Review Special Issues

Taxonomy and systematics of plant probiotic bacteria in the genomic era

  • Received: 03 March 2017 Accepted: 22 May 2017 Published: 31 May 2017
  • Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics.

    Citation: Lorena Carro, Imen Nouioui. Taxonomy and systematics of plant probiotic bacteria in the genomic era[J]. AIMS Microbiology, 2017, 3(3): 383-412. doi: 10.3934/microbiol.2017.3.383

    Related Papers:

    [1] Elysée Claude Bika Lele, Jerson Mekoulou Ndongo, Ako Vera Ashu-akoh, Ahmadou, Jessica Guyot, Pierre Tchienrg Moueleu Ngalagou, Bienvenu Bongue, Nicholas Tendongfor, Clarisse Noel Ayina Ayina, Marie Yvonne Lobe Tanga, Samuel Honoré Mandengue, Peguy Brice Assomo Ndemba . Burnout syndrome among healthcare professionals in the Fako division, Cameroon: Impact of physical activity and sleep quality. AIMS Public Health, 2023, 10(4): 814-827. doi: 10.3934/publichealth.2023054
    [2] Felipe Montalva-Valenzuela, Antonio Castillo-Paredes, Claudio Farias-Valenzuela, Oscar Andrades-Ramirez, Yeny Concha-Cisternas, Eduardo Guzmán-Muñoz . Effects of exercise, physical activity, and sports on physical fitness in adults with Down syndrome: A systematic review. AIMS Public Health, 2024, 11(2): 577-600. doi: 10.3934/publichealth.2024029
    [3] Behdin Nowrouzi-Kia, Ali Bani-Fatemi, Aaron Howe, Simrat Ubhi, Mitchel Morrison, Harseerat Saini, Vijay Kumar Chattu . Examining burnout in the electrical sector in Ontario, Canada: A cross-sectional study. AIMS Public Health, 2023, 10(4): 934-951. doi: 10.3934/publichealth.2023060
    [4] Aikaterini Toska, Sofia Ralli, Evangelos C. Fradelos, Ioanna Dimitriadou, Anastasios Christakis, Viktor Vus, Maria Saridi . Evaluation of burnout levels among healthcare staff in anesthesiology departments in Greece - Is there a connection with anxiety and depression?. AIMS Public Health, 2024, 11(2): 543-556. doi: 10.3934/publichealth.2024027
    [5] Rosalie Allison, Emma L. Bird, Stuart McClean . Is Team Sport the Key to Getting Everybody Active, Every Day? A Systematic Review of Physical Activity Interventions Aimed at Increasing Girls’ Participation in Team Sport. AIMS Public Health, 2017, 4(2): 202-220. doi: 10.3934/publichealth.2017.2.202
    [6] Liam Ishaky, Myuri Sivanthan, Behdin Nowrouzi-Kia, Andrew Papadopoulos, Basem Gohar . The mental health of laboratory and rehabilitation specialists during COVID-19: A rapid review. AIMS Public Health, 2023, 10(1): 63-77. doi: 10.3934/publichealth.2023006
    [7] Thiresia Sikioti, Afroditi Zartaloudi, Despoina Pappa, Polyxeni Mangoulia, Evangelos C. Fradelos, Freideriki Eleni Kourti, Ioannis Koutelekos, Evangelos Dousis, Nikoletta Margari, Areti Stavropoulou, Eleni Evangelou, Chrysoula Dafogianni . Stress and burnout among Greek critical care nurses during the COVID-19 pandemic. AIMS Public Health, 2023, 10(4): 755-774. doi: 10.3934/publichealth.2023051
    [8] Amy M. Gayman, Jessica Fraser-Thomas, Jamie E. L. Spinney, Rachael C. Stone, Joseph Baker . Leisure-time Physical Activity and Sedentary Behaviour in Older People: The Influence of Sport Involvement on Behaviour Patterns in Later Life. AIMS Public Health, 2017, 4(2): 171-188. doi: 10.3934/publichealth.2017.2.171
    [9] Wanda M. Williams, Michelle M. Yore, Melicia C. Whitt-Glover . Estimating physical activity trends among blacks in the United States through examination of four national surveys. AIMS Public Health, 2018, 5(2): 144-157. doi: 10.3934/publichealth.2018.2.144
    [10] Yaara Turjeman-Levi, Guy Itzchakov, Batya Engel-Yeger . Executive function deficits mediate the relationship between employees' ADHD and job burnout. AIMS Public Health, 2024, 11(1): 294-314. doi: 10.3934/publichealth.2024015
  • Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics.


    All over the world, workers are facing high occupational deregulation, job insecurity, conflicting conditions, high workload, and job-stress linked to the demand of high standards, quality services, and high competition [1]. This situation leads to overwork and exposes workers to a state of exhaustion commonly known as Burnout syndrome, conceptualized for the first time by Freudenberg in 1974. This concept was later refined as an affection of three dimensions: emotional exhaustion (EE), depersonalisation or dehumanisation (DP) and loss of personal accomplishment (LPA) [2].

    Burnout syndrome is a psychosocial phenomenon which arises as a response to chronic interpersonal stressors. It is a global concern and work-related stress has the potential to negatively affect psychological and physical health, as well as organization effectiveness. Chronic stress exposure is the first key factor in the causality of burnout. Second, negative coping strategies contribute to the maintenance and agammaavation of burnout symptoms. Third, on the physiopathological aspect, it's known that both stress and burnout have been linked with a dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) axis [3]. Burnout was found associated with poor health, including some non-communicable diseases [4],[5]. While initially involved in healthcare and education profession, burnout gradually expanded to include almost all occupational sectors [6],[7].

    According to the World Health Organization (WHO) [8], exhaustion is considered a major problem in workplaces with a prevalence of 20% in active populations. However, the clinical symptoms are not closely related to burnout; and this is a major problem of diagnosis to medical practitioners.

    For many years, BOS was not considered formally as a disease in the International Classification of Diseases (ICD) of the WHO, nor by the Diagnostic and Statistical Manual (DSM) of the American Psychiatric Association. Recently, in the 10th edition of the International Classification of Diseases (ICD-10) code Z73.0, burnout has been identified as a factor influencing health status and help-seeking with health services and coded Z73.0 and defined as a state of vital exhaustion (ICD-10).

    The prevention of burnout requires the improvement of working conditions, adjustment of workloads and regular practice of physical activities and sports. Some studies have reported therapeutic and preventive effects of physical activities and sport against burnout [9][11], cardiovascular diseases, diabetes, cognitive functions, metabolic syndrome, aging, cancers, stress, and depression [12],[13].

    Cameroon is a developing country where some modern society conditions related to job environment and international standards are not respected. This is apparent in several occupational sectors such as health, education, defense and security forces, among others. However, there is a real mismatch between job demands and job resources which makes working conditions constraints by increasing the chronic exposure to stress, which is known to be the main cause of human exhaustion.

    To our knowledge, before 2015, no study has been carried out on burnout syndrome in Cameroon. The present study is the round-up of a project put in place in Cameroon in 2015 with the general purpose of investigating the epidemiology of burnout syndrome on a variety of professions and subsequently evaluate the eventual impact of the practice of physical activity to prevent it.

    The present study was a multi-centric cross-sectional investigation, conducted in Cameroon from 2015 to 2018. We focused on four occupational sectors:

    • Healthcare sector; including general medical doctors (GMD), specialist medical doctors (SMD) and paramedical staff (PMS);
    • Education sector; including secondary education teacher (SET) and university teaching staff (UTS);
    • Private sector workers (PSW);
    • Army;

    We focused on these occupational sectors because, on one hand, they are sectors of human services, and on the other, there is an important exposure to stressors related to human contacts emphasizing emotional load. Pregnant women, persons with documented pathology, such as cognitives and infectious diseases were excluded.

    Participants were recruited using a non-probabilistic voluntary enrolment. Detailed explanation was given on the aim of methodology to each participant before giving a free consent to participate. This study was approved by the Institutional Ethics Committee of the University of Douala under the reference number: CEI-UD/389/01/2016/T and was conducted in conformity with the recommendations of the Declaration of Helsinki revised in 1989. A total of 2012 participants were voluntarily included, and the sample was distributed in 302 PMS, 85 GMD, 330 SET, 209 SMD, 424 PWS and 354 Army personnel.

    Data were collected using a self-administered questionnaires consisting in five main sections:

    (i). Sociodemographic characteristics: age, sex, marital status, number of dependent children.

    (ii). Social-professional and work conditions: speciality, seniority, working conditions, labour hours per week, number of free weekends per month, number of vacation days per year, perception of labour hardship, conflicts with colleagues and hierarchy, job salary satisfaction.

    (iii). Level of physical activity: determined using the questionnaire of Ricci and Gagnon [14]. This questionnaire is a scale divided in two sub-sections, A and B, each with four items. Sub-section A evaluates the duration and intensity of daily common activities such as cleaning, gardening, rural work, walking. Sub-section B evaluates sport and recreational activities. The total of points in sub-sections A and B classify participants as inactive if the score < 16, active between 16 and 32, very active if the score > 32.

    (iv). Maslach Burnout Inventory (MBI): appropriate and specific for each occupational sector as follows:

    a. MBI-Human Services Survey (MBI-HSS), was used among health professionals (PMP, GMD and SMD). This psychometric instrument consists of 22 items and explores the three dimensions of burnout, which are:

    • EE with 9 items: 1, 2, 3, 6, 8, 13, 14, 16, 20;
    • DP with 5 items: 5, 10, 11, 15, 22;
    • LPA with 8 items: 4, 7, 9, 12, 17, 18, 19, 21;

    The scores in each dimension are allowed to characterize the level of BOS as high, moderate or low.

    b. MBI-General Survey (MBI-GS), was used to assess BOS in Army and private sector employees. This psychometric consists of sixteen items and three scales that refer to the three dimensions of burnout syndrome:

    • EE or Exhaustion: 5 items (1, 2, 3, 4 and 6);
    • DP or dehumanisation of the relationship or cynicism: 5 items (8, 9, 13, 14, 15);
    • LAP: 6 items (5, 7, 10, 11, 12, and 16);

    c. MBI-Educators Survey (MBI-ES) was used for SET and UTS. MBI-ES includes 22 items that determine the three dimensions of burnout:

    • EE (9 items): 1, 2, 3, 6, 8, 13, 14, 16, 20;
    • DP (5 items): 5, 10, 11, 15, 22;
    • LPA (8 items): 4, 7, 9, 12, 17, 18, 19, 21;

    d. The response modalities for the 22 items are based on a 7-point frequency with an intensity from 0 to 6: “0 = never” to “6 = every day”. The score for each dimension is used to determine level of affect as high, or as low:

    • EE: high ≥ 27; 17–26 low ≤ 16;
    • DP: high ≥ 13; 7–12 low ≤ 6;
    • LPA: high ≤ 30; 31–36 low ≥ 37.

    Questionnaires were handed to participants for one week at least, to take cognition of the content and give enough time to answer the various items.

    (v). Clinical symptoms associated with BOS and job perception: a questionnaire was developed to identify some clinical symptoms in order to see if they were associated with BOS in affected participants.

    Data were recorded and processed using the EPI Info 7 and Excel 2007 software and analysed using the XL Stat 7.5.2 software. Quantitative and qualitative variables are presented as mean ± standard deviation (SD) and frequency associated with percentages respectively. In two-way analysis, the qualitative variables were compared using the Chi 2 test and the exact Fisher probability was determined for dichotomous variables. The raw Odds Ratio (OR) and their confidence interval were determined. For the comparison of quantitative variables, students' t-tests were used. In multivariate analysis, the logistic regression test was used to establish the relationship between burnout and the previously associated predictor variables in univariate. Results were considered significant for p < 0.05.

    Socio-demographic characteristics and physical activity characteristics, professional and psychosocial description of participants are presented in Table 1.

    Table 1.  Socio-demographic, physical activity, professional and psychosocial description of participants.
    All (2012) SET (330) PSW (424) PMS (302) GMD (85) UTS (303) SMD (209) Army (354) p
    Age (years) m ±SD 36 ±9 38 ±8 40 ±9 37 ±7 29 ±4 43 ±7 30 ±3 33 ±8 <0.001
    Gender F 36.4 54.6 18.2 67.2 48.2 31.0 47.4 9.9
    M 63.6 45.4 81.8 32.8 51.8 69.0 52.6 90.1 <0.001
    Married No 52.0 27.8 74.1 44.7 75.3 25.1 64.1 65.0
    Yes 48.0 72.2 25.9 55.3 24.7 74.9 35.9 35.0 <0.001
    Children in charge 0 32.4 19.7 54.5 15.9 60.0 11.6 50.2 32.5
    1 14.7 12.5 9.2 21.5 28.2 12.2 19.1 13.8
    2–4 41.5 51.9 26.2 53.3 11.8 67.7 30.1 31.1
    5 11.5 15.8 10.1 9.3 0.0 8.6 1.0 22.6 <0.001
    Physical activity Yes 63.6 65.1 59.1 74.8 51.8 46.5 42.6 85.6
    No 36.4 34.9 40.9 25.2 48.2 53.5 57.4 14.4 <0.001
    Job seniority (years) < 5 33.9 16.4 35.8 25.8 80.0 25.1 64.1 33.6
    5–10 35.2 46.3 28.5 36.4 18.8 48.2 35.4 24.3
    > 10 30.9 37.3 35.6 37.7 1.2 26.7 0.5 42.1 <0.001
    Working time (hrs/day) < 8 37.5 81.2 0.4 0.3 18.8 75.6 71.3 5.1
    8 30.9 17.6 74.0 20.2 31.8 23.8 28.7 30.5
    > 8 31.6 1.2 25.6 79.5 49.4 0.7 0.0 64.4 <0.001
    Secondary work No 61.7 48.7 71.9 55.6 56.5 18.2 99.0 88.7
    Yes 38.3 51.3 28.1 44.4 43.5 81.8 1.0 11.3 <0.001
    Salary satisfaction No 76.5 93.4 51.4 72.8 83.5 99.0 90.0 65.0
    Yes 11.0 6.6 4.5 19.5 16.5 1.0 3.3 27.7 <0.001
    Work exhausting No 51.3 39.1 66.1 26.8 57.6 60.4 44.0 68.6
    Yes 48.7 60.9 33.9 73.2 42.4 39.6 56.0 31.4 <0.001
    Work constraining No 69.7 63.9 90.1 71.5 58.8 62.4 56.0 76.6
    Yes 30.3 36.1 9.9 28.5 41.2 37.6 44.0 23.4 <0.001
    Work laborious No 77.3 72.8 83.9 64.9 88.2 70.3 85.6 85.9
    Yes 22.7 27.2 16.1 35.1 11.8 29.7 14.4 14.1 <0.001
    Work stressing No 63.4 61.5 66.5 59.3 52.9 65.3 40.2 81.4
    Yes 36.6 38.5 33.5 40.7 47.1 34.7 59.8 18.6 <0.001
    No work complaint No 86.0 90.7 81.0 90.1 87.1 85.5 91.4 78.2
    Yes 14.0 9.3 19.0 9.9 12.9 14.5 8.6 21.8 <0.001
    Conflict with hierarchy No 83.7 83.6 86.4 91.7 83.5 76.6 71.8 88.1
    Yes 16.3 16.4 13.6 8.3 16.5 23.4 28.2 11.9 <0.001
    Conflicts with colleagues No 80.7 76.1 86.0 74.5 84.7 78.5 78.0 89.0
    Yes 19.3 23.9 14.0 25.5 15.3 21.5 22.0 11.0 <0.001
    Need of job conversion No 62.7 55.5 41.3 54.0 75.3 75.2 51.7 84.2
    Yes 37.3 44.5 58.7 46.0 24.7 24.8 48.3 15.8 <0.001

    Note: GMD: Generalist medical doctor, PMS: Paramedical staff; PSW: Private sector worker; SET: Secondary education teacher; SMD: specialist medical doctor; UTS: University teaching staff; BOS: Burnout syndrome.

     | Show Table
    DownLoad: CSV

    The mean age of the overall population was 36 ± 9 years, and 63.6% of participants were male. Males were predominant in PSW, GMD, UTS, SMD and Army. More than a half (52%) of the participants were unmarried. 41.5% of participants had 2–4 children. The majority of the participants (63.6%) practiced physical activities, mostly in Army followed by PMS and SET. On the other hand, SMD and UTS practiced fewer physical activities.

    The prevalence of BOS by profession and the distribution related to gender are shown in Figure 1 and 2:

    Figure 1.  Prevalence of BOS in each group. GMD: Generalist Medical Doctor; PMS: Paramedical Staff; PSW: Private Sector Worker; SET: Secondary Education Teacher; SMD: Specialist Medical Doctor; UTS: University Teaching Staff; BOS: Burnout syndrome.
    Figure 2.  Prevalence of BOS according to gender. GMD: Generalist Medical Doctor; PMS: Paramedical Staff; PSW: Private Sector Worker; SET: Secondary Education Teacher; SMD: Specialist Medical Doctor; UTS: University Teaching Staff; BOS: Burnout syndrome.

    Burnout was highly present in Army with a prevalence of 85.3% followed SET (78.5%) and UTS (68%). More than a half of PSW (64.4%), SMD (61.7%) and PMS (51%) were affected by BOS, while BOS was less present in GMD (42.4%). Except in Army and UTS, men were more victims of BOS compared to women.

    Table 2.  Prevalence, level and different components of BOS in the sample compared between male and female.
    Total n (%) Female n (%) Male n (%) P
    BOS No 646 (32.1) 268 (36.6) 378 (29.5) 0.001
    Yes 1366 (67.9) 464 (63.4) 902 (70.5)
    Level of BOS* Low 825 (60.4) 284 (61.2) 541 (60.0) 0.792
    Moderate 469 (34.3) 158 (34.1) 311 (34.5)
    High 72 (5.3) 22 (4.7) 50 (5.5)
    LPA Low 707 (35.1) 296 (40.4) 411 (32.1) < 0.001
    Moderate 456 (22.7) 188 (25.7) 268 (20.9)
    High 849 (42.2) 248 (33.9) 601 (47.0)
    DP Low 802 (39.9) 337 (46.0) 465 (36.3) < 0.001
    Moderate 660 (32.8) 236 (32.2) 424 (33.1)
    High 550 (27.3) 159 (21.7) 391 (30.5)
    EE Low 514 (25.5) 172 (23.5) 342 (26.7) 0.002
    Moderate 729 (36.2) 302 (41.3) 427 (33.4)
    High 769 (38.2) 258 (35.2) 511 (39.9)
    Army (%) SET (%) UTS (%) PSW (%) SMD (%) PMS (%) GMD (%)
    LPA Low 29.4 40.6 54.1 21.5 28.2 31.1 69.4 <0.0001
    Moderate 20.9 21.8 23.8 13.9 27.8 34.4 18.8
    High 49.7 37.6 22.1 64.6 44.0 34.4 11.8
    DP Low 7.6 54.0 39.6 49.1 36.4 46.7 57.6 <0.0001
    Moderate 32.8 29.6 28.1 28.1 44.5 40.1 31.8
    High 59.6 16.4 32.3 22.9 19.1 13.2 10.6
    EE Low 24.0 20.6 31.4 27.8 29.7 16.9 40.0 <0.0001
    Moderate 26.8 26.0 53.5 27.8 27.8 60.9 29.4
    High 49.2 53.4 15.2 44.3 42.6 22.2 30.6

    Note: GMD: Generalist Medical Doctor; PMS: Paramedical Staff; PSW: Private Sector Worker; SET: Secondary Education Teacher; SMD: Specialist Medical Doctor; UTS: University Teaching Staff; BOS: Burnout syndrome.

     | Show Table
    DownLoad: CSV

    High LPA was significantly (P < 0.0001) observed in GMD (69.4%) and moderate in PSW (64.6%). Low DP was more in GMD than other professions. However, high DP was significantly (P < 0.0001) present in Army (59.6%). Indeed, moderate EE was significantly (P < 0.0001) higher in PMS (60.9%) and UTS (53.5%) than others' professions.

    The top ten clinical symptoms found among participants who suffered from BOS in the sample were: asthenia (53%), back pain (41%), headache (38%), mistrust (27%), irritability (25%), hyperactivity (22%), hypersensitivity (19%), fit of anger (16%), stomachache (12%), and palpitations (8%).

    Table 3.  Factors associated to BOS in the whole population.
    % OR (95%CI) p AOR* (95%CI) p
    Age (years) < 30 70.4 1 1
    ≥ 30 68.4 0.91 (0.72–1.15) 0.420 0.92 (0.73–1.16) 0.478
    Gender F 64.0 1 1
    M 71.8 1.43 (1.17–1.75) 0.001 1.42 (1.17–1.86) 0.001
    Married No 68.5 1 1
    Yes 69.2 1.03 (0.84–1.26) 0.770 1.11 (0.89–1.39) 0.338
    Number children 0 68.9 1 1
    1 67.9 0.96 (0.70–1.31) 0.780 1.03 (0.75–1.42) 0.843
    2–4 67.3 0.93 (0.73–1.18) 0.552 1.03 (0.78–1.36) 0.825
    5 75.8 1.41 (1.01–2.02) 0.045 1.49 (1.01–2.20) 0.042
    Job seniority (years) < 5 66.4 1 1
    5–10 69.9 1.17 (0.92–1.49) 0.195 1.33 (1.02–1.74) 0.037
    > 10 70.2 1.19 (0.93–1.52) 0.172 1.33 (1.00–1.78) 0.043
    Work time (hrs/day) < 8 70.7 1 1
    8 68.7 0.91 (0.71–1.16) 0.439 0.86 (0.67–1.10) 0.231
    > 8 66.8 0.83 (0.65–1.05) 0.124 0.79 (0.62–1.01) 0.057
    Secondary work No 69.9 1 1
    Yes 67.2 0.88 (0.72–1.08) 0.226 0.89 (0.72–1.10) 0.280
    Salary satisfaction No 69.5 1 1
    Yes 64.0 0.78 (0.58–1.04) 0.094 0.76 (0.57–1.03) 0.076
    Work exhausting No 67.9 1 1
    Yes 69.8 1.09 (0.89–1.33) 0.389 1.12 (0.92–1.37) 0.256
    Work constraining No 66.7 1 1
    Yes 73.9 1.41 (1.13–1.77) 0.002 1.43 (1.14–1.79) 0.002
    Work laborious No 66.4 1 1
    Yes 77.2 1.71 (1.33–2.20) <0.001 1.77 (1.37–2.29) <0.001
    Work stressing No 66.1 1 1
    Yes 73.5 1.42 (1.15–1.76) 0.001 1.47 (1.19–1.82) <0.001
    No work complaint No 70.6 1 1
    Yes 58.4 0.58 (0.45–0.77) <0.001 0.57 (0.44–0.75) <0.0001
    Conflict with hierarchy No 67.3 1 1
    Yes 76.6 1.59 (1.19–2.12) 0.002 1.58 (1.18–2.11) 0.002
    Need of job conversion No 67.6 1 1
    Yes 71.0 1.18 (0.96–1.45) 0.124 1.21 (0.98–1.48) 0.078
    Physical activity No 69.5 1 1
    Yes 68.5 0.90 (0.73–1.11) 0.343 0.95 (0.77–1.17) 0.641

    Note: OR: odd ratio; AOR: adjusted odd ratio (*adjusted for age and sex); n (%) represent number and percentage of participants with BOS.

     | Show Table
    DownLoad: CSV

    Except in UTS (OR = 0.51; 95% CI (0.31–0.84); P = 0.009), we did not find a statistical difference between the practice of sporting activities and BOS.

    This study aimed to determine the prevalence of burnout, associated factors, and to assess the influence of physical activities on this psychopathology in four occupational sectors, including health, education, Army and the private sector.

    This study is the first conducted in Cameroon including several professional sectors. Known studies conducted in Cameroon on burnout mostly gave scores on the OLBI scale without precision on prevalence and were only concerned with medical students and health professionals [15][18].

    Since participants were recruited using a non-probabilistic voluntary enrolment, the large size sample of our study aimed to minimize the lack of representativeness versus the average national workforce estimated to be 264535 workers in 2015 [19] and to increase the significance and validity of our statistical analyses.

    An overall prevalence of 67.9% of BOS was found. This result is similar and consistent with other studies that focused specifically on a single occupational group [20],[21]. The high prevalence observed could be justified either by the limits of the methodological approach (cross sectional study and limits of BOS definition) or the difficult socioeconomic context of workers in Cameroon. In fact, the socioeconomic condition of civil servants' salaries are very difficult considering the CFA Franc devaluation in 1994 and the multiple socioeconomic adjustment programs of the nineties. All these conditions are permanent sources of dissatisfaction, low motivation, attrition, and chronic stress, which are predictors of BOS.

    We found in general, except in Army and in UTS, men were more affected by BOS than women (70.5% vs. 63.4%). This global result on burnout and gender is controversial to those authors [22],[23] who found high prevalence of burnout in women. According to Norlund et al. [22], a high level of burnout in women compared to men was partly explained by more unfavourable working conditions and life situational factors. Our finding of high prevalence of BOS among men compared to women is in accordance with Tironi et al. [24].

    A prevalence of 85.3% of BOS found in the Cameroonian Army was higher than in the other professions and was similar to the 80.1% reported by de Tao et al. [25] among soldiers from drylands in China. This result is higher than the one found by Pearson et al. [26] among Canadian soldiers (13.5–48.4%) and among the Senegalese Army (39.9%) returning from a mission in Darfur [27]. The high prevalence of burnout in the Cameroonian Army can be explained by the high workload of soldiers who are permanently exposed to the stress related to battles against the Boko Haram militia and the internal socio-political situation of the north-west and the south-west regions. Furthermore, some Cameroonian soldiers carry out peacekeeping missions in Central Africa Republic. According to Morgan et al. [28], soldiers, during their service, spend considerable time under stress-intensive conditions with the population in terms of performance requirements and the intensity of the situations; generating frustrations, anger, and the feeling of being without support. When these feelings are experienced for long periods, they constitute appropriate conditions for the occurrence of burnout. The prevalence of BOS (78.8%) found among SET was higher than the one reported by Restrepo et al. [29] in Columbia and Chennoufi et al. [30] in Tunisia; whereas the prevalence found among UTS (68%) was lower than the 74% reported by Lokanadha and Poornima [31], in India. The higher prevalence of BOS among SET compared to UTS in our study is in contrast with the study of Farber [32] which observed that university professors are at greater risk of burnout than those in high school because of work overload. Our results are in accordance with Anderson et al. [33], who found that high school teachers are more at risk of burnout than primary school and university teachers. The difference in the present study can be explained by the number of hours per week and workload of the secondary school teachers which is higher than university teachers. Moreover, the difference in the ratio of schoolchildren per teacher was higher in secondary schools compared to university. The high prevalence of BOS in education sectors (SET and UTS) could also be explained by Cameroon's failure to meet UNESCO standards in terms of the ratio of learners per teacher, which is two to three times superior, thus increasing the workload and predisposing to BOS. According to Van der Broech et al. [34], the risk of BOS may be explained by the combination of a high level of job applications and job resources in a given activity. Demerouti et al. [30] also showed in their “Job Demands Resources” concept that demands exhaust workers' resources and thus increase burnout, while resources diminish the sense of exhaustion. There are some factors that can contribute to the development of burnout (job requests) and others that can create enthusiasm (job resources), as these factors are very specific to each job and job situation in general [35].

    The prevalence of BOS among PSW (64.9%) was superior to the one in Western countries' workers (13–27%) [36] and in United States (30–33%) [37] and inferior to the one reported by Valente et al. [38] in Brazil (71.8%). Burnout prevalence among GMD (42.4%) was lower than that observed in Egypt (66.7%) by Farahat et al. [39] in the same professional group, whereas the prevalence among SMD (61.7%) was higher than that among British surgeons (32%), as reported by Sharma et al. [20] and among US surgeons (34.6%) as found by Oskrochi et al. [40]. On the other hand, the higher prevalence of BOS in SMD compared to GMD may be explained by the expression of chronic stress, because of previous experience as GMD. The prevalence of BOS among PMS (51%), was greatly lower than that in Tunisia (70%) as reported by Amamou et al. [41] among palliative care nurses and in Nigeria (75%) among caregivers [42].

    Low burnout (60.4%), was predominantly observed in the overall population. This shows an insidious and slow installation of BOS among participants, due to permanent exposure to stress and associated factors. Levels of BOS didn't vary significantly between male and female workers.

    Among participants with BOS, 38.2% had high EE; 27.3% high DP, and 42.2% a high LAP. These results on BOS dimensions are in accordance with Schaufeli and Enzmann [43] who found that an affection of a specific dimension of the burnout is experienced differently depending on the characteristics of the profession. The severity of the levels of these dimensions is related to stress resulting in a greater exposure of EE, linked to the threat of identity, and linked to the two entities exposed to DP [44].

    Low LPA was more observed in GMD (69.4%). This result is in accordance with Soler et al. [45] in Turkish general practitioners. Low LPA in our study is superior than the one observed in others' studies [39],[46]. For Maslash and Jackson [2] a personal achievement decrease represents the dimension of self-evaluation of professional exhaustion related to feelings of incompetence and lack of achievement and productivity at work. This dimension includes both the social and non-social aspects of professional achievement [47]. More specifically, professional effectiveness refers to feelings of competence and success at work. This lack of professional efficiency is the third element of the professional exhaustion building [48].

    High DP occurred more in Army (59.6%) than in the other occupational sectors. This result is higher than to those reported by some authors [25],[27]. Depersonalisation represents a negative response, a detachment to various aspects of work, the dimension of the interpersonal context of work exhaustion. Also considered cynical, it reflects indifference, disengagement, lack of enthusiasm, or a distant attitude towards work in general and not necessarily with others.

    High EE was noted more in SET (53.4%) than other professions. Maslash et al. [49] in a comparison of the prevalence of BOS between five different occupational sectors in the USA and Holland, found that teaching was characterized by the highest level of exhaustion, along with teachers' cynicism and close to population averages. For Sichambo et al. [50], this level of EE among education staff could be explained by the fact that teachers are exposed to classrooms with a high number of learners, beyond standards, coupling to some duties: examiners, administrators, and follow up with students outside of lectures. According to Roelofs et al. [51], EE can be considered as the most important dimension of BOS because it is close in relationship to other types of mental illness, such as depression and anxiety disorders. Emotional exhaustion refers to the feelings of being emotionally over-extended and drained by others. Nevertheless, BOS is usually considered an individual experience that is specific to the work context.

    Our study found that the males were more at risk to be victims of BOS (OR = 1.43, 95% CI (1.17, 1.86), p = 0.001). Despite the under representativeness of women in the study, gender is not considered a strong predictor of burnout according to Maslach et al. [49]. Cathébras et al. [52] observed the inverse relationship where the female gender was at higher risk of BOS. Results on burnout and gender are controversial. Some authors found a higher prevalence of burnout among women and suggested that this was due to their physical and psychological vulnerability to conciliate work and family life [23]. Inversely, others reported a higher rate of burnout among men because of the high workload [24].

    Our study found that BOS was associated with the number of children in their charge (OR = 1.49; 95% CI (1.01; 2.20); p = 0.042). This is in accordance with Shanafelt et al. [53]. However, a couple of studies concluded that there was no significant relationship between dependent children and burnout [54],[55], and another found that parental status emerges as a factor that reduces the risk of occupational exhaustion [56]. Malasch et al. [44] also stated that unmarried men tend to be more affected than their colleagues who are married with a higher social charge.

    The professional tenure from 5 years and above was a significant determinant of the occurrence of burnout in the present study (OR = 1.33; 95% CI (1.00; 1.78); p = 0.043). This is earlier than what was reported by Teixeira et al. [18] in Portuguese Intensive Care Units who found that previous studies showed that conflicts with colleagues induced emotional exhaustion [57] and led to a reduction in personal achievement, which are two dimensions of BOS. Schaufeli [47] argued that stressful relationships and lack of reciprocity may affect both team workers relationships and the institution and induce burnout. The absence of complaints showed a protective effect against BOS (OR = 0.57; 95% CI (0.44; 0.75); p < 0.0001), showing that satisfactory work conditions and good relationships among working team members can prevent BOS.

    Our study found that asthenia, headache, back pain, irritability, mistrust, hypersensitivity, hyperactivity, inclination to anger, stomach aches and palpitations were associated to BOS. A couple of previous studies noted the same signs and symptoms [58],[59],[39]. Though these symptoms may all not be exclusive to BOS, our study shows that their frequency is important to help as guidance to physicians in the diagnosis of BOS in the context of occupational patients. The associated clinical symptoms include fatigue, anxiety, irritability, desire to change jobs, stomach aches, digestion problems, headaches, isolation. In contrast, Embriaco et al. [60] reported that systemic and body complaints: headaches, insomnia and other sleep disorders, diet problems, tiredness, irritability, emotional instability, and rigidity in social relationships are some non-specific symptoms associated with BOS. Local evidence reports that shift work, which was practised by some participants, could also impact the quality of sleep and the social life of health workers in Cameroon [61]. But these factors were not considered during the design of the present study.

    The best approach to cope with burnout is to investigate the personality traits of affected individuals, in order to better understand their problem and propose adequate solutions. In fact, Maslach et al. [44] suggested that burnout is linked to a diversity of personality profiles such as the dimension of neuroticism, poor-self-esteem, type-A behaviour, and individuals with “feeling types”.

    Assessing the impact of burnout among the affected people is recommended when possible. This can be done through the use of several biomarkers such as cortisol, blood pressure, Dehydroepiandrosterone sulfate (DHEAS), prolactin, the natural killer cells (NK cells) and C-Reactive protein (CRP) that have already been studied in people with burnout [62].

    Concerning the strategies to prevent and manage burnout, anticipation is the key. There are multiple strategies, but in our context, we must focus on improving the general environment, the working conditions (salaries) and if possible, construct dedicated areas for practice of sports and physical activities at work as recommended by the WHO [8].

    Except in UTS (OR = 0.51; 95% CI (0.31–0.84); P = 0.009), we did not find a statistical difference between the practice of sporting activities and the presence of a syndrome of burnout. Further interventional randomized study is needed to clarify this observation. However, previous studies suggested some beneficial effects of physical activity on reducing stress, depression and burnout [9][11]. Gerber et al. [63] found that the enhancement of cardiovascular capacity is associated with high reduction of BOS and depression symptoms. Also, in a study on the effect of a 6-week training program (low intensity jogging 3 times a week) on three indicators of stress-related fatigue (emotional fatigue, general fatigue and recovery need), sleep quality and cognitive functioning in a group of 99 students, compared to the control group, De Vries et al. [64] found that the practice of aerobic exercises has good results on treatment and prevention. This result of the practice of physical activities and sports on burnout in the present study should also draw the attention on the type of physical activity practiced by the participants in this study. In fact, aerobic exercises are known to increase cardiorespiratory capacity and vagal tone and have a positive impact on BOS and depression reduction. In our study we didn't evaluate the cardiorespiratory capacity of participants. Level of practice of physical activities was obtained using a questionnaire. This study also confirms what was previously suggested by Mandengue et al. [58], that BOS could be viewed as a vicious somato-psycho-somatic affection that begins with physical impairment (physical exhaustion), accentuated by socio-demographic environmental factors such as number of dependent children, distance to workplace; and when the body is physically, excessively exhausted, the mind is affected, and in turn, this leads the body to burnout.

    The lack of association between physical and sports activities and burnout found among GMD, SMD, PMP, Army, SET and PSW could also be related to the subjective nature (self-reported responses) of the assessment of participants' level of physical activity that is biased. The protective effect of sports and physical activities on the burnout syndrome among UTS was also accompanied by the lowest level of emotional exhaustion (EE) (15.2%). One can view LPA that corresponds to the decrease in self-esteem, and the feeling of being incompetent which are a consequence of the two other dimensions of burnout (emotional exhaustion and depersonalization) negatively impacts the motivation of individuals to be involved in the practice of sports and physical activities, as also observed by Zamani et al. [65].

    1. Burnout syndrome is a reality in full expansion in main national occupations in Cameroon.

    2. Burnout syndrome is attributed to several factors, including gender, number of dependent children, stressful constraints, hard work and conflicting relationships at different degrees depending on the occupation.

    3. Except in UTS, this study did not find an association between the practice of sporting activities and the presence of symptoms of burnout. Further interventional randomized study is needed to clarify this observation.

    4. This study provides the leading main symptoms that are recommended by the World Health Organisation for the diagnosis of BOS in the context of occupational patients.

    5. Further studies are needed to study the impact of quality sleep in association with BOS, and also with regard to biomarkers like blood and saliva cortisol, adrenalin, oxytocin, C-RP, and glycemia to understand biological and physiological mechanisms underlying BOS beside epidemiological statistical analysis.

    [1] Hill C, Guarner F, Reid G, et al. (2014) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11: 506–514. doi: 10.1038/nrgastro.2014.66
    [2] Redman RS, Kim YO, Woodward CJ, et al. (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6: e14823. doi: 10.1371/journal.pone.0014823
    [3] Xie J, Shi H, Du Z, et al. (2016) Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Sci Rep 6: 21329. doi: 10.1038/srep21329
    [4] Felis GE, Dellaglio F, Torriani S (2009) Taxonomy of Probiotic Microorganisms, In: Charalampopoulos D, Rastall RA, Editors, Prebiotics and Probiotics Science and Technology, New York: Springer New York, 591–637.
    [5] Bull M, Plummer S, Marchesi J, et al. (2013) The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol Lett 349: 77–87. doi: 10.1111/1574-6968.12293
    [6] Felis GE, Dellaglio F (2007) Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol 8: 44–61.
    [7] Vandamme P, Pot B, Gillis M, et al. (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60: 407–438.
    [8] Williams JG, Kubelik AR, Livak KJ, et al. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531–6535. doi: 10.1093/nar/18.22.6531
    [9] Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19: 6823–6831. doi: 10.1093/nar/19.24.6823
    [10] Versalovic J, Schneider M, De Bruijn FJ, et al. (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Method Mol Cell Biol 5: 25–40.
    [11] Laguerre G, Allard MR, Revoy F, et al. (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microb 60: 56–63.
    [12] Carro L, Sproer C, Alonso P, et al. (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35: 73–80. doi: 10.1016/j.syapm.2011.11.003
    [13] Trujillo ME, Alonso-Vega P, Rodriguez R, et al. (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4: 1265–1281. doi: 10.1038/ismej.2010.55
    [14] Singh BP (2015) Molecular and functional diversity of PGPR fluorescent Pseudomonads based on 16S rDNA-RFLP and RAPD markers. J Environ Biol 36: 1169–1178.
    [15] Gaunt MW, Turner SL, Rigottier-Gois L, et al. (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Micr 51: 2037–2048. doi: 10.1099/00207713-51-6-2037
    [16] Perez-Yepez J, Armas-Capote N, Velazquez E, et al. (2014) Evaluation of seven housekeeping genes for multilocus sequence analysis of the genus Mesorhizobium: Resolving the taxonomic affiliation of the Cicer canariense rhizobia. Syst Appl Microbiol 37: 553–559. doi: 10.1016/j.syapm.2014.10.003
    [17] Ribeiro RA, Barcellos FG, Thompson FL, et al. (2009) Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. Res Microbiol 160: 297–306.
    [18] Bennasar A, Mulet M, Lalucat J, et al. (2010) PseudoMLSA: a database for multigenic sequence analysis of Pseudomonas species. BMC Microbiol 10: 118. doi: 10.1186/1471-2180-10-118
    [19] Jang MA, Koh WJ, Huh HJ, et al. (2014) Distribution of nontuberculous mycobacteria by multigene sequence-based typing and clinical significance of isolated strains. J Clin Microbiol 52: 1207–1212. doi: 10.1128/JCM.03053-13
    [20] Kampfer P, Glaeser SP (2016) Serratia aquatilis sp. nov., isolated from drinking water systems. Int J Syst Evol Micr 66: 407–413.
    [21] Marrero G, Schneider KL, Jenkins DM, et al. (2013) Phylogeny and classification of Dickeya based on multilocus sequence analysis. Int J Syst Evol Micr 63: 3524–3539. doi: 10.1099/ijs.0.046490-0
    [22] Martens M, Dawyndt P, Coopman R, et al. (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Micr 58: 200–214. doi: 10.1099/ijs.0.65392-0
    [23] Naser SM, Thompson FL, Hoste B, et al. (2005) Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151: 2141–2150. doi: 10.1099/mic.0.27840-0
    [24] Sen A, Daubin V, Abrouk D, et al. (2014) Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders "Frankiales" and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Micr 64: 3821–3832.
    [25] Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Bacteriol 44: 846–849.
    [26] Wayne LG, Brenner DJ, Colwell RR, et al. (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Micr 37: 463–464.
    [27] Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102: 2567–2572. doi: 10.1073/pnas.0409727102
    [28] Tindall BJ, Rossello-Mora R, Busse HJ, et al. (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Micr 60: 249–266. doi: 10.1099/ijs.0.016949-0
    [29] Stephens ZD, Lee SY, Faghri F, et al. (2015) Big data: Astronomical or genomical? PloS Biol 13: e1002195. doi: 10.1371/journal.pbio.1002195
    [30] Lopez-Modéjar R, Kostovčík M, Lladó S, et al. (2017) Exploring the Plant Microbiome Through Multi-omics Approaches, In: Kumar V, Kumar M, Sharma S, et al., Editors, Probiotics in Agroecosystem, Springer Nature.
    [31] Ipci K, Altıntoprak N, Muluk NB, et al. (2017) The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Oto-Rhino-L 274: 617–626.
    [32] Kadakkuzha BM, Puthanveettil SV (2013) Genomics and proteomics in solving brain complexity. Mol Biosyst 9: 1807–1821. doi: 10.1039/c3mb25391k
    [33] Bruto M, Prigent-Combaret C, Muller D, et al. (2014) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci Rep 4: 6261.
    [34] Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5: 216.
    [35] Kumar V, Baweja M, Singh PK, et al. (2016) Recent Developments in Systems Biology and Metabolic Engineering of Plant–Microbe Interactions. Front Plant Sci 7.
    [36] RB P (1974) Probiotics, the other half of the antibiotic story. Anim Nutr Health 29: 4.
    [37] Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66: 365–378. doi: 10.1111/j.1365-2672.1989.tb05105.x
    [38] Sessitsch A, Hardoim P, Doring J, et al. (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe In 25: 28–36. doi: 10.1094/MPMI-08-11-0204
    [39] Akinsanya MA, Goh JK, Lim SP, et al. (2015) Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genomics Data 6: 159–163. doi: 10.1016/j.gdata.2015.09.004
    [40] Muller CA, Obermeier MM, Berg G (2016) Bioprospecting plant-associated microbiomes. J Biotechnol 235: 171–180. doi: 10.1016/j.jbiotec.2016.03.033
    [41] Bertani I, Abbruscato P, Piffanelli P, et al. (2016) Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. Environ Microbiol Rep 8: 388–398. doi: 10.1111/1758-2229.12403
    [42] Kolton M, Sela N, Elad Y, et al. (2013) Comparative genomic analysis indicates that niche adaptation of terrestrial Flavobacteria is strongly linked to plant glycan metabolism. PLoS One 8: e76704. doi: 10.1371/journal.pone.0076704
    [43] Hartman K, van der Heijden MG, Roussely-Provent V, et al. (2017) Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5: 2.
    [44] Shade A, McManus PS, Handelsman J (2013) Unexpected diversity during community succession in the apple flower microbiome. mBio 4: e00602–e00612.
    [45] Garrity GM (2005) Volume 2: The Proteobacteria, In: Garrity GM, Editor, Bergey's Manual of Systematic Bacteriology, Springer.
    [46] van der Heijden MG, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol 14: e1002378. doi: 10.1371/journal.pbio.1002378
    [47] Kaul S, Sharma T, Dhar MK (2016) "Omics" tools for better understanding the plant–endophyte interactions. Front Plant Sci 7.
    [48] Liu H, Carvalhais LC, Schenk PM, et al. (2017) Effects of jasmonic acid signalling on the wheat microbiome differ between body sites. Sci Rep 7: 41766.
    [49] Leite J, Fischer D, Rouws LFM, et al. (2017) Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Front Plant Sci 7.
    [50] Zgadzaj R, Garrido-Oter R, Jensen DB, et al. (2016) Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Natl Acad Sci USA 113: E7996–E8005.
    [51] Xiao X, Chen W, Zong L, et al. (2017) Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Mol Ecol 26: 1641–1651. doi: 10.1111/mec.14027
    [52] Foo JL, Ling H, Lee YS, et al. (2017) Microbiome engineering: Current applications and its future. Biotech J: 1600099-n/a.
    [53] Ushio M, Yamasaki E, Takasu H, et al. (2015) Microbial communities on flower surfaces act as signatures of pollinator visitation. Sci Rep 5: 8695. doi: 10.1038/srep08695
    [54] Paterson J, Jahanshah G, Li Y, et al. (2016) The contribution of genome mining strategies to the understanding of active principles of PGPR strains. FEMS Microbiol Ecol 93: fiw249–fiw249.
    [55] Reeve W, Ardley J, Tian R, et al. (2015) A genomic encyclopedia of the root nodule bacteria: assessing genetic diversity through a systematic biogeographic survey. Stand Genomic Sci 10: 14. doi: 10.1186/1944-3277-10-14
    [56] Seshadri R, Reeve WG, Ardley JK, et al. (2015) Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria. Sci Rep 5: 16825. doi: 10.1038/srep16825
    [57] Redondo-Nieto M, Barret M, Morrissey J, et al. (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 14: 54. doi: 10.1186/1471-2164-14-54
    [58] Garrido-Sanz D, Meier-Kolthoff JP, Goker M, et al. (2016) Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One 11: e0150183. doi: 10.1371/journal.pone.0150183
    [59] Simon S, Petrasek J (2011) Why plants need more than one type of auxin. Plant Sci 180: 454–460. doi: 10.1016/j.plantsci.2010.12.007
    [60] Gupta S, Ellis SE, Ashar FN, et al. (2014) Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun 5: 5748. doi: 10.1038/ncomms6748
    [61] Cecagno R, Fritsch TE, Schrank IS (2015) The plant growth-promoting bacteria Azospirillum amazonense: genomic versatility and phytohormone pathway. Biomed Res Int 2015: 898592.
    [62] Franco CM, Araujo R, Adetutu E, et al. (2016) Complete genome sequences of the endophytic Streptomyces strains EN16, EN23, and EN27, isolated from wheat plants. Genome Announc 4: e01342-16.
    [63] Hirsch AM, Alvarado J, Bruce D, et al. (2013) Complete genome sequence of Micromonospora strain L5, a potential plant-growth-regulating Actinomycete, originally isolated from Casuarina equisetifolia root nodules. Genome Announc 1: e00759-13.
    [64] Klingeman DM, Utturkar S, Lu TY, et al. (2015) Draft genome sequences of four Streptomyces isolates from the Populus trichocarpa root endosphere and rhizosphere. Genome Announc 3: e01344-15.
    [65] Bravo JI, Lozano GL, Handelsman J (2017) Draft genome sequence of Flavobacterium johnsoniae CI04, an isolate from the soybean rhizosphere. Genome Announc 5: e01535-16.
    [66] Trujillo ME, Bacigalupe R, Pujic P, et al. (2014) Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style? PLoS One 9: e108522. doi: 10.1371/journal.pone.0108522
    [67] Zhang N, Yang D, Kendall JR, et al. (2016) Comparative genomic analysis of Bacillus amyloliquefaciens and Bacillus subtilis reveals evolutional traits for adaptation to plant-associated habitats. Front Microbiol 7: 2039.
    [68] Kim SY, Lee SY, Weon HY, et al. (2017) Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste. J Biotechnol 241: 112–115. doi: 10.1016/j.jbiotec.2016.11.023
    [69] Cai XC, Liu CH, Wang BT, et al. (2017) Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease. Microbiol Res 196: 89–94. doi: 10.1016/j.micres.2016.12.007
    [70] Whitman WB, Woyke T, Klenk HP, et al. (2015) Genomic encyclopedia of bacterial and archaeal type strains, phase III: the genomes of soil and plant-associated and newly described type strains. Stand Genomic Sci 10: 26. doi: 10.1186/s40793-015-0017-x
    [71] Holzapfel WH, Haberer P, Geisen R, et al. (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73: 365S–373S.
    [72] Chan JZ, Halachev MR, Loman NJ, et al. (2012) Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiol 12: 302. doi: 10.1186/1471-2180-12-302
    [73] Daubin V, Gouy M, Perriere G (2002) A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res 12: 1080–1090. doi: 10.1101/gr.187002
    [74] Comas I, Moya A, González-Candelas F (2007) From phylogenetics to phylogenomics: The evolutionary relationships of insect endosymbiotic gamma-Proteobacteria as a test case. Syst Biol 56: 1–16.
    [75] Herniou EA, Luque T, Chen X, et al. (2001) Use of whole genome sequence data to infer baculovirus phylogeny. J Virol 75: 8117–8126. doi: 10.1128/JVI.75.17.8117-8126.2001
    [76] Snel B, Bork P, Huynen MA (1999) Genome phylogeny based on gene content. Nat Genet 21: 108–110. doi: 10.1038/5052
    [77] Gu X, Zhang H (2004) Genome phylogenetic analysis based on extended gene contents. Mol Biol Evol 21: 1401–1408. doi: 10.1093/molbev/msh138
    [78] Karlin S, Mrazek J, Campbell AM (1997) Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179: 3899–3913. doi: 10.1128/jb.179.12.3899-3913.1997
    [79] Pride DT, Meinersmann RJ, Wassenaar TM, et al. (2003) Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Res 13: 145–158. doi: 10.1101/gr.335003
    [80] House CH, Fitz-Gibbon ST (2002) Using homolog groups to create a whole-genomic tree of free-living organisms: an update. J Mol Evol 54: 539–547. doi: 10.1007/s00239-001-0054-5
    [81] Fitz-Gibbon ST, House CH (1999) Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 27: 4218–4222. doi: 10.1093/nar/27.21.4218
    [82] Wolf YI, Rogozin IB, Kondrashov AS, et al. (2001) Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res 11: 356–372. doi: 10.1101/gr.GR-1619R
    [83] Coenye T, Gevers D, Van de Peer Y, et al. (2005) Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29: 147–167. doi: 10.1016/j.fmrre.2004.11.004
    [84] Wisniewski-Dye F, Borziak K, Khalsa-Moyers G, et al. (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7: e1002430.
    [85] Jordan EOA (1890) A report on certain species of bacteria observed in sewage.
    [86] Hoffmann H, Stindl S, Ludwig W, et al. (2005) Reassignment of enterobacter dissolvens to Enterobacter cloacae as E. cloacae subspecies dissolvens comb. nov. and emended description of Enterobacter asburiae and Enterobacter kobei. Syst Appl Microbiol 28: 196–205.
    [87] V T (1895) I. Generi e le Specie delle Batteriacee, Zanaboni and Gabuzzi, Milano, 1889. 2 MIGULA (W.): Schizomycetes (Bacteria, Bacterien). Teil I, Abteilung Ia, Teil I, Abteilung Ia,.
    [88] Blomqvist K, Nikkola M, Lehtovaara P, et al. (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 175: 1392–1404. doi: 10.1128/jb.175.5.1392-1404.1993
    [89] Renna MC, Najimudin N, Winik LR, et al. (1993) Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175: 3863–3875. doi: 10.1128/jb.175.12.3863-3875.1993
    [90] Vinatzer BA, Weisberg AJ, Monteil CL, et al. (2017) A proposal for a genome similarity-based taxonomy for plant-pathogenic bacteria that is sufficiently precise to reflect phylogeny, host range, and outbreak affiliation applied to Pseudomonas syringae sensu lato as a proof of concept. Phytopathology 107: 18–28. doi: 10.1094/PHYTO-07-16-0252-R
    [91] Euzeby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47: 590–592. doi: 10.1099/00207713-47-2-590
    [92] Bruto M, Prigent-Combaret C, Muller D, et al. (2014) Analysis of genes contributing to plant-beneficial functions in Plant Growth-Promoting Rhizobacteria and related Proteobacteria. Sci Rep 4: 6261.
    [93] Poupin MJ, Timmermann T, Vega A, et al. (2013) Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 8: e69435. doi: 10.1371/journal.pone.0069435
    [94] Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5: 429.
    [95] Cheng Q (2008) Perspectives in biological nitrogen fixation research. J Integr Plant Biol 50: 786–798. doi: 10.1111/j.1744-7909.2008.00700.x
    [96] Ormeño-Orrillo E, Servin-Garciduenas LE, Rogel MA, et al. (2015) Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 38: 287–291.
    [97] Mousavi SA, Willems A, Nesme X, et al. (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38: 84–90.
    [98] Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57: 293–319.
    [99] Armas-Capote N, Perez-Yepez J, Martinez-Hidalgo P, et al. (2014) Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Islands). Syst Appl Microbiol 37: 140–148.
    [100] Udwary DW, Gontang EA, Jones AC, et al. (2011) Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microbiol 77: 3617–3625. doi: 10.1128/AEM.00038-11
    [101] Tisa LS, Beauchemin N, Gtari M, et al. (2013) What stories can the Frankia genomes start to tell us? J Biosci 38: 719–726. doi: 10.1007/s12038-013-9364-1
    [102] Clawson ML, Bourret A, Benson DR (2004) Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. Mol Phylogenet Evol 31: 131–138. doi: 10.1016/j.ympev.2003.08.001
    [103] Jeong SC, Ritchie NJ, Myrold DD (1999) Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses. Mol Phylogenet Evol 13: 493–503. doi: 10.1006/mpev.1999.0692
    [104] Gtari M, Daffonchio D, Boudabous A (2007) Assessment of the genetic diversity of Frankia microsymbionts of Elaeagnus angustifolia L. plants growing in a Tunisian date-palm oasis by analysis of PCR amplified nifD-K intergenic spacer. Can J Microbiol 53: 440–445.
    [105] Normand P, Orso S, Cournoyer B, et al. (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46: 1–9. doi: 10.1099/00207713-46-1-1
    [106] Cournoyer B, Lavire C (1999) Analysis of Frankia evolutionary radiation using glnII sequences. FEMS Microbiol Lett 177: 29–34. doi: 10.1111/j.1574-6968.1999.tb13709.x
    [107] Nouioui I, Ghodhbane-Gtari F, Beauchemin NJ, et al. (2011) Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie Van Leeuwenhoek 100: 579–587.
    [108] Ghodhbane-Gtari F, Nouioui I, Chair M, et al. (2010) 16S-23S rRNA intergenic spacer region variability in the genus Frankia. Microb Ecol 60: 487–495. doi: 10.1007/s00248-010-9641-6
    [109] Normand P, Lapierre P, Tisa LS, et al. (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17: 7–15.
    [110] Nouioui I, Del Carmen Montero-Calasanz M, Ghodhbane-Gtari F, et al. (2017) Frankia discariae sp. nov.: an infective and effective microsymbiont isolated from the root nodule of Discaria trinervis. Arch Microbiol: 1–7.
    [111] Nouioui I, Ghodhbane-Gtari F, Del Carmen Montero-Calasanz M, et al. (2017) Frankia inefficax sp. nov., an actinobacterial endophyte inducing ineffective, non nitrogen-fixing, root nodules on its actinorhizal host plants. Antonie Van Leeuwenhoek 110: 313–320.
    [112] Nouioui I, Ghodhbane-Gtari F, Rohde M, et al. (2017) Frankia coriariae sp. nov., an infective and effective microsymbiont isolated from Coriaria japonica. Int J Syst Evol Micr.
    [113] Nouioui I, Ghodhbane-Gtari F, Montero-Calasanz MD, et al. (2016) Proposal of a type strain for Frankia alni (Woronin 1866) Von Tubeuf 1895, emended description of Frankia alni, and recognition of Frankia casuarinae sp. nov. and Frankia elaeagni sp. nov. Int J Syst Evol Micr 66: 5201–5210.
    [114] Woronin MS (1866) Über die bei der Schwarzerle (Alnus glutinosa) und bei der gewöhnlichen Garten-Lupine (Lupinus mutabilis) auftretenden Wurzelanschwellungen. Mem Acad Imp Sci St Petersbourg VII Series 10: 1–13.
    [115] Tubeuf K (1895) In Pflanzenkrankheiten durch Kryptogame Parasiten verursacht, Berlin: Verlag J Springer, 1–599.
    [116] Tisa LS, Oshone R, Sarkar I, et al. (2016) Genomic approaches toward understanding the actinorhizal symbiosis: an update on the status of the Frankia genomes. Symbiosis 70: 5–16. doi: 10.1007/s13199-016-0390-2
    [117] Manzanera M, Santa-Cruz-Calvo L, Vilchez JI, et al. (2014) Genome sequence of Arthrobacter siccitolerans 4J27, a Xeroprotectant-producing desiccation-tolerant microorganism. Genome Announc 2: e00526-14.
    [118] Santacruz-Calvo L, Gonzalez-Lopez J, Manzanera M (2013) Arthrobacter siccitolerans sp. nov., a highly desiccation-tolerant, xeroprotectant-producing strain isolated from dry soil. Int J Syst Evol Micr 63: 4174–4180.
    [119] Koch C, Schumann P, Stackebrandt E (1995) Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. Int J Syst Bacteriol 45: 837–839. doi: 10.1099/00207713-45-4-837
    [120] Singh RN, Gaba S, Yadav AN, et al. (2016) First high quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11: 54. doi: 10.1186/s40793-016-0176-4
    [121] Lee JS, Lee KC, Pyun YR, et al. (2003) Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int J Syst Evol Micr 53: 1277–1280.
    [122] Manzanera M, Garcia-Fontana C, Vilchez JI, et al. (2015) Genome sequence of Rhodococcus sp. 4J2A2, a desiccation-tolerant bacterium involved in biodegradation of aromatic hydrocarbons. Genome Announc 3: e00592-15.
    [123] Narvaez-Reinaldo JJ, Barba I, Gonzalez-Lopez J, et al. (2010) Rapid method for isolation of desiccation-tolerant strains and xeroprotectants. Appl Environ Microbiol 76: 5254–5262.
    [124] Manzanera M, Narvaez-Reinaldo JJ, Garcia-Fontana C, et al. (2015) Genome sequence of Arthrobacter koreensis 5J12A, a plant growth-promoting and desiccation-tolerant strain. Genome Announc 3: e00648-15.
    [125] Hossain MJ, Ran C, Liu K, et al. (2015) Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp. plantarum. Front Plant Sci 6: 631.
    [126] Hao K, He P, Blom J, et al. (2012) The genome of plant growth-promoting Bacillus amyloliquefaciens subsp. plantarum strain YAU B9601-Y2 contains a gene cluster for mersacidin synthesis. J Bacteriol 194: 3264–3265.
    [127] Kim BK, Chung JH, Kim SY, et al. (2012) Genome sequence of the leaf-colonizing Bacterium Bacillus sp. strain 5B6, isolated from a cherry tree. J Bacteriol 194: 3758–3759.
    [128] Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259–1266. doi: 10.1094/PHYTO.2004.94.11.1259
    [129] Sumpavapol P, Tongyonk L, Tanasupawat S, et al. (2010) Bacillus siamensis sp. nov., isolated from salted crab (poo-khem) in Thailand. Int J Syst Evol Micr 60: 2364–2370.
    [130] Borriss R, Chen XH, Rueckert C, et al. (2011) Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int J Syst Evol Micr 61: 1786–1801.
    [131] Declercq AM, Haesebrouck F, Van den Broeck W, et al. (2013) Columnaris disease in fish: a review with emphasis on bacterium-host interactions. Vet Res 44: 27.
    [132] CE S (2011) Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J Adv Res 2: 97–108. doi: 10.1016/j.jare.2010.04.001
    [133] Sang MK CS, Kim KD (2008) Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol Control 46: 424–433. doi: 10.1016/j.biocontrol.2008.03.017
    [134] Sang MK, Kim KD (2012) The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J Appl Microbiol 113: 383–398. doi: 10.1111/j.1365-2672.2012.05330.x
    [135] Fu Y, Tang X, Lai Q, et al. (2011) Flavobacterium beibuense sp. nov., isolated from marine sediment. Int J Syst Evol Micr 61: 205–209.
    [136] Jit S, Dadhwal M, Prakash O, et al. (2008) Flavobacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Micr 58: 1665–1669.
    [137] Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8: e56329. doi: 10.1371/journal.pone.0056329
    [138] Bulgarelli D, Rott M, Schlaeppi K, et al. (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488: 91–95. doi: 10.1038/nature11336
    [139] Lundberg DS, Lebeis SL, Paredes SH, et al. (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488: 86–90. doi: 10.1038/nature11237
    [140] Kishi LT, Fernandes CC, Omori WP, et al. (2016) Reclassification of the taxonomic status of SEMIA3007 isolated in Mexico B-11A Mex as Rhizobium leguminosarum bv. viceae by bioinformatic tools. BMC Microbiol 16: 260.
    [141] Kim M, Lee KH, Yoon SW, et al. (2013) Analytical tools and databases for metagenomics in the next-generation sequencing era. Genomics Inform 11: 102–113. doi: 10.5808/GI.2013.11.3.102
    [142] Thompson CC, Amaral GR, Campeão M, et al. (2015) Microbial taxonomy in the post-genomic era: Rebuilding from scratch? Arch Microbiol 197: 359–370. doi: 10.1007/s00203-014-1071-2
    [143] Choi SC (2016) On the study of microbial transcriptomes using second- and third-generation sequencing technologies. J Microbiol 54: 527–536. doi: 10.1007/s12275-016-6233-2
    [144] Lu H, Giordano F, Ning Z (2016) Oxford nanopore minion sequencing and genome assembly. Genomics Proteomics Bioinformatics 14: 265–279. doi: 10.1016/j.gpb.2016.05.004
    [145] Hahnke RL, Meier-Kolthoff JP, Garcia-Lopez M, et al. (2016) Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 7: 2003.
    [146] Bal HB, Das S, Dangar TK, et al. (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 53: 972–984. doi: 10.1002/jobm.201200445
    [147] Upadhyay SK, Singh JS, Saxena AK, et al. (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology 14: 605–611. doi: 10.1111/j.1438-8677.2011.00533.x
    [148] Kim WI, Cho WK, Kim SN, et al. (2011) Genetic diversity of cultivable plant growth-promoting rhizobacteria in Korea. J Microbiol Biotechnol 21: 777–790. doi: 10.4014/jmb.1101.01031
    [149] Cardinale M, Ratering S, Suarez C, et al. (2015) Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol Res 181: 22–32.
    [150] Fabri S, Caucas V, Abril A (1996) Infectivity and effectiveness of different strains of Frankia spp. on Atriplex cordobensis plants. Rev Argent Microbiol 28: 31–38.
    [151] Salomon MV, Purpora R, Bottini R, et al. (2016) Rhizosphere associated bacteria trigger accumulation of terpenes in leaves of Vitis vinifera L. cv. Malbec that protect cells against reactive oxygen species. Plant Physiol Biochem 106: 295–304.
    [152] Banik A, Mukhopadhaya SK, Dangar TK (2016) Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta 243: 799–812.
    [153] Schwachtje J, Karojet S, Kunz S, et al. (2012) Plant-growth promoting effect of newly isolated rhizobacteria varies between two Arabidopsis ecotypes. Plant Signal Behav 7: 623–627. doi: 10.4161/psb.20176
    [154] Trujillo ME, Riesco R, Benito P, et al. (2015) Endophytic Actinobacteria and the interaction of Micromonospora and nitrogen fixing plants. Front Microbiol 6: 1341.
    [155] Solans M (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47: 243–250. doi: 10.1002/jobm.200610244
    [156] Goudjal Y, Toumatia O, Yekkour A, et al. (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169: 59–65. doi: 10.1016/j.micres.2013.06.014
    [157] Anwar S, Ali B, Sajid I (2016) Screening of rhizospheric Actinomycetes for various in-vitro and in-vivo Plant Growth Promoting (PGP) traits and for agroactive compounds. Front Microbiol 7.
    [158] Gontia-Mishra I, Sapre S, Sharma A, et al. (2016) Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biol (Stuttg) 18: 992–1000. doi: 10.1111/plb.12505
    [159] Kolton M, Frenkel O, Elad Y, et al. (2014) Potential role of Flavobacterial gliding-motility and type IX secretion system complex in root colonization and plant defense. Mol Plant Microbe In 27: 1005–1013. doi: 10.1094/MPMI-03-14-0067-R
    [160] Tsavkelova EA, Cherdyntseva TA, Botina SG, et al. (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162: 69–76. doi: 10.1016/j.micres.2006.07.014
    [161] Subramanian P, Kim K, Krishnamoorthy R, et al. (2016) Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (Solanum lycopersicum Mill.) under low temperatures. PLoS One 11: e0161592.
    [162] Simonetti E, Viso NP, Montecchia M, et al. (2015) Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean. Microbiol Res 180: 40–48. doi: 10.1016/j.micres.2015.07.004
    [163] Kong HG, Kim BK, Song GC, et al. (2016) Aboveground whitefly infestation-mediated reshaping of the root microbiota. Front Microbiol 7.
    [164] Maynaud G, Willems A, Soussou S, et al. (2012) Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst Appl Microbiol 35: 65–72.
    [165] Fasciglione G, Casanovas EM, Yommi A, et al. (2012) Azospirillum improves lettuce growth and transplant under saline conditions. J Sci Food Agri 92: 2518–2523. doi: 10.1002/jsfa.5661
    [166] Couillerot O, Ramírez-Trujillo A, Walker V, et al. (2013) Comparison of prominent Azospirillum strains in Azospirillum-Pseudomonas-Glomus consortia for promotion of maize growth. Appl Microbiol Biotech 97: 4639–4649. doi: 10.1007/s00253-012-4249-z
    [167] Chamam A, Sanguin H, Bellvert F, et al. (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry 87: 65–77. doi: 10.1016/j.phytochem.2012.11.009
    [168] Quiñones MA, Ruiz-Díez B, Fajardo S, et al. (2013) Lupinus albus plants acquire mercury tolerance when inoculated with an Hg-resistant Bradyrhizobium strain. Plant Physiol Biochem 73: 168–175. doi: 10.1016/j.plaphy.2013.09.015
    [169] Rivas R, Velázquez E, Willems A, et al. (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) Druce. Appl Environ Microbiol 68: 5217–5222.
    [170] Prabha C, Maheshwari DK, Bajpai VK (2013) Diverse role of fast growing rhizobia in growth promotion and enhancement of psoralen content in Psoralea corylifolia L. Pharmacognosy Mag 9: S57–S65.
    [171] Sorty AM, Meena KK, Choudhary K, et al. (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotech 180: 872–882. doi: 10.1007/s12010-016-2139-z
    [172] Brígido C, Glick BR, Oliveira S (2016) Survey of plant growth-promoting mechanisms in native Portuguese chickpea Mesorhizobium isolates. Microbial Ecol: 1–16.
    [173] Rangel WM, Thijs S, Janssen J, et al. (2017) Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil. Int J Phytoremediation 19: 142–156. doi: 10.1080/15226514.2016.1207600
    [174] Kechid M, Desbrosses G, Rokhsi W, et al. (2013) The NRT2.5 and NRT2.6 genes are involved in growth promotion of Arabidopsis by the plant growth-promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM196. New Phytol 198: 514–524.
    [175] Santoro MV, Bogino PC, Nocelli N, et al. (2016) Analysis of plant growth-promoting effects of fluorescent Pseudomonas strains isolated from Mentha piperita rhizosphere and effects of their volatile organic compounds on essential oil composition. Front Microbiol 7: 1085.
    [176] Pandey S, Ghosh PK, Ghosh S, et al. (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol 51: 11–17.
    [177] Paulucci NS, Gallarato LA, Reguera YB, et al. (2015) Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity. Microbiol Res 173: 1–9. doi: 10.1016/j.micres.2014.12.012
    [178] Garcia-Fraile P, Carro L, Robledo M, et al. (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7: e38122. doi: 10.1371/journal.pone.0038122
    [179] Amaresan N, Kumar K, Sureshbabu K, et al. (2014) Plant growth-promoting potential of bacteria isolated from active volcano sites of Barren Island, India. Lett Appl Microbiol 58: 130–137. doi: 10.1111/lam.12165
    [180] Borsodi AK, Barany A, Krett G, et al. (2015) Diversity and ecological tolerance of bacteria isolated from the rhizosphere of halophyton plants living nearby Kiskunsag soda ponds, Hungary. Acta Microbiol Immunol Hung 62: 183–197. doi: 10.1556/030.62.2015.2.8
    [181] Busse HJ (2016) Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Micr 66: 9–37.
    [182] Behrendt U, Ulrich A, Schumann P, et al. (2002) Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp. nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov., sp. nov. Int J Syst Evol Micr 52: 1441–1454.
    [183] Agarkova IV, Lambrecht PA, Vidaver AK, et al. (2012) Genetic diversity among Curtobacterium flaccumfaciens pv. flaccumfaciens populations in the American high plains. Can J Microbiol 58: 788–801.
    [184] Chimwamurombe PM, Gronemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92: fiw083. doi: 10.1093/femsec/fiw083
    [185] Tisa LS, Oshone R, Sarkar I, et al. (2016) Genomic approaches toward understanding the actinorhizal symbiosis: an update on the status of the Frankia genomes. Symbiosis 70: 5–16. doi: 10.1007/s13199-016-0390-2
    [186] Fidalgo C, Riesco R, Henriques I, et al. (2016) Microbacterium diaminobutyricum sp. nov., isolated from Halimione portulacoides, which contains diaminobutyric acid in its cell wall, and emended description of the genus Microbacterium. Int J Syst Evol Micr 66: 4492–4500.
    [187] Landa BB, Mavrodi DM, Thomashow LS, et al. (2003) Interactions between strains of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat. Phytopathology 93: 982–994. doi: 10.1094/PHYTO.2003.93.8.982
    [188] Rong X, Huang Y (2012) Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 35: 7–18. doi: 10.1016/j.syapm.2011.10.004
    [189] Conn VM, Franco CM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70: 1787–1794.
    [190] Zeng Z, Chen C, Du H, et al. (2015) High quality draft genomic sequence of Flavobacterium enshiense DK69(T) and comparison among Flavobacterium genomes. Stand Genomic Scis 10: 92. doi: 10.1186/s40793-015-0084-z
    [191] Ashrafi R, Pulkkinen K, Sundberg LR, et al. (2015) A multilocus sequence analysis scheme for characterization of Flavobacterium columnare isolates. BMC Microbiology 15: 243. doi: 10.1186/s12866-015-0576-4
    [192] Chen T, Chen Z, Ma GH, et al. (2014) Diversity and potential application of endophytic bacteria in ginger. Genet Mol Res 13: 4918–4931. doi: 10.4238/2014.July.4.6
    [193] Tian F, Ding Y, Zhu H, et al. (2009) Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Braz J Microbiol 40: 276–284. doi: 10.1590/S1517-83822009000200013
    [194] Mohkam M, Nezafat N, Berenjian A, et al. (2016) Identification of Bacillus probiotics isolated from soil rhizosphere using 16S rRNA, recA, rpoB gene sequencing and RAPD-PCR. Probiotics Antimicrob Proteins 8: 8–18. doi: 10.1007/s12602-016-9208-z
    [195] Fterich A, Mahdhi M, Caviedes MA, et al. (2011) Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia. Arch Microbiol 193: 385–397. doi: 10.1007/s00203-011-0683-z
    [196] Yang JH, Liu HX, Zhu GM, et al. (2008) Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J Appl Microbiol 104: 91–104.
    [197] Phi QT, Park YM, Seul KJ, et al. (2010) Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper. J Microbiol Biotechnol 20: 1605–1613.
    [198] Ettoumi B, Guesmi A, Brusetti L, et al. (2013) Microdiversity of deep-sea Bacillales isolated from Tyrrhenian sea sediments as revealed by ARISA, 16S rRNA gene sequencing and BOX-PCR fingerprinting. Microbes Environ 28: 361–369. doi: 10.1264/jsme2.ME13013
    [199] Albert RA, Archambault J, Lempa M, et al. (2007) Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi, Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen. nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov. Int J Syst Evol Microbiol 57: 2729–2737.
    [200] Li L, Wieme A, Spitaels F, et al. (2014) Acetobacter sicerae sp. nov., isolated from cider and kefir, and identification of species of the genus Acetobacter by dnaK, groEL and rpoB sequence analysis. Int J Syst Evol Micr 64: 2407–2415.
    [201] Gomila M, Prince-Manzano C, Svensson-Stadler L, et al. (2014) Genotypic and phenotypic applications for the differentiation and species-level identification of achromobacter for clinical diagnoses. PLoS One 9: e114356.
    [202] Velazquez E, Rojas M, Lorite MJ, et al. (2008) Genetic diversity of endophytic bacteria which could be find in the apoplastic sap of the medullary parenchym of the stem of healthy sugarcane plants. J Basic Microbiol 48: 118–124. doi: 10.1002/jobm.200700161
    [203] Roger F, Marchandin H, Jumas-Bilak E, et al. (2012) Multilocus genetics to reconstruct aeromonad evolution. BMC Microbiol 12: 62. doi: 10.1186/1471-2180-12-62
    [204] Procopio RE, Araujo WL, Maccheroni Jr W, et al. (2009) Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genet Mol Res 8: 1408–1422. doi: 10.4238/vol8-4gmr691
    [205] Reinhardt EL, Ramos PL, Manfio GP, et al. (2008) Molecular characterization of nitrogen-fixing bacteria isolated from brazilian agricultural plants at Sao Paulo state. Braz J Microbiol 39: 414–422. doi: 10.1590/S1517-83822008000300002
    [206] Capoen W, Den Herder J, Rombauts S, et al. (2007) Comparative transcriptome analysis reveals common and specific tags for root hair and crack-entry invasion in Sesbania rostrata. Plant Physiol 144: 1878–1889. doi: 10.1104/pp.107.102178
    [207] Lenart-Boron AM, Wolny-Koladka KA, Boron PM, et al. (2014) The molecular marker-based comparison of Azotobacter spp. populations isolated from industrial soils of Cracow-Nowa Huta steelworks (southern Poland) and the adjacent agricultural soils. J Environ Sci Health A Tox Hazard Subst Environ Eng 49: 1054–1063.
    [208] Rivas R, Martens M, de Lajudie P, et al. (2009) Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32: 101–110. doi: 10.1016/j.syapm.2008.12.005
    [209] Ahnia H, Boulila F, Boulila A, et al. (2014) Cytisus villosus from Northeastern Algeria is nodulated by genetically diverse Bradyrhizobium strains. Antonie Van Leeuwenhoek 105: 1121–1129. doi: 10.1007/s10482-014-0173-9
    [210] Ong KS, Aw YK, Lee LH, et al. (2016) Burkholderia paludis sp. nov., an antibiotic-siderophore producing novel Burkholderia cepacia complex species, isolated from Malaysian tropical peat swamp soil. Front Microbiol 7: 2046.
    [211] Peeters C, Meier-Kolthoff JP, Verheyde B, et al. (2016) Phylogenomic study of Burkholderia glathei-like organisms, proposal of 13 novel Burkholderia species and emended descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Front Microbiol 7: 877.
    [212] Rivas R, Willems A, Subba-Rao NS, et al. (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26: 47–53.
    [213] Duan YQ, Zhou XK, Di-Yan L, et al. (2015) Enterobacter tabaci sp. nov., a novel member of the genus Enterobacter isolated from a tobacco stem. Antonie Van Leeuwenhoek 108: 1161–1169.
    [214] Facey PD, Meric G, Hitchings MD, et al. (2015) Draft genomes, phylogenetic reconstruction, and comparative genomics of two novel cohabiting bacterial symbionts isolated from Frankliniella occidentalis. Genome Biol Evol 7: 2188–2202. doi: 10.1093/gbe/evv136
    [215] Izumi H, Anderson IC, Alexander IJ, et al. (2006) Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol Ecol 56: 34–43. doi: 10.1111/j.1574-6941.2005.00048.x
    [216] Kampfer P, McInroy JA, Doijad S, et al. (2016) Kosakonia pseudosacchari sp. nov., an endophyte of Zea mays. Syst Appl Microbiol 39: 1–7. doi: 10.1016/j.syapm.2015.09.004
    [217] Lu YL, Chen WF, Wang ET, et al. (2009) Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana species. Int J Syst Evol Micr 59: 3012–3018.
    [218] Sy A, Giraud E, Samba R, et al. (2001) Nodulation of certain legumes of the genus Crotalaria by the new species Methylobacterium. Can J Microbiol 47: 503–508. doi: 10.1139/cjm-47-6-503
    [219] Tiirola MA, Mannisto MK, Puhakka JA, et al. (2002) Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ Microbiol 68: 173–180.
    [220] Aylward FO, McDonald BR, Adams SM, et al. (2013) Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 79: 3724–3733. doi: 10.1128/AEM.00518-13
    [221] Brady CL, Cleenwerck I, van der Westhuizen L, et al. (2012) Pantoea rodasii sp. nov., Pantoea rwandensis sp. nov. and Pantoea wallisii sp. nov., isolated from Eucalyptus. Int J Syst Evol Micr 62: 1457–1464.
    [222] Lei X, Wang ET, Chen WF, et al. (2008) Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch Microbiol 190: 657–671. doi: 10.1007/s00203-008-0418-y
    [223] Mulet M, Lalucat J, Garcia-Valdes E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12: 1513–1530.
    [224] Tripathi AK, Verma SC, Ron EZ (2002) Molecular characterization of a salt-tolerant bacterial community in the rice rhizosphere. Res Microbiol 153: 579–584. doi: 10.1016/S0923-2508(02)01371-2
    [225] Zhang Y, Qiu S (2016) Phylogenomic analysis of the genus Ralstonia based on 686 single-copy genes. Antonie Van Leeuwenhoek 109: 71–82. doi: 10.1007/s10482-015-0610-4
    [226] Brady C, Hunter G, Kirk S, et al. (2014) Rahnella victoriana sp. nov., Rahnella bruchi sp. nov., Rahnella woolbedingensis sp. nov., classification of Rahnella genomospecies 2 and 3 as Rahnella variigena sp. nov. and Rahnella inusitata sp. nov., respectively and emended description of the genus Rahnella. Syst Appl Microbiol 37: 545–552.
    [227] Ramos PL, Moreira-Filho CA, Van Trappen S, et al. (2011) An MLSA-based online scheme for the rapid identification of Stenotrophomonas isolates. Mem Inst Oswaldo Cruz 106: 394–399. doi: 10.1590/S0074-02762011000400003
    [228] Margos G, Castillo-Ramirez S, Hoen AG (2012) Phylogeography of Lyme borreliosis-group spirochetes and methicillin-resistant Staphylococcus aureus. Parasitology 139: 1952–1965. doi: 10.1017/S0031182012000741
  • This article has been cited by:

    1. Alicia Pérez-Santiago, Luis-Javier Márquez-Álvarez, José Antonio Llosa, Estíbaliz Jiménez Arberas, Impact of Burnout on Daily Activities from an Occupational Therapy Perspective: A Serial Mediation Model with the IDA Scale, 2022, 12, 2076-328X, 426, 10.3390/bs12110426
    2. Gabriel González-Valero, Carlos David Gómez-Carmona, Alejandro Bastida-Castillo, Juan Antonio Corral-Pernía, Félix Zurita-Ortega, Eduardo Melguizo-Ibáñez, Could the complying with WHO physical activity recommendations improve stress, burnout syndrome, and resilience? A cross-sectional study with physical education teachers, 2023, 19, 1824-7490, 349, 10.1007/s11332-022-00981-6
    3. Archipe Mohamadou Tami, Elysée Claude Bika Lele, Jerson Mekoulou Ndongo, Clarisse Noel Ayina Ayina, Wiliam Richard Guessogo, Marie-Yvonne Lobe Tanga, Léon Jules Owona Manga, Abdou Temfemo, Bienvenu Bongue, Samuel Honoré Mandengue, Nathalie Barth, Peguy Brice Assomo Ndemba, Epidemiology of Musculoskeletal Disorders among the Teaching Staff of the University of Douala, Cameroon: Association with Physical Activity Practice, 2021, 18, 1660-4601, 6004, 10.3390/ijerph18116004
    4. Ahmad Y. Alqassim, Mohammed O. Shami, Ahmed A. Ageeli, Mohssen H. Ageeli, Abrar A. Doweri, Zakaria I. Melaisi, Ahmed M. Wafi, Mohammed A. Muaddi, Maged El-Setouhy, Burnout Among School Teachers During the COVID-19 Pandemic in Jazan Region, Saudi Arabia, 2022, 13, 1664-1078, 10.3389/fpsyg.2022.849328
    5. UchenwokeChigozie Ikenna, LovethNwuka Nwobodo, AntoninusObinna Ezeukwu, IjeomaJudith Ilo, StephenSunday Ede, AdaoraJustina Okemuo, ChisomFavour Okoh, Relationship between the development of musculoskeletal disorders, physical activity level, and academic stress among undergraduates students of University of Nigeria, 2022, 11, 2277-9531, 399, 10.4103/jehp.jehp_416_22
    6. Dalal Alhasan, Factors associated with job satisfaction of emergency medical services professionals – a cross-sectional study, 2023, 2541-7487, 100, 10.25016/2541-7487-2022-0-3-100-110
    7. Calogero Iacolino, Brenda Cervellione, Rachele Isgrò, Ester Maria Concetta Lombardo, Giuseppina Ferracane, Massimiliano Barattucci, Tiziana Ramaci, The Role of Emotional Intelligence and Metacognition in Teachers’ Stress during Pandemic Remote Working: A Moderated Mediation Model, 2023, 13, 2254-9625, 81, 10.3390/ejihpe13010006
    8. D Vinnikov, Z Romanova, G Ussatayeva, Z Tulekov, Z Dushimova, I Khussainova, A Dushpanova, Occupational burnout in oncologists in Kazakhstan, 2021, 71, 0962-7480, 375, 10.1093/occmed/kqab121
    9. Amani Fadzlina Abdul Aziz, Tiffanie Ong, Prevalence and associated factors of burnout among working adults in Southeast Asia: results from a public health assessment, 2024, 12, 2296-2565, 10.3389/fpubh.2024.1326227
    10. Lei Shi, Fei Ren, Shen Xin, Qin Sun, Dan-ni Li, Ke Li, Yuan Wang, Prevalence of burnout among military personnel in the plateau region of China: a cross-sectional survey, 2024, 24, 1471-2458, 10.1186/s12889-024-19340-w
    11. L.J. Owona Manga, G. Meko Simo, J. Dissongo II, J.R. Bouna, J.H. N’na, N.C. Bilounga, N.J. Mekoulou, S.B. Wognin, Épidémiologie du burnout chez les employés de banque à Yaoundé, Cameroun, 2025, 86, 17758785, 102824, 10.1016/j.admp.2024.102824
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9119) PDF downloads(1417) Cited by(32)

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog