[1]
|
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Space of Probability Measures, Lectures in Mathematics, Birkäuser, 2005.
|
[2]
|
D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media, RAIRO Model. Math. Anal. Numer., 31 (1997), 615-641.
|
[3]
|
A. L. Bertozzi, J. A. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equation with mildly singular interaction kernels, Nonlinearity, 22 (2009), 683-710. doi: 10.1088/0951-7715/22/3/009
|
[4]
|
S. Bianchini and M. Gloyer, An estimate on the flow generated by monotone operators, Comm. Partial Diff. Eq., 36 (2011), 777-796. doi: 10.1080/03605302.2010.534224
|
[5]
|
M. Bodnar and J. J. L. Velázquez, An integro-differential equation arising as a limit of individual cell-based models, J. Differential Equations, 222 (2006), 341-380. doi: 10.1016/j.jde.2005.07.025
|
[6]
|
F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Analysis TMA, 32 (1998), 891-933. doi: 10.1016/S0362-546X(97)00536-1
|
[7]
|
F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Comm. Partial Differential Eq., 24 (1999), 2173-2189. doi: 10.1080/03605309908821498
|
[8]
|
J. A. Carrillo, A. Chertock and Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Comm. in Comp. Phys., 17 (2015), 233-258. doi: 10.4208/cicp.160214.010814a
|
[9]
|
J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271. doi: 10.1215/00127094-2010-211
|
[10]
|
J. A. Carrillo, F. James, F. Lagoutière and N. Vauchelet, The Filippov characteristic flow for the aggregation equation with mildly singular potentials, J. Differential Equations, 260 (2016), 304-338. doi: 10.1016/j.jde.2015.08.048
|
[11]
|
R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023, 34p. doi: 10.1142/S0218202511500230
|
[12]
|
K. Craig and A. L. Bertozzi, A blob method for the aggregation equation, Math. Comp., (2015), 1-37. doi: 10.1090/mcom3033
|
[13]
|
Y. Dolak and C. Schmeiser, Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol., 51 (2005), 595-615. doi: 10.1007/s00285-005-0334-6
|
[14]
|
F. Filbet, Ph. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol., 50 (2005), 189-207. doi: 10.1007/s00285-004-0286-2
|
[15]
|
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences 118, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-0713-9
|
[16]
|
L. Gosse and F. James, Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients, Math. Comput., 69 (2000), 987-1015. doi: 10.1090/S0025-5718-00-01185-6
|
[17]
|
A. Harten, On a class of high resolution total-variation-stable finite difference schemes, SIAM Jour. of Numer. Anal., 21 (1984), 1-23. doi: 10.1137/0721001
|
[18]
|
F. James and N. Vauchelet, A remark on duality solutions for some weakly nonlinear scalar conservation laws, C. R. Acad. Sci. Paris, Sér. I, 349 (2011), 657-661. doi: 10.1016/j.crma.2011.05.004
|
[19]
|
F. James and N. Vauchelet, Chemotaxis: from kinetic equations to aggregation dynamics, Nonlinear Diff. Eq. and Appl. (NoDEA), 20 (2013), 101-127. doi: 10.1007/s00030-012-0155-4
|
[20]
|
F. James and N. Vauchelet, Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations, Disc. Cont. Dyn. Syst., 36 (2016), 1355-1382.
|
[21]
|
F. James and N. Vauchelet, Numerical method for one-dimensional aggregation equations, SIAM J. Numer. Anal., 53 (2015), 895-916. doi: 10.1137/140959997
|
[22]
|
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359
|
[23]
|
A.-Y. Le Roux, A numerical conception of entropy for quasi-linear equations, Math. of Comp., 31 (1977), 848-872. doi: 10.1090/S0025-5718-1977-0478651-3
|
[24]
|
H. Li and G. Toscani, Long time asymptotics of kinetic models of granular flows, Arch. Rat. Mech. Anal., 172 (2004), 407-428. doi: 10.1007/s00205-004-0307-8
|
[25]
|
B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic Crowd Motion Model of the gradient-flow type, Math. Models and Methods in Applied Sci., 20 (2010), 1787-1821. doi: 10.1142/S0218202510004799
|
[26]
|
J. Nieto, F. Poupaud and J. Soler, High field limit for Vlasov-Poisson-Fokker-Planck equations, Arch. Rational Mech. Anal., 158 (2001), 29-59. doi: 10.1007/s002050100139
|
[27]
|
A. Okubo and S. Levin, Diffusion and Ecological Problems: Modern Perspectives, Springer, Berlin, 2001. doi: 10.1007/978-1-4757-4978-6
|
[28]
|
F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation, Methods Appl. Anal., 9 (2002), 533-561. doi: 10.4310/MAA.2002.v9.n4.a4
|
[29]
|
F. Poupaud and M. Rascle, Measure solutions to the linear multidimensional transport equation with discontinuous coefficients, Comm. Partial Diff. Equ., 22 (1997), 337-358. doi: 10.1080/03605309708821265
|
[30]
|
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58, Amer. Math. Soc, Providence, 2003. doi: 10.1007/b12016
|