mathbb{R}^3_{+}\right) $. Then $ (\mathbb{Y}, \, \mathbb{Y}^+) $ is an ordered Banach space. Let $ \mathcal{T} $ be the semigroup for the system:

    $ T(t,x)t=d2ΔT+β1(x)T0(x)T+β2(x)T0(x)Vr(x)T,V(t,x)t=d3ΔV+N(x)Te(x)V, $

    where $ T_0(x) $ is the solution of the elliptic problem $ d_1\Delta T+\lambda(x)-d(x)T = 0 $ under the boundary conditions (1.3). Then $ \mathcal{T} $ has the generator

    $ ˜A=(d2Δ+β1(x)T0(x)r(x)β2(x)T0(x)N(x)d3Δe(x)). $

    Let us define the exponential growth bound of $ \mathcal{T} $ as

    $ \overline{\omega} = \overline{\omega}\left(\mathcal{T}\right): = \lim\limits_{t\rightarrow +\infty}\frac{\ln \left\Vert \mathcal{T} \right\Vert}{t}, $

    and define the spectral bound of $ \widetilde{A} $ by

    $ s\left(\widetilde{A}\right): = \sup\left\lbrace Re \lambda, \, \lambda\in \sigma \left(\widetilde{A}\right) \right\rbrace. $

    Theorem 2.1. If $ R_0 = 1 $, $ E_0 $ of the model (1.2) is globally asymptotically stable.

    Proof. We first show the local asymptotic stability of $ E_0 $ of the model (1.2). Suppose $ \zeta > 0 $ and let $ v_0 = (T^0, \, T^*_0, \, V_0) $ with $ \left\Vert v_0-E_0 \right\Vert\leq \zeta $. Define $ m_1(t, \, x) = \frac{T(t, \, x)}{T_0(x)}-1\ \text{and}\ p(t) = \max_{x\in \overline{\Omega}}\left\lbrace m_1(t, \, x), \, 0 \right\rbrace. $ According to $ d_1\Delta T_0(x)+\lambda(x)-d(x)T_0(x) = 0 $, we have

    $ \frac{\partial m_1}{\partial t}-d_1\Delta m_1-2d_1\frac{\nabla T_0(x) \nabla m_1}{T_0(x)}+\dfrac{\lambda(x)}{T_0(x)}m_1 = -\frac{\beta_1(x) TT^*}{T_0(x)}-\frac{\beta_2(x) TV}{T_0(x)}. $

    Let $ \widetilde{T}_1(t) $ be the positive semigroup generated by

    $ d_1\Delta+2d_1\frac{\nabla T_0(x) \nabla}{T_0(x)}-\frac{\lambda(x)}{T_0(x)} $

    associated with (1.3) (see Theorem 4.4.3 in [10]). From Theorem 4.4.3 in [10], we can find $ q > 0 $ such that $ \left\Vert \widetilde{T}_1(t) \right\Vert\leq M_1e^{-qt} $ for some $ M_1 > 0 $. Hence, one gets

    $ m_1(\cdot, \, t) = \widetilde{T}_1(t) m_{10}-\int_{0 }^\infty { \widetilde{T}_1(t-s)\left[\dfrac{\beta_1(\cdot) T(\cdot, \, s)T^*(\cdot, \, s)}{T_0(\cdot)}+\dfrac{\beta_2(\cdot) T(\cdot, \, s)V(\cdot, \, s)}{T_0(\cdot)}\right]}ds, $

    where $ m_{10} = \frac{T^0}{T_0(x)}-1 $. In view of the positivity of $ \widetilde{T}_1(t) $, it follows that

    $ p(t)=maxx¯Ω{ω1(t,x),0}=maxx¯Ω{˜T1(t)m100˜T1(ts)[β1()T(,s)T(,s)T0()+β2()T(,s)V(,s)T0()]ds,0}maxx¯Ω{˜T1(t)m10,0}˜T1(t)m10M1eqtT0T0(x)1ζM1eqtTm, $

    where $ T_m = \min_{x\in \overline{\Omega}}\lbrace T_0(x) \rbrace. $ Note that $ (T^*, \, V) $ satisfies

    $ T(t,x)t=d2ΔT+β1(x)T0(x)T+β2(x)T0(x)Vr(x)T   +β1(x)T0(x)(TT0(x)1)T+β2(x)T0(x)(TT0(x)1)V,V(t,x)t=d3ΔV+N(x)Te(x)V. $

    It then follows that

    $ (T(,t)V(,t))=T(t)(T0V0) $
    $ +0T(ts)(β1()T0()(T(,s)T0()1)T(,s)+β2()T0()(T(,s)T0()1)V(,s)0)ds. $

    From Theorem 3.5 in [11], we have that $ s\left(\widetilde{A}\right) = \sup\left\lbrace Re \lambda, \, \lambda\in \sigma \left(\widetilde{A}\right) \right\rbrace $ has the same sign as $ R_0-1 $. If $ R_0 = 1 $, then $ s\left(\widetilde{A}\right) = 0 $. Then we easily verify all the conditions of Proposition 4.15 in [12]. It follows from $ R_0 = 1 $ and Proposition 4.15 in [12] that we can find $ M_1 > 0 $ such that $ \left\Vert \mathcal{T}(t)\right\Vert\leq M_1 $ for $ t\geq 0 $, where $ M_1 $ can be chosen as large as needed in the sequel. Since $ p(s)\leq \frac{\zeta M_1e^{-qs}}{T_m} $, one gets

    $ max{T(,t),V(,t)}M1max{T0,V0}     +M1(β1+β2)T00p(s)max{T(s),V(s)}dsM1ζ+M2ζ0eqsmax{T(s),V(s)}ds, $

    where

    $ M_2 = \frac{M_1^2(\|\beta_1\|+\|\beta_2\|)\Vert T_0\Vert}{T_m}. $

    By using Gronwall's inequality, we get

    $ max{T(,t),V(,t)}M1ζe0ζM2eqsdsM1ζeζM2q. $

    Then $ \frac{\partial T}{\partial t}-d_1\Delta T > \lambda(x)-d(x)T-M_1\zeta e^{\frac{\zeta M_2}{q}}\left(\beta_1(x)+\beta_2(x) \right) T. $ Let $ \widehat{u}_1 $ be the solution of the system:

    $ ˆu1(t,x)t=d1Δˆu1+λ(x)d(x)ˆu1M1ζeζM2q(β1(x)+β2(x))ˆu1, xΩ, t>0,ˆu1(t,x)ν=0, xΩ, t>0,ˆu1(x,0)=T0, x¯Ω. $ (2.1)

    Then $ T(t, \, x)\geq \widehat{u}_1(t, \, x) $ for $ x\in \overline{\Omega} $ and $ t\geq 0 $. Let $ T_{\zeta}(x) $ be the positive steady state of the model (2.1) and $ \widehat{m}(t, \, x) = \widehat{u}_1(t, \, x)-T_{\zeta}(x) $. Then $ \widehat{m}(t, \, x) $ satisfies

    $ ˆm(t,x)t=d1Δˆm[d(x)+M1ζeζM2q(β1(x)+β2(x))]ˆm, xΩ, t>0,ˆm(t,x)ν=0, xΩ, t>0,ˆm(x,0)=T0Tζ(x), x¯Ω. $

    For sufficiently large $ M_1 $, from Theorem 4.4.3 in [10], we have $ \Vert F_1(t)\Vert\leq M_1e^{\overline{\alpha}_0t} $, where $ \overline{\alpha}_0 < 0 $ is a constant and $ F_1(t):\, C\left(\overline{\Omega}, \, \mathbb{R}\right)\rightarrow C\left(\overline{\Omega}, \, \mathbb{R}\right) $ is the $ C_0 $ semigroup of $ d_1\Delta -d(\cdotp) $ subject to (1.3) [5]. Hence, we have

    $ ˆm(,t)=F1(t)(T0Tζ(x))0F1(ts)M1ζeζM2q(β1()+β2())ˆm(,s)ds,ˆm(,t)M1T0Tζ(x)e¯α0t+0M21e¯α0(ts)ζeζM2q(β1()+β2())ˆm(,s)ds. $

    Let $ \mathbf{K} = M_1^2\zeta e^{\frac{\zeta M_2}{q}}\left(\Vert\beta_1\Vert+\Vert\beta_2\Vert \right) $. By employing Gronwall's inequality, one gets

    $ \left\Vert\widehat{u}_1(\cdot, \, t)-T_{\zeta}(x)\right\Vert = \left\Vert\widehat{m}(\cdot, \, t)\right\Vert\leq M_1 \left\Vert T^0-T_{\zeta}(x)\right\Vert e^{\mathbf{K}t+\overline{\alpha}_0t}. $

    Choosing $ \zeta > 0 $ sufficiently small such that $ \mathbf{K} < -\frac{\overline{\alpha}_0}{2} $, then

    $ \left\Vert\widehat{u}_1(\cdot, \, t)-T_{\zeta}(x)\right\Vert\leq M_1 \left\Vert T^0-T_{\zeta}(x)\right\Vert e^{\overline{\alpha}_0t/2}, $

    and

    $ T(,t)T0(x)ˆu1(,t)ˆU(x)=ˆu1(,t)Uπ(x)+Uπ(x)ˆU(x)ζM1(M1+1)Tζ(x)T0(x). $

    Since $ p(t)\leq \frac{\zeta M_1}{T_m} $, one gets $ T(\cdot, \, t)-T_0(x)\leq \zeta M_1\frac{\Vert T_0(x) \Vert}{T_m}, $ and hence

    $ \Vert T(\cdot, \, t)-T_0(x)\Vert = \max\left\lbrace \zeta M_1+(M_1+1)\Vert T_{\zeta}(x)-T_0(x)\Vert, \, \zeta M_1\frac{\Vert T_0(x) \Vert}{T_m} \right\rbrace . $

    From

    $ \mathop {\lim }\limits_{\zeta \to 0 } T_{\zeta}(x) = T_0(x), $

    by choosing $ \zeta $ small enough, for $ t > 0 $, there holds $ \Vert T(\cdot, \, t)-T_0(x)\Vert, \ \left\Vert T^*(\cdot, \, t)\right\Vert, \ \left\Vert V(\cdot, \, t)\right\Vert\leq \varepsilon, $ which implies the local asymptotic stability of $ E_0 $.

    By Theorem 1 in [5], the solution semiflow $ \varPsi(t): \mathbb{Y}^+\rightarrow \mathbb{Y}^+ $ of the model (1.2) has a global attractor $ \Pi $. In the following, we prove the global attractivity of $ E_0 $. Define

    $ \partial \mathbb{Y}_1 = \left\lbrace \left(\widetilde{T}, \, \widetilde{T^*}, \, \widetilde{V}\right) \in \mathbb{Y}^+:\, \widetilde{T^*} = \widetilde{V} = 0\right\rbrace. $

    Claim 1. For $ v_0 = (T^0, \, T^*_0, \, V_0)\in \Pi $, the omega limit set $ \omega(v_0)\subset \partial \mathbb{Y}_1 $.

    Since $ \frac{\partial T}{\partial t}\leq d_1\Delta T+\lambda(x)-d(x)T $, $ T $ is a subsolution of the problem

    $ ˆT(t,x)t=d1ΔˆT+λ(x)d(x)ˆT, xΩ, t>0,ˆT(t,x)ν=0, xΩ, t>0,ˆT(x,0)=T0(x), x¯Ω. $ (2.2)

    It is well known that model (2.2) has a unique positive steady state $ T_0(x) $, which is globally attractive. This together with the comparison theorem implies that

    $ \mathop {\limsup }\limits_{t \to +\infty }T(t, \, x)\leq \mathop {\limsup }\limits_{t \to +\infty }\widehat{T}(t, \, x) = T_0(x), $

    uniformly for $ x\in \Omega. $ Since $ v_0 = (T^0, \, T^*_0, \, V_0)\in \Pi $, we know $ T^0\leq T_0 $. If $ T^*_0 = V_0 = 0 $, the claim easily holds. We assume that either $ T^*_0\neq0 $ or $ V_0\neq0 $. Thus one gets $ T^*(t, \, x) > 0 $ and $ V(t, \, x) > 0 $ for $ x\in \overline{\Omega} $ and $ t > 0 $. Then $ T(t, \, x) $ satisfies

    $ T(t,x)t<d1ΔT+λ(x)d(x)T(t,x),xΩ, t>0,T(t,x)ν=0,xΩ, t>0,T(x,0)T0(x), xΩ. $

    The comparison principle yields $ T(t, \, x) < T_0(x) $ for $ x\in \overline{\Omega} $ and $ t > 0 $. Following [7], we introduce

    $ h(t, \, v_0): = \inf\left\lbrace \widetilde{h}\in \mathbb{R}:\, T^*(\cdot, \, t)\leq \widetilde{h}\phi_2, \, V(\cdot, \, t)\leq \widetilde{h}\phi_3 \right\rbrace. $

    Then $ h(t, \, v_0) > 0 $ for $ t > 0 $. We show that $ h(t, \, v_0) $ is strictly decreasing. To this end, we fix $ t_0 > 0 $, and let $ \overline{T^*}(\cdot, \, t) = h(t_0, \, v_0)\phi_2 $ and $ \overline{V}(\cdot, \, t) = h(t_0, \, v_0)\phi_3 $ for $ t\geq t_0 $. Due to $ T(\cdot, \, t) < T_0(x) $, one gets

    $ ¯T(t,x)t>d2Δ¯T+β1(x)T¯T+β2(x)T¯Vr(x)¯T,¯V(t,x)t=d3Δ¯V+N(x)¯Te(x)¯V,¯T(x,t0)T(x,t0), ¯V(x,t0)V(x,t0), xΩ. $ (2.3)

    Hence $ \left(\overline{T^*}(t, \, x), \, \overline{V}(t, \, x)\right)\geq (T^*(t, \, x), \, V(t, \, x)) $ for $ x\in \overline{\Omega} $ and $ t\geq t_0 $. From the model (2.3), one gets $ h(t_0, \, v_0)\phi_2(x) = \overline{T^*}(t, \, x) > T^*(t, \, x) $ for $ x\in \overline{\Omega} $ and $ t > t_0 $. Similarly, we get $ h(t_0, \, v_0)\phi_3(x) = \overline{V}(t, \, x) > V(t, \, x) $ for $ x\in \overline{\Omega} $ and $ t > t_0 $. Since $ t_0 > 0 $ is arbitrary, $ h(t, \, v_0) $ is strictly decreasing. Let $ h_{*} = \mathop {\lim }\limits_{t \to +\infty }h(t, \, v_0) $. Then we have $ h_{*} = 0 $. Let $ \mathcal{Q} = (Q_1, \, Q_2, \, Q_3)\in \omega(v_0) $. Then there is $ \left\lbrace t_k \right\rbrace $ with $ t_k\rightarrow +\infty $ such that $ \varPsi(t_k)v_0\rightarrow \mathcal{Q} $. We get $ h(t, \, \mathcal{Q}) = h_{*} $ for $ t\geq 0 $ due to $ \mathop {\lim }\limits_{t \to +\infty }\varPsi(t+t_k)v_0 = \varPsi(t)\mathop {\lim }\limits_{t \to +\infty }\varPsi(t_k)v_0 = \varPsi(t)\mathcal{Q} $. If $ Q_2\neq 0 $ and $ Q_3\neq 0 $, we repeat the above discussions to illustrate that $ h(t, \, \mathcal{Q}) $ is strictly decreasing, which contradicts to $ h(t, \, \mathcal{Q}) = h_{*} $. Thus, we have $ Q_2 = Q_3 = 0 $.

    Claim 2. $ \Pi = \left\lbrace E_0 \right\rbrace $.

    Since $ \left\lbrace E_0 \right\rbrace $ is globally attractive in $ \partial \mathbb{Y}_1 $, $ \left\lbrace E_0 \right\rbrace $ is the only compact invariant subset of the model (1.2). From the invariance of $ \omega(v_0) $ and $ \omega(v_0)\subset \partial \mathbb{Y}_1 $, one gets $ \omega(v_0) = \left\lbrace E_0\right\rbrace $. By Lemma 3.11 in [9], we get $ \Pi = \left\lbrace E_0 \right\rbrace $.

    The local asymptotic stability and global attractivity yield the global asymptotic stability of $ E_0 $.

    The research is supported by the NNSF of China (11901360) to W. Wang and supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (2019030196) to X. Lai. We also want to thank the anonymous referees for their careful reading that helped us to improve the manuscript.

    The authors decare no conflicts of interest.

    [1] Lemberg DA, Day AS (2015) Crohn disease and colitis in children: An update for 2014. J Paediatr Child H 51: 266–270. doi: 10.1111/jpc.12685
    [2] McGovern DP, Kugathasan S, Cho JH (2015) Genetics of inflammatory bowel diseases. Gastroenterology 149: 1163–1176. doi: 10.1053/j.gastro.2015.08.001
    [3] Bernstein CN (2017) Review article: changes in the epidemiology of inflammatory bowel disease-clues for aetiology. Aliment Pharm Therap 46: 911–919. doi: 10.1111/apt.14338
    [4] Sairenji T, Collins KL, Evans DV (2017) An update on inflammatory bowel disease. Prim Care 44: 673–692. doi: 10.1016/j.pop.2017.07.010
    [5] Critch J, Day AS, Otley AR, et al. (2012) Clinical report: The utilization of enteral nutrition for the control of intestinal inflammation in pediatric Crohn disease. J Pediatr Gastr Nutr 54: 298–305. doi: 10.1097/MPG.0b013e318235b397
    [6] Day AS, Lopez RN (2015) Exclusive enteral nutrition in children with Crohn disease. World J Gastroenterol 21: 6809–6816. doi: 10.3748/wjg.v21.i22.6809
    [7] Voitk AJ, Echave V, Feller JH, et al. (1973) Experience with elemental diet in the treatment of inflammatory bowel disease. Is this primary therapy? Arch Surg 107: 329–333.
    [8] O'Morain C, Segal AW, Levi AJ (1984) Elemental diet as primary-treatment of acute Crohn's disease-A controlled trial. Brit Med J 288: 1859–1862. doi: 10.1136/bmj.288.6434.1859
    [9] Whitten KE, Leach ST, Bohane TD, et al. (2010) Effect of exclusive enteral nutrition on bone turnover in children with Crohn's disease. J Gastroenterol 45: 399–405. doi: 10.1007/s00535-009-0165-0
    [10] Werkstetter KJ, Schatz SB, Alberer M, et al. (2013) Influence of exclusive enteral nutrition therapy on bone density and geometry in newly diagnosed pediatric Crohn's disease patients. Ann Nutr Metab 63: 10–16. doi: 10.1159/000350369
    [11] Afzal NA, Addai S, Fagbemi A, et al. (2002) Refeeding syndrome with enteral nutrition in children: a case report, literature review and clinical guidelines. Clin Nutr 21: 515–520. doi: 10.1054/clnu.2002.0586
    [12] Akobeng AK, Thomas AG (2010) Refeeding syndrome following exclusive enteral nutritional treatment in Crohn disease. J Pediatr Gastr Nutr 51: 364–366.
    [13] Schulman JM, Pritzker L, Shaoul R (2017) Maintenance of remission with partial enteral nutrition therapy in pediatric Crohn's disease: A retrospective study. Can J Gastroenterol 2017: 5873158.
    [14] Nakahigashi M, Yamamoto T, Sacco R, et al. (2016) Enteral nutrition for maintaining remission in patients with quiescent Crohn's disease: current status and future perspectives. Int J Colorectal Dis 31: 1–7. doi: 10.1007/s00384-015-2348-x
    [15] Hirai F, Ishihara H, Yada S, et al. (2013) Effectiveness of concomitant enteral nutrition therapy and infliximab for maintenance treatment of Crohn's disease in adults. Digest Dis Sci 58: 1329–1334. doi: 10.1007/s10620-012-2374-2
    [16] Yamamoto T, Shiraki M, Nakahigashi M, et al. (2013) Enteral nutrition to suppress postoperative Crohn's disease recurrence: a five-year prospective cohort study. Int J Colorectal Dis 28: 335–340. doi: 10.1007/s00384-012-1587-3
    [17] Day AS (2015) Inflammatory bowel disease and the intestinal microbiota. J Pediatr Biochem 5: 60–64. doi: 10.1055/s-0035-1564576
    [18] McIlroy J, Ianiro G, Mukhopadhya I, et al. (2018) Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharm Therap 47: 26–42. doi: 10.1111/apt.14384
    [19] Sokol H, Pigneur B, Watterlot L, et al. (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. P Natl Acad Sci USA 105: 16731–16736. doi: 10.1073/pnas.0804812105
    [20] Quévrain E, Maubert MA, Michon C, et al. (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut 65: 415–425. doi: 10.1136/gutjnl-2014-307649
    [21] Madsen KL (2001) Inflammatory bowel disease: lessons from the IL-10 gene-deficient mouse. Clin Invest Med 24: 250–257.
    [22] Rutgeerts P, Goboes K, Peeters M, et al. (1991) Effect of faecal stream diversion on recurrence of Crohn's disease in the neoterminal ileum. Lancet 338: 771–774. doi: 10.1016/0140-6736(91)90663-A
    [23] D'Haens GR, Geboes K, Peeters M, et al. (1998) Early lesions of recurrent Crohn's disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 114: 262–267. doi: 10.1016/S0016-5085(98)70476-7
    [24] Rutgeerts P, Hiele M, Goboes K, et al. (1995) Controlled trial of metronidazole treatment for prevention of Crohn's recurrence after ileal resection. Gastroenterology 108: 1617–1621. doi: 10.1016/0016-5085(95)90121-3
    [25] de Jong NSH, Leach ST, Day AS (2007) Polymeric formula has direct anti-inflammatory effects on enterocytes in an in vitro model of intestinal inflammation. Digest Dis Sci 52: 2029–2036. doi: 10.1007/s10620-006-9449-x
    [26] Nahidi L, Leach ST, Mitchell HM, et al. (2013) Nutritional therapy modulates inflammation and improves altered barrier function in a mouse model of colitis. Gastroenterology 144: S532.
    [27] Nahidi L, Day AS, Lemberg DA, et al. (2012) Differential effects of nutritional and non-nutritional therapies on intestinal barrier function in an in vitro model. J Gastroenterol 47: 107–117. doi: 10.1007/s00535-011-0471-1
    [28] Pryce-Millar E, Murch SH, Heuschkel RB (2004) Enteral nutrition therapy in Crohn's disease changes the mucosal flora. J Pediatr Gastr Nutr 39: 289.
    [29] Lionetti P, Callegari ML, Ferrai S, et al. (2005) Enteral nutrition and microflora in pediatric Crohn's disease. JPEN-Parenter Enter 29: S173–S175. doi: 10.1177/01486071050290S4S173
    [30] Leach ST, Mitchell HM, Eng WR, et al. (2008) Sustained modulation of intestinal microflora by exclusive enteral nutrition used to treat children with Crohn's disease. Aliment Pharm Therap 28: 724–733. doi: 10.1111/j.1365-2036.2008.03796.x
    [31] Gerasimidis K, Bertz M, Hanske L, et al. (2014) Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflamm Bowel Dis 20: 861–871. doi: 10.1097/MIB.0000000000000023
    [32] Kaakoush NO, Day AS, Leach ST, et al. (2015) Effect of exclusive enteral nutrition on the microbiota of children with newly diagnosed Crohn's disease. Clin Transl Gastroen 6: e71. doi: 10.1038/ctg.2014.21
    [33] Quince C, Ijaz UZ, Loman N, et al. (2015) Extensive modulation of the fecal metagenome in children with Crohn's disease during exclusive enteral nutrition. Am J Gastroenterol 110: 1718–1729. doi: 10.1038/ajg.2015.357
    [34] Lewis JD, Chen EZ, Baldassano RN, et al. (2015) Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease. Cell Host Microbe 18: 489–500. doi: 10.1016/j.chom.2015.09.008
    [35] Schwerd T, Frivolt K, Clavel T, et al. (2016) Exclusive enteral nutrition in active pediatric Crohn disease: Effects on intestinal microbiota and immune regulation. J Allergy Clin Immun 138: 592–596. doi: 10.1016/j.jaci.2015.12.1331
    [36] Dunn KA, Moore-Connors J, MacIntyre B, et al. (2016) Early changes in microbial community structure are associated with sustained remission after nutritional treatment of pediatric Crohn's disease. Inflamm Bowel Dis 22: 2853–2862. doi: 10.1097/MIB.0000000000000956
    [37] Jia W, Whitehead RN, Griffiths L, et al. (2010) Is the abundance of Faecalibacterium prausnitzii relevant to Crohn's disease? FEMS Microbiol Lett 310: 138–144. doi: 10.1111/j.1574-6968.2010.02057.x
    [38] Shiga H, Kajiura T, Shinozaki J, et al. (2012) Changes of faecal microbiota in patients with Crohn's disease treated with an elemental diet and total parenteral nutrition. Digest Liver Dis 44: 736–742. doi: 10.1016/j.dld.2012.04.014
    [39] Berntson L, Hedlund-Treutiger I, Alving K (2016) Anti-inflammatory effect of exclusive enteral nutrition in patients with juvenile idiopathic arthritis. Clin Exp Rheumatol 34: 941–945.
    [40] Berntson L, Agback P, Dicksved J (2016) Changes in fecal microbiota and metabolomics in a child with juvenile idiopathic arthritis (JIA) responding to two treatment periods with exclusive enteral nutrition (EEN). Clin Rheumatol 35: 1501–1506. doi: 10.1007/s10067-016-3238-5
  • This article has been cited by:

    1. Yazhi Wu, Guangyao Tang, Changcheng Xiang, Dynamic analysis of a predator-prey state-dependent impulsive model with fear effect in which action threshold depending on the prey density and its changing rate, 2022, 19, 1551-0018, 13152, 10.3934/mbe.2022615
    2. Wei Li, Tonghua Zhang, Yufei Wang, Huidong Cheng, Dynamic analysis of a plankton–herbivore state-dependent impulsive model with action threshold depending on the density and its changing rate, 2022, 107, 0924-090X, 2951, 10.1007/s11071-021-07022-w
    3. Sheng-qiang Zhang, Xin-zhu Meng, Asymptotic analysis of a nonlinear stochastic eco-epidemiological system with feedback control, 2022, 37, 1005-1031, 317, 10.1007/s11766-022-3631-6
    4. Xinzhi Ren, Kaifa Wang, Xianning Liu, Dynamics on a degenerated reaction–diffusion Zika transmission model, 2024, 150, 08939659, 108935, 10.1016/j.aml.2023.108935
    5. Liping Wu, Zhongyi Xiang, Dynamic analysis of a predator-prey impulse model with action threshold depending on the density of the predator and its rate of change, 2024, 9, 2473-6988, 10659, 10.3934/math.2024520
    6. Cuifang Lv, Xiaoyan Chen, Chaoxiong Du, Global dynamics of a cytokine-enhanced viral infection model with distributed delays and optimal control analysis, 2025, 10, 2473-6988, 9493, 10.3934/math.2025438
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5270) PDF downloads(909) Cited by(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog