Citation: Sebastian Kube, Petra Wendler. Structural comparison of contractile nanomachines[J]. AIMS Biophysics, 2015, 2(2): 88-115. doi: 10.3934/biophy.2015.2.88
[1] | Patrick Moriarty, Damon Honnery . The limits of renewable energy. AIMS Energy, 2021, 9(4): 812-829. doi: 10.3934/energy.2021037 |
[2] | Chukwuebuka Okafor, Christian Madu, Charles Ajaero, Juliet Ibekwe, Happy Bebenimibo, Chinelo Nzekwe . Moving beyond fossil fuel in an oil-exporting and emerging economy: Paradigm shift. AIMS Energy, 2021, 9(2): 379-413. doi: 10.3934/energy.2021020 |
[3] | Patrick Moriarty, Damon Honnery . Energy policy and economics under climate change. AIMS Energy, 2018, 6(2): 272-290. doi: 10.3934/energy.2018.2.272 |
[4] | Muhammad Amir Raza, M. M. Aman, Abdul Ghani Abro, Muhammad Shahid, Darakhshan Ara, Tufail Ahmed Waseer, Mohsin Ali Tunio, Shakir Ali Soomro, Nadeem Ahmed Tunio, Raza Haider . Modelling and development of sustainable energy systems. AIMS Energy, 2023, 11(2): 256-270. doi: 10.3934/energy.2023014 |
[5] | Albert K. Awopone, Ahmed F. Zobaa . Analyses of optimum generation scenarios for sustainable power generation in Ghana. AIMS Energy, 2017, 5(2): 193-208. doi: 10.3934/energy.2017.2.193 |
[6] | David Schwartzman, Peter Schwartzman . Scenarios for combating global warming: China's critical role as a leader in the energy transition. AIMS Energy, 2024, 12(4): 809-821. doi: 10.3934/energy.2024038 |
[7] | Shahrouz Abolhosseini, Almas Heshmati, Masoomeh Rashidghalam . Energy security and competition over energy resources in Iran and Caucasus region. AIMS Energy, 2017, 5(2): 224-238. doi: 10.3934/energy.2017.2.224 |
[8] | Arben Gjukaj, Rexhep Shaqiri, Qamil Kabashi, Vezir Rexhepi . Renewable energy integration and distributed generation in Kosovo: Challenges and solutions for enhanced energy quality. AIMS Energy, 2024, 12(3): 686-705. doi: 10.3934/energy.2024032 |
[9] | Samuel Asumadu-Sarkodie, Phebe Asantewaa Owusu . A review of Ghana’s solar energy potential. AIMS Energy, 2016, 4(5): 675-696. doi: 10.3934/energy.2016.5.675 |
[10] | Erdiwansyah, Asri Gani, Nurdin MH, Rizalman Mamat, R.E Sarjono . Policies and laws in the application of renewable energy Indonesia: A reviews. AIMS Energy, 2022, 10(1): 23-44. doi: 10.3934/energy.2022002 |
Abbreviations: IDP: Intrinsically disordered protein; IDR: Intrinsically disordered region; YPRA: Yeast proteinase A; TFE: 2,2,2-trifluoroethanol; CD: Circular dichroism; SDSL: Site-directed spin labeling; CW-EPR: Continuous wave electron paramagnetic resonance; IAP: 3-(2-Iodoacetamido)-PROXYL; MTSL: (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl) methanethiosulfonate; MSL: 4-maleimido-TEMPO; DTT: Dithiothreitol
Proteins or protein regions of 50 or more residues, which do not have stable secondary or tertiary structure under physiological conditions, are characterized as intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs) [1,2,3,4,5,6,7]. Although the structure-function paradigm suggests that 3D structure is necessary for function, the discovered importance of intrinsic disorder within proteins or protein regions of higher eukaryotic systems shows how function could arise from various unstructured states [3,4,8,9]. IDPs have important roles in cellular signal transduction, translation, and transcription, influencing the study of disordered proteins, focusing on both the functions provided by IDPs, and the conformational changes associated with target binding [4,7,10].
IA3, an IDP found in Sacchoromyeces cerevisiae, is composed of 68 amino acid residues and acts as an inhibitor of yeast proteinase A (YPRA). Previous studies have shown IA3 to adopt an α-helical conformation when bound in the active site of YPRA and when exposed to the secondary structure stabilizer 2,2,2-trifluoroethanol (TFE). These observed helical tendencies of IA3 differ between the N-terminal residues (2-34) and C-terminal residues (35-68) [11,12,13,14,15]. X-ray crystallographic models of IA3 bound to YPRA indicate α-helical structure in the N-terminal region (residues 2-34). In contrast, the C-terminal region (residues 35-68) has unresolved electron density, suggesting disorder (Figure 1) [11]. Biophysical methods of circular dichroism (CD) spectroscopy, 2D H1 N15 nuclear magnetic resonance spectroscopy, molecular dynamics simulations, laser temperature-jump fluorescence spectroscopy, fluorescence resonance energy transfer spectroscopy, and site directed spin labeling (SDSL), provide data supporting a two-state transition for IA3, where the C-terminus undergoes a helical transition but is less pronounced than the N-terminus [13,14,15,16,17,18].
SDSL, in combination with continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy is a biophysical tool for probing structure, dynamics, and conformational changes in macromolecules [19,20,21,22,23]. For proteins, typically a CW-EPR active chemical group, such as a nitroxide spin label, is incorporated at desired locations by chemical modification of a substituted cysteine. The introduction of an active chemical group provides a reactive side group for covalent bond spin labeling. Recent progress in spin labeling methodology has also demonstrated the ability to incorporate non-natural amino acids for subsequent chemical modification, as well as novel schemes for specifically labeling tyrosine residues; a potentially very useful strategy for spin labeling IDPs [24,25,26,27].
The resultant CW-EPR spectral line shape reflects motional averaging of the nitroxide spin label [20,21,28]. Typically, the effects are described by three main types of motion, occurring in the 0.1-50 ns time scale [29,30]. The corresponding correlation times are referred to as the following: τR, the overall tumbling of the protein, τI, the movement of the spin label about the bonds connecting it to the protein, and τB, the motion of the spin labeled protein backbone. SDSL CW-EPR has been applied to study structure-to-unstructured transitions in proteins as well as to IDP systems [5,17,22,31,32]. For structured proteins ≥ 15 kDa, line shape parameters such as the second moment and scaled mobility readily reveal conformational changes without the need to increase solution viscosity [29,33]. Ordered to disordered transitions in structured proteins are readily characterized by these “traditional” line shape parameter analyses [34,35]. However, in IDPs, the degree of disorder and the dynamics of the system often times results in “isotropic-like” spectra that fall into the fast motional averaging limit. In these cases, for relatively fast motional averaging, the ratio of the intensities of the low field (h(+1)) and central field (h(0)) transitions provide an alternative line shape analysis parameter, h(1)/h(0), that is useful to describe conformational changes [5,17,22,36].
Here, extending upon previous work, we performed a spin-labeled cysteine scanning profile of the N- and C-termini of IA3, where a series of fifteen singly spin-labeled IA3 constructs consisting of ten and five cysteine substitutions in the N- and C-terminus were generated, respectively (Figure 1) [17]. A comparison is provided between the termini on a site by site basis revealing variations in the degree of transition of the two termini, and sensitivity of the helical content of the N-terminus to the spin-labeled cysteine substitution and select amino acid substitutions. As these results show, the degree of site-specific helical propensity of the N-terminus is modulated by the introduction of a chemically modified cysteine residue. By further probing site V8 of IA3, the specific effects on secondary structure due to site-specific amino acid substitution and spin labeling are analyzed. The size of an introduced residue or chemical modification has marked effects on the helical propensity within the N-terminal region of IA3, whether found on the buried (concave) or solvent exposed (convex) side of the helix when bound to YPRA. By comparing SDSL and CD results, we are able to determine sites within IA3 that can tolerate spin-label incorporation and retain WT helical tendencies; thus, we label those our “wild-type mimics”.
BL21(DE3) pLysS cells were purchased from Invitrogen (Carlsbad, CA). E. coli codon-optimized DNA for the IA3 gene from S. cerevisiae, and DNA primers used for site-directed mutagenesis were purchased from DNA2.0 (Newark, CA). DNA taq polymerase and Dpn1 were purchased from New England Biolabs (Ipswich, MA). A 5-mL chelating column was purchased from GE Healthcare (Wauwatosa, WI). A HiPrep 26/10 desalting column was purchased from Amersham (Pittsburgh, PA). The 16.5% Tris-Tricene gels were purchased from Bio-Rad (Hercules, CA). 3-(2-Iodoacetamido)-PROXYL (IAP), (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl) methanethiosulfonate (MTSL), and 3-maleimido-TEMPO (MSL) spin label was purchased from Sigma Aldrich (St. Louis, MO). The 0.60 i.d. × 0.84 o.d. capillary tubes were purchased from Fiber Optic Center (New Bradford, MA). Unless otherwise stated, all other reagents and products were purchased from Fisher Scientific (Pittsburgh, PA) and used as received.
The optimized IA3 gene was cloned into the pET-22b+ vector containing a C-terminal 6× His-tag, adding the sequence LEHHHHHH to the C-terminus as described previously [17]. Site directed mutagenesis via polymerase chain reaction was used to introduce non-native cysteines by designing mutagenic primers. The substituted sequence in each resultant plasmid was confirmed via Sanger DNA sequencing. WT and cysteine substituted constructs were purified as described previously [17]. Following affinity chromatography, residual nickel from the column was removed by addition of EDTA to a concentration of 100 mM and cysteine reduction was ensured by addition of dithiothreitol (DTT) to a concentration of 0.1 mM. Protein purity was assessed using a 16.5% tris-tricene SDS-PAGE gel.
WT and cysteine substituted proteins were buffer exchanged into 50 mM sodium phosphate, 300 mM sodium chloride, pH 7.4 using a desalting column. This step also removed residual nickel, EDTA, and DTT that were added as described above. After desalting, IAP, MTSL, or MSL nitroxide spin label, dissolved in ethanol, was added in excess (5-10× molar ratio) and allowed to react with cysteine substituted constructs for 10-12 h at room temperature, in the dark. Spin labeling schemes are represented in Figure 2A. Excess spin label was removed by repeating the desalting buffer exchange process as described above.
For each spin labeled construct, nine separate samples were prepared with increasing 5% (v/v) increments of 2,2,2-trifluoroethanol (TFE) that spanned 0-40%. Each individual sample was prepared at a final volume of 500 µL: 300 µL of 50 mM sodium phosphate, 300 mM sodium chloride, pH 7.4 buffer, (200−x) µL of TFE, where x ranged from 0-200 µL, and x µL of appropriately prepared solution of 5× stock buffer diluted with water to keep all samples at equal ionic strength and pH. These larger 500 µL sample volumes were prepared to help mitigate pipetting errors of small volumes. Samples of ∼10 µL were drawn into 0.60 i.d. × 0.84 o.d. capillary tubes, which were then flame sealed on both ends ensuring minimal to no TFE evaporation.
For each spin labeled construct, samples were prepared with varying percentages of increasing TFE concentrations. For IAP labeled cysteine scanning and the V8C construct with varying spin label attachments, three samples were prepared with increasing 15% (v/v) increments of TFE from 0-30%. For amino acid scanning at the 8th position of the IA3 sequence and cysteine or alanine substitution at the 11th position, six or nine samples were prepared with increasing 7% (v/v) increments of TFE from 0-35% or increasing 5% (v/v) increments of TFE from 0-40%, respectively. Samples were prepared with 80-120 μL of protein sample in 50 mM sodium phosphate, 300 mM sodium chloride, pH 7.4 to reach a final concentration of 10 μM protein in 1000 μL. The final volume was adjusted using 10 mM sodium phosphate, pH 7.0 buffer or TFE to reach appropriate % (v/v) TFE. For the V8C un-labeled construct, 0.1 mM DTT was present to prevent disulfide bonding of free cysteine residues.
Either a Bruker ER200 spectrometer with an ER023 M signal channel, an ER032 M field control unit or a Bruker E500 with a loop gap resonator (Medical Advances, Milwaukee, WI) was used to collect CW X-band EPR spectra. For all experiments the temperature was kept at a constant 27 ± 0.2 °C using a nitrogen gas passed through a copper coil submersed into a water bath, while monitored with a temperature probe and thermometer from OMEGA Engineering Inc (Norwalk, CT). All spectra are reported as an average of four scans, collected as 100 G sweep width, 0.6 modulation amplitude, 70 ms conversion time, 100 kHz modulation amplitude, and 2 mW incident microwave power. Spectra were normalized using labVIEW software allowing for baseline correction and double integral area normalization. A representative nitroxide EPR spectrum with the typical three-line transition pattern is shown and labeled in Figure 2B. Spectral line shapes were analyzed by calculating the ratio of the intensities of the low field and center field transitions, h(+1)/h(0) as a function of TFE percentage. Although the low field and center field transitions individually are not as sensitive to motion as the high field transition (h(−1)), this ratio has been previously shown to change considerably as the unstructured-to-structured transition occurs and is not sensitive to errors in baseline correction or double integration [17,36]. We have used this analysis previously to monitor the unstructured to helical transition in IA3 by % TFE. Plots of h(+1)/h(0) values versus the % TFE are sigmoidal in shape and are well fit by a two-state Boltzmann transition, given by
(1) |
A1 is the initial value of the curve, A2 is the final value of the curve and x0 is the midpoint of the curve—which corresponds well to the midpoint of folding transitions observed by CD and NMR [14]. Data were fit using Origin 8.5 software.
CD measurements were collected using an AVIV model 202 CD spectrometer set at 27 °C. To collect the spectra, 400 μL of each sample were loaded into a 1mm path length quartz cuvette, cleaned between runs with nanopure H2O and ethanol. Typically, four scans of each buffer blank and sample were collected between wavelengths of 200-250 nm with 1 nm increments and a four second averaging time. Each set of CD scans for each construct was averaged, and the averaged buffer baseline was subtracted from each individual construct averaged scan. Units were converted to Δε (molar circular dichroism, M−1 cm−1) from the instruments output unit of Θ (ellipticity, mdeg) using
(2) |
Θ is the output ellipticity value from the CD measurement, C is the concentration of sample in g/L, L is the path length in cm, and M is the average molecular weight in g/mol.
It is well known that the labeling of a naturally occurring or substituted cysteine may impact the native function of a protein. To understand if spin-label and cysteine substitution within IA3 impacted folding or folding propensity, cysteine scanning was performed across the N- and C-termini of IA3. Sites K7, V8, S9, E10, I11, F12, Q13, S14, S15, and S27 were chosen within the N-terminus and span two helical turns containing both solvent exposed and buried residues in the α-helix when bound to YPRA. Sites Y57, N58, K59, L60, and K61, were selected in the C-terminus (Figure 1).
CW X-band EPR spectra were collected for the fifteen IAP spin labeled-IA3 variants (referred to within as P1-IA3) as a function of TFE concentration that ranged from 0-40% (v/v) TFE. Figure 3 shows representative CW-EPR spectra for 0%, 15%, and 30% (v/v) TFE for each P1-IA3 variant. Spectra are plotted with normalized double integral area to allow for easy visualization of changes in mobility. As mobility (defined as both the rate of motion and order of motion) decreases, the line shape broadens. As a result, when plotted with normalized area, the intensity appears to be less. A decrease in mobility upon increasing TFE percentage is observed for nearly all sites and indicates a conformational change upon increasing TFE concentration (earlier work has ruled out the impact of increased solution viscosity) [17]. Inspection of the line shapes shows that the change in mobility differs among these 15 P1-IA3 variants, indicating that some spin-labeled cysteine substitutions affect the conformation of each state, altering the TFE-induced helical propensity of IA3.
A more quantitative way to analyze the TFE-induced conformational changes for each variant is to plot h(+1)/h(0) values as a function of TFE % (Figure 4). For isotropic motion, the h(+1)/h(0) value is expected to be 1. As the mobility decreases as the protein becomes helical, lower values of h(+1)/h(0) are expected. In the unfolded state (absence of TFE), all P1-IA3 variants have similar CW-EPR spectra indicative of similar high nitroxide mobility (indicated by values of h(+1)/h(0) ∼ 0.9). As a function of TFE concentration, the shape of each h(+1)/h(0) plot can be well fit by
Several conclusions can be drawn from the data in Figure 4. Firstly, the sigmoidal behavior of the h(+1)/h(0) parameter for N-terminal P1-IA3 variants (gray shade, solid diamonds) varies both in sharpness and extent of transition, which is defined by the limiting h(+1)/h(0) value. In contrast C-terminal P1-IA3 variants (no shade, open circles) exhibit similar behavior, both in the sharpness and extent of transition. Secondly, there are site specific variations in the behavior of the h(+1)/h(0) parameter in the N-terminus that follow a helical trend that maps to the surface of IA3 in the YRPA bound site. Specifically, sites V8P1, I11P1, and S15P1 which are located on the concave buried face of the peptide when bound to YPRA, have small changes (<0.05 over the 0-40% (v/v) TFE range) in their h(+1)/h(0) values. In contrast, sites S9P1, Q13P1 and S27P1, which reside on the convex solvent exposed face when bound to YPRA, pose large changes in their h(+1)/h(0) values (>0.3 over the 0-40% TFE range). Figure 5 shows the location of these residues in the IA3: YPRA complex crystal structure. These results indicate a sensitivity of the N-terminal helicity to amino acid substitution.
To further explore these observations, CD spectroscopy was performed on each of the N-terminal P1-IA3 variants with 0%, 15%, and 30% (v/v) TFE. Data are shown in Figure 6, which also overlays results from WT IA3 (gray solid line) in 30% (v/v) TFE for comparison. For wild type IA3, CD data reveal a predominantly random coil conformation for 0% (v/v) TFE, whereas with 30% (v/v) TFE the spectra reflect a mostly helical conformation with features at 208 nm and 222 nm indicative of helix formation [37,38]. For all N-terminal P1-IA3 variants, CD data confirm that in the absence of TFE, all constructs adopt a random coil conformation and that the addition of TFE induces a helical conformation. As was observed with the CW-EPR data, the degree of the helical transition, as reflected in the values of Δε222nm in CD spectra, varies when compared to WT for the P1 variants. It can be seen that I11P1 and S14P1 possess CD spectra that very closely match that of WT (i.e., represent SL wild-type mimics). V8P1 is found to be less helical than WT, whereas all other variants have greater helicity than WT. To directly compare the SDSL CW-EPR characterized unstructured-to-structured transition within the N-terminus to the degree of α-helicity from CD spectroscopy, we plotted the values of Δh(+1)/h(0), or degree of transition (h(+1)/h(0) (40% (v/v) TFE) − h(+1)/h(0) (0% (v/v) TFE)) against the Δε222nm (30% (v/v) TFE) (
Because the P1 substitution at site V8 revealed less helical character than WT, we proceeded to generate a series of substitutions at this site to probe how amino acid size and type impacted helical propensity. The following constructs were chosen: V8A and V8I (smaller and larger than V; respectively), V8P (typical helical disrupter), V8D (charged), and V8C (our cysteine mutation without spin-label). CD spectroscopy was performed on each of the V8 variants with 0-40% or 0-35% (v/v) TFE (
The result that V8C contained WT helicity was surprising, which prompted us to examine if and how spin-label structure influenced helicity when incorporated at this site. CD spectroscopy was performed on the V8C spin-labeled variants from 0-40% or 0-30% (v/v) TFE (
Nevertheless, results appear to indicate a dependency of structural bulkiness for disruption or enhancement of helical propensity. Indeed, the structure of IA3 bound to YPRA shows a slight concave bend on the buried interface, making substitution to larger residues disrupt helical behavior and conversely, a smaller residue would enhance helicity. To test this idea, we made two additional constructs, V8P1-I11A and V8A-I11P1, which would place the smaller alanine residue next to the P1 spin-label. CD spectroscopy was performed on each additional construct from 0-40% or 0-35% (v/v) TFE (
It was determined through SDSL CW-EPR that the extent of helical order within the N-terminal region of IA3 is easily perturbed by amino acid substitution and IAP labeling. The C-terminal region did not have similar susceptibility, where changes in labeled amino acid substitution did not reveal drastic changes in the unstructured-to-structured transition, and as we showed previously, retained WT behavior [17]. CD results confirmed that the helical order within the N-terminus varied due to the location of the altered residue in relation to the buried or solvent-exposed, or the concave or convex face of the protein, respectively. The concave face of IA3, is negatively affected by cysteine mutation and labeling, whereas the convex surface increases in helical order. It is proposed that the change in helical propensity on either side of the protein is due to spatial availability when incorporating a cysteine residue and nitroxide probe. Residue V8, located on the concave side of the N-terminal region showed the greatest negative perturbation due to cysteine substitution, and spin labeling. Mutations to the V8 residue, including substitutions in residue, charge, and size did not drastically affect the helical propensity, but rather the addition of the IAP nitroxide probe had the greatest effect on helical formation.
These experiments demonstrate the care that must be taken when spin-labeling IDPs. Proper checks-and-balances are needed to ensure that a labeled site retains WT helical propensity (in addition to any other functional assays). Overall, the results identify key sites for spin-label incorporation that mimic WT helical tendencies that can be used in future studies of IA3 conformational sampling studies.
This work was supported by NSF MCB 1329467 & MCB 1715384 and NIH 1S10-RR031603-01 to GEF. The authors would like to thank Stephen J. Hagen and Robert McKenna for access to the Aviv CD spectrometer, and Christian Altenbach for Labview software to analyze the EPR data.
All authors declare no conflict of interest in this paper.
[1] | Leiman PG, Shneider MM (2012) Contractile tail machines of bacteriophages. In: Rossmann MG, Rao VB, editors. Viral Molecular Machines. New York Dordrecht Heidelberg London: Springer. 93-114. |
[2] |
Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84: 499-510. doi: 10.1016/S0300-9084(02)01422-0
![]() |
[3] |
Sarris PF, Ladoukakis ED, Panopoulos NJ, et al. (2014) A phage tail-derived element with wide distribution among both prokaryotic domains: a comparative genomic and phylogenetic study. Genome Biol Evol 6: 1739-1747. doi: 10.1093/gbe/evu136
![]() |
[4] |
Amos LA, Klug A (1975) Three-dimensional image reconstructions of the contractile tail of T4 bacteriophage. J Mol Biol 99: 51-64. doi: 10.1016/S0022-2836(75)80158-6
![]() |
[5] |
Leiman PG, Chipman PR, Kostyuchenko VA, et al. (2004) Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118: 419-429. doi: 10.1016/j.cell.2004.07.022
![]() |
[6] |
Kostyuchenko VA, Chipman PR, Leiman PG, et al. (2005) The tail structure of bacteriophage T4 and its mechanism of contraction. Nat Struct Mol Biol 12: 810-813. doi: 10.1038/nsmb975
![]() |
[7] |
Effantin G, Hamasaki R, Kawasaki T, et al. (2013) Cryo-electron microscopy three-dimensional structure of the jumbo phage PhiRSL1 infecting the phytopathogen Ralstonia solanacearum. Structure 21: 298-305. doi: 10.1016/j.str.2012.12.017
![]() |
[8] |
Fokine A, Battisti AJ, Bowman VD, et al. (2007) Cryo-EM study of the Pseudomonas bacteriophage phiKZ. Structure 15: 1099-1104. doi: 10.1016/j.str.2007.07.008
![]() |
[9] |
Aksyuk AA, Kurochkina LP, Fokine A, et al. (2011) Structural conservation of the myoviridae phage tail sheath protein fold. Structure 19: 1885-1894. doi: 10.1016/j.str.2011.09.012
![]() |
[10] |
Schwarzer D, Buettner FF, Browning C, et al. (2012) A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis. J Virol 86: 10384-10398. doi: 10.1128/JVI.00801-12
![]() |
[11] | Ge P, Scholl D, Leiman PG, et al. (2015) Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol. |
[12] |
Basler M, Pilhofer M, Henderson GP, et al. (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483: 182-186. doi: 10.1038/nature10846
![]() |
[13] |
Kube S, Kapitein N, Zimniak T, et al. (2014) Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep 8: 20-30. doi: 10.1016/j.celrep.2014.05.034
![]() |
[14] |
Clemens DL, Ge P, Lee BY, et al. (2015) Atomic structure of T6SS reveals interlaced array essential to function. Cell 160: 940-951. doi: 10.1016/j.cell.2015.02.005
![]() |
[15] |
Kudryashev M, Wang RY, Brackmann M, et al. (2015) Structure of the type VI secretion system contractile sheath. Cell 160: 952-962. doi: 10.1016/j.cell.2015.01.037
![]() |
[16] |
Heymann JB, Bartho JD, Rybakova D, et al. (2013) Three-dimensional structure of the toxin-delivery particle antifeeding prophage of Serratia entomophila. J Biol Chem 288: 25276-25284. doi: 10.1074/jbc.M113.456145
![]() |
[17] |
Shikuma NJ, Pilhofer M, Weiss GL, et al. (2014) Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 343: 529-533. doi: 10.1126/science.1246794
![]() |
[18] |
Veesler D, Cambillau C (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev 75: 423-433. doi: 10.1128/MMBR.00014-11
![]() |
[19] |
Leiman PG, Arisaka F, van Raaij MJ, et al. (2010) Morphogenesis of the T4 tail and tail fibers. Virology 7: 355. doi: 10.1186/1743-422X-7-355
![]() |
[20] |
Silverman JM, Brunet YR, Cascales E, et al. (2012) Structure and regulation of the type VI secretion system. Annu Rev Microbiol 66: 453-472. doi: 10.1146/annurev-micro-121809-151619
![]() |
[21] |
Ho BT, Dong TG, Mekalanos JJ (2014) A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15: 9-21. doi: 10.1016/j.chom.2013.11.008
![]() |
[22] |
Zoued A, Brunet YR, Durand E, et al. (2014) Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta Mol Cell Res 1843: 1664-1673. doi: 10.1016/j.bbamcr.2014.03.018
![]() |
[23] |
Nakayama K, Takashima K, Ishihara H, et al. (2000) The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38: 213-231. doi: 10.1046/j.1365-2958.2000.02135.x
![]() |
[24] |
Liu Y, Schmidt B, Maskell DL (2010) MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities. Bioinformatics 26: 1958-1964. doi: 10.1093/bioinformatics/btq338
![]() |
[25] | Felsenstein J (1989) Phylip: phylogeny inference package (version 3.2). Cladistics 5: 164-166. |
[26] | Ackermann HW (2006) Classification of bacteriophages. In: Calendar R, editor. The Bacteriophages. New York, USA: Oxford University Press. 8-16. |
[27] | Orlova EV (2012) Bacteriophages and their structural organisation. Bacteriophages 3-30. |
[28] |
Ruska H (1942) Morphologische Befunde bei der bakteriophagen Lyse. Arch Gesamte Virusforsch 2: 345-387. doi: 10.1007/BF01249917
![]() |
[29] |
Ackermann HW (2011) The first phage electron micrographs. Bacteriophage 1: 225-227. doi: 10.4161/bact.1.4.17280
![]() |
[30] |
De Rosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217: 130-134. doi: 10.1038/217130a0
![]() |
[31] | Jacob F (1954) Induced biosynthesis and mode of action of a pyocine, antibiotic produced by Pseudomonas aeruginosa. Annales de l'Institut Pasteur 86: 149-160. |
[32] |
Takeya K, Mlnamishima Y, Amako K, et al. (1967) A small rod-shaped pyocin. Virology 31: 166-168. doi: 10.1016/0042-6822(67)90021-9
![]() |
[33] |
Ishii SI, Nishi Y, Egami F (1965) The fine structure of a pyocin. J Mol Biol 13: 428-431. doi: 10.1016/S0022-2836(65)80107-3
![]() |
[34] | Shinomiya T, Shiga S, Kageyama M (1983) Genetic determinant of pyocin R2 in Pseudomonas aeruginosa PAO. I. Localization of the pyocin R2 gene cluster between the trpCD and trpE genes. Mol Gen Genet 189: 375-381. |
[35] | Birmingham VA, Pattee PA (1981) Genetic transformation in Staphylococcus aureus: isolation and characterization of a competence-conferring factor from bacteriophage 80 alpha lysates. J Bacteriol 148: 301-307. |
[36] |
Coetzee HL, de Klerk HC, Coetzee JN, et al. (1968) Bacteriophage-tail-like Particles Associated with Intra-species Killing of Proteus vulgaris. J Gen Virol 2: 29-36. doi: 10.1099/0022-1317-2-1-29
![]() |
[37] |
Gebhart D, Williams SR, Bishop-Lilly KA, et al. (2012) Novel high-molecular-weight, R-type bacteriocins of Clostridium difficile. J Bacteriol 194: 6240-6247. doi: 10.1128/JB.01272-12
![]() |
[38] | Matsui H, Sano Y, Ishihara H, et al. (1993) Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. J Bacteriol 175: 1257-1263. |
[39] |
Scholl D, Cooley M, Williams SR, et al. (2009) An engineered R-type pyocin is a highly specific and sensitive bactericidal agent for the food-borne pathogen Escherichia coli O157:H7. Antimicrob Agents Chemother 53: 3074-3080. doi: 10.1128/AAC.01660-08
![]() |
[40] |
Williams SR, Gebhart D, Martin DW, et al. (2008) Retargeting R-type pyocins to generate novel bactericidal protein complexes. Appl Environ Microbiol 74: 3868-3876. doi: 10.1128/AEM.00141-08
![]() |
[41] | Uratani Y, Hoshino T (1984) Pyocin R1 inhibits active transport inPseudomonas aeruginosa and depolarizes membrane potential. J Bacteriol 157: 632-636. |
[42] |
Strauch E, Kaspar H, Schaudinn C, et al. (2001) Characterization of Enterocoliticin, a Phage Tail-Like Bacteriocin, and Its Effect on Pathogenic Yersinia enterocolitica Strains. Appl Environ Microbiol 67: 5634-5642. doi: 10.1128/AEM.67.12.5634-5642.2001
![]() |
[43] |
Ito S, Kageyama M, Egami F (1970) Isolation and characterization of pyocins from several strains of Pseudomonas aeruginosa. J Gen Appl Microbiol 16: 205-214. doi: 10.2323/jgam.16.3_205
![]() |
[44] |
Rodou A, Ankrah DO, Stathopoulos C (2010) Toxins and secretion systems of Photorhabdus luminescens. Toxins 2: 1250-1264. doi: 10.3390/toxins2061250
![]() |
[45] |
Yang G, Dowling AJ, Gerike U, et al. (2006) Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J Bacteriol 188: 2254-2261. doi: 10.1128/JB.188.6.2254-2261.2006
![]() |
[46] |
Hurst MRH, Beard SS, Jackson TA, et al. (2007) Isolation and characterization of the Serratia entomophila antifeeding prophage. FEMS Microbiol Lett 270: 42-48. doi: 10.1111/j.1574-6968.2007.00645.x
![]() |
[47] |
Rybakova D, Radjainia M, Turner A, et al. (2013) Role of antifeeding prophage (Afp) protein Afp16 in terminating the length of the Afp tailocin and stabilizing its sheath. Mol Microbiol 89: 702-714. doi: 10.1111/mmi.12305
![]() |
[48] | Rybakova D, Schramm P, Mitra AK, et al. (2015) Afp14 is involved in regulating the length of Anti-feeding prophage (Afp). Mol Microbiol. |
[49] | Ogata S, Suenaga H, Hayashida S (1982) Pock Formation of Streptomycetes endus with Production of Phage Taillike Particles. Appl Environ Microbiol 43: 1182-1187. |
[50] |
Mougous JD, Cuff ME, Raunser S, et al. (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312: 1526-1530. doi: 10.1126/science.1128393
![]() |
[51] |
Pukatzki S, Ma AT, Sturtevant D, et al. (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103: 1528-1533. doi: 10.1073/pnas.0510322103
![]() |
[52] |
Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner's guide. Curr Opin Microbiol 11: 3-8. doi: 10.1016/j.mib.2008.01.006
![]() |
[53] |
Boyer F, Fichant G, Berthod J, et al. (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10: 104. doi: 10.1186/1471-2164-10-104
![]() |
[54] | Bröms JE, Sjöstedt A, Lavander M (2010) The Role of the Francisella tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling. Front Microbiol 1: 136-136. |
[55] | de Bruin OM, Duplantis BN, Ludu JS, et al. (2011) The biochemical properties of the Francisella Pathogenicity Island (FPI)-encoded proteins, IglA, IglB, IglC, PdpB and DotU, suggest roles in type VI secretion. Microbiology. |
[56] |
Russell AB, Wexler AG, Harding BN, et al. (2014) A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16: 227-236. doi: 10.1016/j.chom.2014.07.007
![]() |
[57] |
Shalom G, Shaw JG, Thomas MS (2007) In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 153: 2689-2699. doi: 10.1099/mic.0.2007/006585-0
![]() |
[58] |
Leiman PG, Basler M, Ramagopal UA, et al. (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 106: 4154-4159. doi: 10.1073/pnas.0813360106
![]() |
[59] |
Pell LG, Kanelis V, Donaldson LW, et al. (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA 106: 4160-4165. doi: 10.1073/pnas.0900044106
![]() |
[60] |
Lossi NS, Dajani R, Freemont P, et al. (2011) Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology 157: 3292-3305. doi: 10.1099/mic.0.051987-0
![]() |
[61] |
Bonemann G, Pietrosiuk A, Diemand A, et al. (2009) Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 28: 315-325. doi: 10.1038/emboj.2008.269
![]() |
[62] |
Lossi NS, Manoli E, Forster A, et al. (2013) The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheathlike structure. J Biol Chem 288: 7536-7548. doi: 10.1074/jbc.M112.439273
![]() |
[63] |
Zheng J, Ho B, Mekalanos JJ (2011) Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One 6: e23876-e23876. doi: 10.1371/journal.pone.0023876
![]() |
[64] |
Zoued A, Durand E, Bebeacua C, et al. (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J Biol Chem 288: 27031-27041. doi: 10.1074/jbc.M113.499772
![]() |
[65] |
Durand E, Zoued A, Spinelli S, et al. (2012) Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem 287: 14157-14168. doi: 10.1074/jbc.M111.338731
![]() |
[66] |
Robb CS, Nano FE, Boraston AB (2012) The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol 419: 277-283. doi: 10.1016/j.jmb.2012.04.003
![]() |
[67] |
Ma LS, Lin JS, Lai EM (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 191: 4316-4329. doi: 10.1128/JB.00029-09
![]() |
[68] | Das S, Chaudhuri K (2003) Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol 3: 287-300. |
[69] |
Felisberto-Rodrigues C, Durand E, Aschtgen MS, et al. (2011) Towards a Structural Comprehension of Bacterial Type VI Secretion Systems: Characterization of the TssJ-TssM Complex of an Escherichia coli Pathovar. PLoS Pathog 7: e1002386. doi: 10.1371/journal.ppat.1002386
![]() |
[70] |
Rao VA, Shepherd SM, English G, et al. (2011) The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system. Acta Crystallogr D Biol Crystallogr 67: 1065-1072. doi: 10.1107/S0907444911046300
![]() |
[71] |
Miyata ST, Bachmann V, Pukatzki S (2013) Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol 62: 663-676. doi: 10.1099/jmm.0.053983-0
![]() |
[72] |
Bernard CS, Brunet YR, Gavioli M, et al. (2011) Regulation of type VI secretion gene clusters by sigma54 and cognate enhancer binding proteins and cognate enhancer binding proteins. Journal of bacteriology 193: 2158-2167. doi: 10.1128/JB.00029-11
![]() |
[73] |
Kitaoka M, Miyata ST, Brooks TM, et al. (2011) VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemicVibrio cholerae. J Bacteriology 193: 6471-6482. doi: 10.1128/JB.05414-11
![]() |
[74] |
Dong TG, Mekalanos JJ (2012) Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. Nucleic acids research 40: 7766-7775. doi: 10.1093/nar/gks567
![]() |
[75] |
Basler M, Ho BT, Mekalanos JJ (2013) Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152: 884-894. doi: 10.1016/j.cell.2013.01.042
![]() |
[76] |
Basler M, Mekalanos JJ (2012) Type 6 secretion dynamics within and between bacterial cells. Science 337: 815. doi: 10.1126/science.1222901
![]() |
[77] |
Ho BT, Basler M, Mekalanos JJ (2013) Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer. Science 342: 250-253. doi: 10.1126/science.1243745
![]() |
[78] |
Fritsch MJ, Trunk K, Diniz JA, et al. (2013) Proteomic Identification of Novel Secreted Antibacterial Toxins of the Serratia marcescens Type VI Secretion System. Mol Cell Proteomics 12: 2735-2749. doi: 10.1074/mcp.M113.030502
![]() |
[79] |
Mougous JD, Gifford CA, Ramsdell TL, et al. (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 9: 797-803. doi: 10.1038/ncb1605
![]() |
[80] |
Kapitein N, Bonemann G, Pietrosiuk A, et al. (2013) ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol 87: 1013-1028. doi: 10.1111/mmi.12147
![]() |
[81] |
Hsu F, Schwarz S, Mougous JD (2009) TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol Microbiol 72: 1111-1125. doi: 10.1111/j.1365-2958.2009.06701.x
![]() |
[82] |
Silverman JM, Austin LS, Hsu F, et al. (2011) Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol Microbiol 82: 1277-1290. doi: 10.1111/j.1365-2958.2011.07889.x
![]() |
[83] |
Casabona MG, Silverman JM, Sall KM, et al. (2013) An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa. Environ Microbiol 15: 471-486. doi: 10.1111/j.1462-2920.2012.02816.x
![]() |
[84] |
Lin JS, Wu HH, Hsu PH, et al. (2014) Fha interaction with phosphothreonine of TssL activates type VI secretion in Agrobacterium tumefaciens. PLoS Pathog 10: e1003991-e1003991. doi: 10.1371/journal.ppat.1003991
![]() |
[85] |
Zheng J, Leung KY (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66: 1192-1206. doi: 10.1111/j.1365-2958.2007.05993.x
![]() |
[86] |
Ma LS, Narberhaus F, Lai EM (2012) IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J Biol Chem 287: 15610-15621. doi: 10.1074/jbc.M111.301630
![]() |
[87] |
Shneider MM, Buth SA, Ho BT, et al. (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500: 350-353. doi: 10.1038/nature12453
![]() |
[88] |
Brunet YR, Hénin J, Celia H, et al. (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep 15: 315-321. doi: 10.1002/embr.201337936
![]() |
[89] |
Bröms JE, Lavander M, Sjöstedt A (2009) A conserved alpha-helix essential for a type VI secretion-like system of Francisella tularensis. J Bacteriol 191: 2431-2446. doi: 10.1128/JB.01759-08
![]() |
[90] |
Aubert DF, MacDonald DK, Valvano MA (2010) BcsKC is an essential protein for the type VI secretion system activity in Burkholderia cenocepacia that forms an outer membrane complex with BcsLB. J Biol Chem 285: 35988-35998. doi: 10.1074/jbc.M110.120402
![]() |
[91] |
Chang YW, Chen S, Tocheva EI, et al. (2014) Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nature Methods 11: 737-739. doi: 10.1038/nmeth.2961
![]() |
[92] |
King J (1971) Bacteriophage T4 tail assembly: four steps in core formation. J Mol Biol 58: 693-709. doi: 10.1016/0022-2836(71)90034-9
![]() |
[93] |
Silverman JM, Agnello DM, Zheng H, et al. (2013) Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell 51: 584-593. doi: 10.1016/j.molcel.2013.07.025
![]() |
[94] |
Brooks TM, Unterweger D, Bachmann V, et al. (2013) Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem 288: 7618-7625. doi: 10.1074/jbc.M112.436725
![]() |
[95] |
Pietrosiuk A, Lenherr ED, Falk S, et al. (2011) Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem 286: 30010-30021. doi: 10.1074/jbc.M111.253377
![]() |
[96] |
Forster A, Planamente S, Manoli E, et al. (2014) Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. J Biol Chem 289: 33032-33043. doi: 10.1074/jbc.M114.600510
![]() |
[97] |
King J (1968) Assembly of the tail of bacteriophage T4. J Mol Biol 32: 231-262. doi: 10.1016/0022-2836(68)90007-7
![]() |
[98] |
Abuladze NK, Gingery M, Tsai J, et al. (1994) Tail length determination in bacteriophage T4. Virology 199: 301-310. doi: 10.1006/viro.1994.1128
![]() |
[99] |
Kanamaru S, Leiman PG, Kostyuchenko VA, et al. (2002) Structure of the cell-puncturing device of bacteriophage T4. Nature 415: 553-557. doi: 10.1038/415553a
![]() |
[100] |
Kanamaru S, Ishiwata Y, Suzuki T, et al. (2005) Control of bacteriophage T4 tail lysozyme activity during the infection process. J Mol Biol 346: 1013-1020. doi: 10.1016/j.jmb.2004.12.042
![]() |
[101] |
Pukatzki S, Ma AT, Revel AT, et al. (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 104: 15508-15513. doi: 10.1073/pnas.0706532104
![]() |
[102] |
Ma AT, McAuley S, Pukatzki S, et al. (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5: 234-243. doi: 10.1016/j.chom.2009.02.005
![]() |
[103] |
Suarez G, Sierra JC, Erova TE, et al. (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 192: 155-168. doi: 10.1128/JB.01260-09
![]() |
[104] |
Durand E, Derrez E, Audoly G, et al. (2012) Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae type VI secretion system. J Biol Chem 287: 38190-38199. doi: 10.1074/jbc.M112.390153
![]() |
[105] |
Browning C, Shneider MM, Bowman VD, et al. (2012) Phage pierces the host cell membrane with the iron-loaded spike. Structure 20: 326-339. doi: 10.1016/j.str.2011.12.009
![]() |
[106] |
Moody MF, Makowski L (1981) X-ray diffraction study of tail-tubes from bacteriophage T2L. J Mol Biol 150: 217-244. doi: 10.1016/0022-2836(81)90450-2
![]() |
[107] |
Wagenknecht T, Bloomfield VA (1977) In vitro polymerization of bacteriophage T4D tail core subunits. J Mol Biol 116: 347-359. doi: 10.1016/0022-2836(77)90074-2
![]() |
[108] |
Poglazov BF, Nikolskaya TI (1969) Self-assembly of the protein of bacteriophage T2 tail cores. J Mol Biol 43: 231-233. doi: 10.1016/0022-2836(69)90094-1
![]() |
[109] |
Douzi B, Spinelli S, Blangy S, et al. (2014) Crystal structure and self-interaction of the type VI secretion tail-tube protein from enteroaggregative Escherichia coli. PLoS One 9: e86918-e86918. doi: 10.1371/journal.pone.0086918
![]() |
[110] |
Lin JS, Ma LS, Lai EM (2013) Systematic dissection of the agrobacterium type VI secretion system reveals machinery and secreted components for subcomplex formation. PLoS One 8: e67647-e67647. doi: 10.1371/journal.pone.0067647
![]() |
[111] |
Kostyuchenko VA, Leiman PG, Chipman PR, et al. (2003) Three-dimensional structure of bacteriophage T4 baseplate. Nat Struct Mol Biol 10: 688-693. doi: 10.1038/nsb970
![]() |
[112] |
Lim YT, Jobichen C, Wong J, et al. (2015) Extended loop region of Hcp1 is critical for the assembly and function of type VI secretion system in Burkholderia pseudomallei. Sci Rep 5: 8235. doi: 10.1038/srep08235
![]() |
[113] |
Jobichen C, Chakraborty S, Li M, et al. (2010) Structural basis for the secretion of EvpC: a key type VI secretion system protein from Edwardsiella tarda. PLoS One 5: e12910. doi: 10.1371/journal.pone.0012910
![]() |
[114] |
Aksyuk AA, Leiman PG, Kurochkina LP, et al. (2009) The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria. EMBO J 28: 821-829. doi: 10.1038/emboj.2009.36
![]() |
[115] |
Fokine A, Zhang Z, Kanamaru S, et al. (2013) The molecular architecture of the bacteriophage T4 neck. J Mol Biol 425: 1731-1744. doi: 10.1016/j.jmb.2013.02.012
![]() |
[116] |
Broms JE, Ishikawa T, Wai SN, et al. (2013) A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol 13: 96. doi: 10.1186/1471-2180-13-96
![]() |
[117] |
Zhang XY, Brunet YR, Logger L, et al. (2013) Dissection of the TssB-TssC Interface during Type VI Secretion Sheath Complex Formation. PLoS One 8: e81074. doi: 10.1371/journal.pone.0081074
![]() |
[118] |
Poglazov BF, Efimov AV, Marco S, et al. (1999) Polymerization of bacteriophage T4 tail sheath protein mutants truncated at the C-termini. J Struct Biol 127: 224-230. doi: 10.1006/jsbi.1999.4164
![]() |
[119] | Moody MF (1973) Sheath of bacteriophage T4. 3. Contraction mechanism deduced from partially contracted sheaths. J Mol Biol 80: 613-635. |
[120] |
Efimov AV, Kurochkina LP, Mesyanzhinov VV (2002) Engineering of bacteriophage T4 tail sheath protein. Biochemistry (Moscow) 67: 1366-1370. doi: 10.1023/A:1021857926152
![]() |
[121] |
Takeda S, Suzuki M, Yamada T, et al. (2004) Mapping of functional sites on the primary structure of the contractile tail sheath protein of bacteriophage T4 by mutation analysis. Biochim Biophys Acta, Proteins Proteom 1699: 163-171. doi: 10.1016/S1570-9639(04)00058-5
![]() |
[122] |
Maxwell KL, Fatehi HM, Chang T, et al. (2013) Structural and functional studies of gpX of Escherichia coli phage P2 reveal a widespread role for LysM domains in the baseplates of contractile-tailed phages. J Bacteriol 195: 5461-5468. doi: 10.1128/JB.00805-13
![]() |
[123] |
Bradley DE (1963) The structure of coliphages. J Gen Microbiol 31: 435-445. doi: 10.1099/00221287-31-3-435
![]() |
[124] |
Leblanc C, Caumont-Sarcos A, Comeau AM, et al. (2009) Isolation and genomic characterization of the first phage infecting Iodobacteria: varphiPLPE, a myovirus having a novel set of features. Env Microbiol Rep 1: 499-509. doi: 10.1111/j.1758-2229.2009.00055.x
![]() |
[125] | Moody MF (1967) Structure of the sheath of bacteriophage T4. I. Structure of the contracted sheath and polysheath. J Mol Biol 25: 167-200. |
[126] | Moody MF (1967) Structure of the sheath of bacteriophage T4. II. Rearrangement of the sheath subunits during contraction. J Mol Biol 25: 201-208. |
[127] |
Uratani Y (1982) A circular dichroism study of sheath contraction in pyocin R1. Biochim Biophys Acta 703: 196-203. doi: 10.1016/0167-4838(82)90048-6
![]() |
[128] |
Venyaminov SY, Rodikova LP, Metlina AL, et al. (1975) Secondary structure change of bacteriophage T4 sheath protein during sheath contraction. J Mol Biol 98: 657-664. doi: 10.1016/S0022-2836(75)80001-5
![]() |
[129] |
Bai X-c, McMullan G, Scheres SHW (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40: 49-57. doi: 10.1016/j.tibs.2014.10.005
![]() |
[130] |
Pettersen EF, Goddard TD, Huang CC, et al. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612. doi: 10.1002/jcc.20084
![]() |
1. | Elisabeta Spunei, Andrea-Amalia Minda, Ion Piroi, Naomi-Ionela Șoanda, 2023, Analysis of the Evolution of Electricity Production in Romania, 979-8-3503-1524-0, 1, 10.1109/SIELMEN59038.2023.10290778 | |
2. | Yu Zhang, Huaxing Li, Qiang Zhang, Xue Guo, Zhaoge Zhu, Impact of ultrasonic treatment duration on the microstructure and electrochemical performance of NiZnCo2O4 electrode materials for supercapacitors, 2024, 14, 2045-2322, 10.1038/s41598-024-77851-3 | |
3. | Chuanran Sun, Xiaoran Liu, Xuefeng Bai, Highly efficient dehydrogenation of dodecahydro-N-ethylcarbazole over Al2O3 supported PdCo bimetallic nanocatalysts prepared by galvanic replacement, 2024, 49, 03603199, 1547, 10.1016/j.ijhydene.2023.10.118 |