The homogenized model of small oscillations of complex fluids

  • Received: 01 June 2007 Revised: 01 February 2008
  • Primary: 35B27, 35Q30, 74Q10; Secondary: 76M30, 76M50

  • We consider the system of equations that describes small non-stationary motions of viscous incompressible fluid with a large number of small rigid interacting particles. This system is a microscopic mathematical model of complex fluids such as colloidal suspensions, polymer solutions etc. We suppose that the system of particles depends on a small parameter ε in such a way that the sizes of particles are of order ε3, the distances between the nearest particles are of order ε, and the stiffness of the interaction force is of order ε2.
    We study the asymptotic behavior of the microscopic model as ε0 and obtain the homogenized equations that can be considered as a macroscopic model of diluted solutions of interacting colloidal particles.

    Citation: M. Berezhnyi, L. Berlyand, Evgen Khruslov. The homogenized model of small oscillations of complex fluids[J]. Networks and Heterogeneous Media, 2008, 3(4): 831-862. doi: 10.3934/nhm.2008.3.831

    Related Papers:

    [1] M. Berezhnyi, L. Berlyand, Evgen Khruslov . The homogenized model of small oscillations of complex fluids. Networks and Heterogeneous Media, 2008, 3(4): 831-862. doi: 10.3934/nhm.2008.3.831
    [2] Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić . Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks and Heterogeneous Media, 2007, 2(3): 397-423. doi: 10.3934/nhm.2007.2.397
    [3] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3(3): 651-673. doi: 10.3934/nhm.2008.3.651
    [4] Maksym Berezhnyi, Evgen Khruslov . Non-standard dynamics of elastic composites. Networks and Heterogeneous Media, 2011, 6(1): 89-109. doi: 10.3934/nhm.2011.6.89
    [5] María Anguiano, Francisco Javier Suárez-Grau . Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks and Heterogeneous Media, 2019, 14(2): 289-316. doi: 10.3934/nhm.2019012
    [6] Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn . Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks and Heterogeneous Media, 2018, 13(3): 479-491. doi: 10.3934/nhm.2018021
    [7] Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639
    [8] Boris Andreianov, Frédéric Lagoutière, Nicolas Seguin, Takéo Takahashi . Small solids in an inviscid fluid. Networks and Heterogeneous Media, 2010, 5(3): 385-404. doi: 10.3934/nhm.2010.5.385
    [9] Jean-Marc Hérard, Olivier Hurisse . Some attempts to couple distinct fluid models. Networks and Heterogeneous Media, 2010, 5(3): 649-660. doi: 10.3934/nhm.2010.5.649
    [10] John D. Towers . The Lax-Friedrichs scheme for interaction between the inviscid Burgers equation and multiple particles. Networks and Heterogeneous Media, 2020, 15(1): 143-169. doi: 10.3934/nhm.2020007
  • We consider the system of equations that describes small non-stationary motions of viscous incompressible fluid with a large number of small rigid interacting particles. This system is a microscopic mathematical model of complex fluids such as colloidal suspensions, polymer solutions etc. We suppose that the system of particles depends on a small parameter ε in such a way that the sizes of particles are of order ε3, the distances between the nearest particles are of order ε, and the stiffness of the interaction force is of order ε2.
    We study the asymptotic behavior of the microscopic model as ε0 and obtain the homogenized equations that can be considered as a macroscopic model of diluted solutions of interacting colloidal particles.


  • This article has been cited by:

    1. M. A. Berezhnoi, Small oscillations of a viscous incompressible fluid with a large number of small interacting particles in the case of their surface distribution, 2009, 61, 0041-5995, 361, 10.1007/s11253-009-0219-8
    2. Yu V. Namlyeyeva, Š Nečcasová, I.I. Skrypnik, 2010, Chapter 22, 978-3-642-04067-2, 339, 10.1007/978-3-642-04068-9_22
    3. M. A. Berezhnoi, Discrete model of the nonsymmetric theory of elasticity, 2011, 63, 0041-5995, 891, 10.1007/s11253-011-0551-7
    4. Roberto Alicandro, Nadia Ansini, A variational model of interaction between continuum and discrete systems, 2014, 24, 0218-2025, 1957, 10.1142/S0218202514500134
    5. Maksym Berezhnyi, Evgen Khruslov, Non-standard dynamics of elastic composites, 2011, 6, 1556-181X, 89, 10.3934/nhm.2011.6.89
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3051) PDF downloads(44) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog