Research article

Some Convolution Properties of Multivalent Analytic Functions

  • Received: 31 December 2016 Accepted: 18 April 2017 Published: 25 April 2017
  • In this paper, we introduce a new subclass of multivalent functions associated with conic domain in an open unit disk. We study some convolution properties, su cient condition for the functions belonging to this new class.

    Citation: Nazar Khan, Bilal Khan, Qazi Zahoor Ahmad, Sarfraz Ahmad. Some Convolution Properties of Multivalent Analytic Functions[J]. AIMS Mathematics, 2017, 2(2): 260-268. doi: 10.3934/Math.2017.2.260

    Related Papers:

    [1] Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by q-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493
    [2] Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus . q-Noor integral operator associated with starlike functions and q-conic domains. AIMS Mathematics, 2022, 7(6): 10842-10859. doi: 10.3934/math.2022606
    [3] Shahid Khan, Saqib Hussain, Maslina Darus . Inclusion relations of q-Bessel functions associated with generalized conic domain. AIMS Mathematics, 2021, 6(4): 3624-3640. doi: 10.3934/math.2021216
    [4] Qaiser Khan, Muhammad Arif, Bakhtiar Ahmad, Huo Tang . On analytic multivalent functions associated with lemniscate of Bernoulli. AIMS Mathematics, 2020, 5(3): 2261-2271. doi: 10.3934/math.2020149
    [5] Nazar Khan, Ajmal Khan, Qazi Zahoor Ahmad, Bilal Khan, Shahid Khan . Study of Multivalent Spirallike Bazilevic Functions. AIMS Mathematics, 2018, 3(3): 353-364. doi: 10.3934/Math.2018.3.353
    [6] Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320
    [7] K. R. Karthikeyan, G. Murugusundaramoorthy, N. E. Cho . Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Mathematics, 2021, 6(7): 7111-7124. doi: 10.3934/math.2021417
    [8] Ekram E. Ali, Rabha M. El-Ashwah, R. Sidaoui . Application of subordination and superordination for multivalent analytic functions associated with differintegral operator. AIMS Mathematics, 2023, 8(5): 11440-11459. doi: 10.3934/math.2023579
    [9] Khalida Inayat Noor, Nazar Khan, Qazi Zahoor Ahmad . Coeffcient bounds for a subclass of multivalent functions of reciprocal order. AIMS Mathematics, 2017, 2(2): 322-335. doi: 10.3934/Math.2017.2.322
    [10] Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073
  • In this paper, we introduce a new subclass of multivalent functions associated with conic domain in an open unit disk. We study some convolution properties, su cient condition for the functions belonging to this new class.


    1. Introduction

    Let A(p) denote the class of all functions

    f(z)=zp+n=1an+pzn+p,(pN={1,2,3.....}) (1.1)

    which are analytic and p-valent in the open unit disk E={z:|z|<1}. For p=1, A(1)=A. Let f, gA(p), where f is given by (1.1) and g is defined by

    g(z)=zp+n=1bn+pzn+p,      (zE).

    Then the Hadamard product (or convolution) fg of the functions f and g is defined by

    (fg)(z)=zp+n=1an+pbn+pzn+p=(gf)(z).

    Let UCV and UST denote the usual classes of uniformly convex and uniformly starlike functions and are defined by

    UCV={f(z)A:Re(1+zf(z)f(z))>|zf(z)f(z)|},  zE,UST={f(z)A:Re(zf(z)f(z))>|zf(z)f(z)1|},  zE.

    hese classes were first introduced by Goodman [2,3] and further investigated by [14] and [6]. Kanas and Wiśniowska [4,5] introduced the conic domain Ωk, k ≥ 0 as

    Ωk={u+iv:u>k(u1)2+v2}.

    For fixed k this domain represents the right half plane (k = 0), a parabola (k = 1), the right branch of hyperbola (0 < k < 1) and an ellipse (k > 1). For detail study about Ωk and its generalizations, see [8,9,10]. The extremal functions for these conic regions are

    pk(z)={1+z1z,                                                                    k=0,1+2π2(log1+z1z)2,                                               k=1,11k2cosh{(2πarccosk)log1+z1z}k21k2,            0<k<1,1k21sin(π2K(κ)u(z)κ0dt1t21κ2t2)+k2k21,  k>1, (1.2)

    where

    u(z)=zκ1κz,  zE

    and κ(0,1) is chosen such that k=cosh(πK(κ)/(4K(κ))). Here K(κ) is Legendre's complete elliptic integral of first kind and K(κ)=K(1κ2) and K(t) is the complementary integral of K(t).

    Now we define the following:

    Definition. Let fA(p) given by (1.1) is said to belong to kURp, k0 if it satisfies the following condition

    Re(f(p)(z)+zf(p+1)(z)p!)>k|f(p)(z)+zf(p+1)(z)p!1|,  zE,

    where f(p)(z) is the pth derivative of f(z).

    Special Cases:

    ⅰ) For k=0, we have 0URp=Rp, introduced and studied by Noor et-al. [7].

    ⅱ) For k=0, p=1, we have 0UR1=R, introduced and studied by Singh et-al.[15].


    2. Preliminary Results

    Lemma 2.1. [12]. For α1 and β1

    p(α)p(β)p(δ),δ=12(1α)(1β).

    The result is sharp.

    Lemma 2.2. [1]. Let {dn}0 be a convex null sequence. Then the function

    q(z)=d02+n=1dnzn

    is analytic in E and Req(z)>0   zE.

    Lemma 2.3. [13]. For 0θπ,

    12+mn=1cosnθn+10.

    Lemma 2.4. [7]. If f and g belong to the class Rp and

    h(p1)(z)=f(p1)(z)g(p1)(z).

    Then h also belong to the class Rp.


    3. Main Result

    Theorem 3.1. Let fkURP then

    Re(f(p)(z)p!)>k1+2log2k+1.

    Proof. Let fkURp then by definition, we have

    Re(f(p)(z)+zf(p+1)(z)p!)>k|f(p)(z)+zf(p+1)(z)p!1|.

    After some simple computations, we have

    Re(f(p)(z)+zf(p+1)(z)p!)>kk+1, (3.1)

    This can be written as

    Re(1+n=1(p+n)!(n+1)n!an+pzn)>kk+1, (3.2)

    or

    Re(1+12n=1(p+n)!(n+1)n!an+pzn)>2k+12k+2. (3.3)

    Consider the function

    h(z)=1+2n=1znn+1. (3.4)

    Clearly h is analytic, h(0)=1 in E and

    Reh(z)=Re(12z[z+log(1z)])>1+2log2. (3.5)

    From (3.3) and (3.4), we have

    (f(p)(z)p!)=(1+12n=1(p+n)!(n+1)n!an+pzn)(1+2n=1znn+1). (3.6)

    Now using (3.3), (3.5) and Lemma 2.2 with α=2k+12k+2,β=1+2log2 and δ=k1+2log2k+1, we have

    Re(f(p)(z)p!)>k1+2log2k+1. (3.7)

    This completes the result.

    For some spacial value of k and p we obtain the following known result.

    Corollary 3.2. [7]. Let fRp then

    Re(f(p)(z)p!)>1+2log2.

    Theorem 3.3. Let fkURp then

    Re(f(p1)(z)z)>p!(2k+1)2k+2. (3.8)

    Proof. From (3.3), we have

    Re(1+12n=1(p+n)!(n+1)n!an+pzn)>(2k+1)2k+2.

    Now consider the convex null sequence {dn}0 define by d0=0, dn=2(n+1)2, n1, using Lemma 2.2, we have

    Re(12+n=12(n+1)2zn)>0,

    or equivalently

    Re(1+2n=11(n+1)2zn)>12. (3.9)

    From (3.3) and (3.9), we have

    f(p1)(z)p!z=(1+12n=1(p+n)!(n+1)n!an+pzn)(1+2n=11(n+1)2zn). (3.10)

    From (3.10) and Lemma (2.1) with α=2k+12k+2 and β=12, we have

    Re(f(p1)(z)z)>p!(2k+1)2k+2. (3.11)

    Which is the required result.

    Corollary 3.4. [7]. Let fRp then

    Re(f(p1)(z)z)>p!2,   zE.

    Corollary 3.5. [15]. Let fR then

    Re(f(z)z)>12,   zE.

    Theorem 3.6. Let fkURp then for every n1, the nth partial sum of f satisfies

    ReS(p)n(z,f)>p!kk+1,   zE.

    and hence Sn(z,f) is pvalent in E.

    Proof. From (3.2) and (3.4), we have

    s(p)n(z,f)p!=(1+n=1(p+n)!(n+1)p!nan+pzn)(1+n=1znn+1). (3.12)

    Putting z=reiθ, 0r1, 0θπ and the minimum principle for harmonic functions with Lemma 2.3, we have

    Re(1+kn=1znn+1)=Re(1+kn=1rneinθn+1), 0θπ=Re(1+kn=1rnn+1(cosnθ+isinnθ))=(1+kn=1rncosnθn+1)=(1+kn=1rncosnθn+1)12. (3.13)

    Using (3.2), (3.12), (3.13) and Lemma 2.1 with α=kk+1 and β=12, we have

    Re(s(p)n(z,f))>p!kk+1. (3.14)

    This completes the proof. From the result given by [11], we see that sn(z,f) is p-valent in E for every n ≥ 1.

    Corollary 3.7. [7]. Let fRp, then for every n ≥ 1, the nth partial sum of f satisfies

    ReS(p)n(z,f)>0,    zE

    and hence sn(z,f) is p-valent in E.

    For k=1 we have the following corollary.

    Corollary 3.8. [15]. Let f1URp, then for every n ≥ 1, the nth partial sum of f satisfies

    ReSn(z,f)>p!2,      zE

    and hence sn(z,f) is univalent in E.

    Theorem 3.9. Let fkURp, gRp and

    h(p1)(z)=f(p1)(z)g(p1)(z).

    Then h belong to the class kURp.

    Proof. Since

    h(p1)(z)=f(p1)(z)g(p1)(z). (3.15)

    It follows that

    zh(p)(z)=f(p)(z)g(p1)(z). (3.16)

    After simple computations, (3.16) can be written as

    Re(h(p)(z)+zh(p+1)(z)p!)=Re((f(p)(z)+zf(p+1)(z)p!)(g(p1)(z)zp!)). (3.17)

    From (3.17), (3.1), Corollary 3.4 and Lemma 2.1 with α=kk+1 and β=12, we get the required proof.

    Corollary 3.10. [15]. If f(z)=z+n=2anzn, and g(z)=z+n=2bnzn belong to R then so does their Hadamard product

    h(z)=f(z)g(z).

    Theorem 3.11. If f, gRp, hkURp and

    φ(p1)(z)=h(p1)(z)f(p1)(z)g(p1)(z).

    Then φkURp.

    Proof. Suppose that

    m(p1)(z)=f(p1)(z)g(p1)(z), (3.18)

    and it is clear from Lemma 2.4 that, mRp. From the hypothesis and (3.18), we have

    φ(p1)(z)=h(p1)(z)m(p1)(z). (3.19)

    From (3.19) and Theorem 3.9, we get the required result.

    Theorem 3.12. If f1, f2, f3,..., fn belong to Rp,hkURp and

    g(p1)(z)=f(p1)1(z)f(p1)2(z)f(p1)3(z)...f(p1)n(z)h(p1)(z). (3.20)

    Then gkURp.

    Proof. For proving the above Theorem, we use the principle of mathematical induction. For n = 2, we have proved Theorem 3.11, thus (3.20) hold true for n = 2. Suppose that (3.20) hold true for n=k; that is,

    g(p1)(z)=f(p1)1(z)f(p1)2(z)f(p1)3(z)...f(p1)k(z)h(p1)(z). (3.21)

    Then gkURp.

    We have to prove that (3.20) hold true for n=k+1, for this, consider

    g(p1)(z)=f(p1)1(z)f(p1)2(z)f(p1)3(z)...f(p1)k+1(z)h(p1)(z). (3.22)

    Let

    M(p1)=f(p1)1f(p1)2f(p1)3.........f(p1)kh(p1)

    Then by hypothesis MkURp. Now (3.22) becomes

    g(p1)(z)=(M(p1)f(p1)k+1)(z). (3.23)

    Using Theorem 3.9, from (3.23), we have

    Re(g(p)(z)+zg(p+1)(z)p!)>kk+1. (3.24)

    (3.24) now implies that gkURp. Therefore, the result is true for n=k+1 and hence by using mathematical induction, (3.20) holds true for all n2. This completes the proof.

    Theorem 3.13. If f, gkURp and

    h(p1)(z)=f(p1)(z)g(p1)(z).

    Then h belong to the class kURp.

    Proof. Since

    h(p1)(z)=f(p1)(z)g(p1)(z). (3.25)

    Differentiation yields

    zh(p)(z)=f(p)(z)g(p1)(z). (3.26)

    After simplification, we have

    Re(h(p)(z)+zh(p+1)(z)p!)=Re((f(p)(z)+zf(p+1)(z)p!)(g(p1)(z)zp!)). (3.27)

    From (3.27), (3.1), (3.11) and Lemma 2.1 with α=kk+1 and β=2k+12k+2, we have

    Re(h(p)(z)+zh(p+1)(z)p!)>kk+1. (3.28)

    (3.28) implies that h belong to kURp.

    Our next result give us a sufficient condition for the class kURp.

    Theorem 3.14. Let fA(p) satisfies

    n=1(k1)(n+1)(p+n)!p!n!|an+p|<1. (3.29)

    Then fkURp.

    Proof. To prove the required result it is sufficient to show that

    k|f(p)(z)+zf(p+1)(z)p!1|Re(f(p)(z)+zf(p+1)(z)p!1)<1 (3.30)

    Now

    k|f(p)(z)+zf(p+1)(z)p!1|Re(f(p)(z)+zf(p+1)(z)p!1)(k1)|f(p)(z)+zf(p+1)(z)p!1|=(k1)|f(p)(z)+zf(p+1)(z)p!p!|=(k1)|n=1(n+1)(p+n)!p!n!an+pzn|.

    This can be written as

    k|f(p)(z)+zf(p+1)(z)p!1|Re(f(p)(z)+zf(p+1)(z)p!1)(k1)|n=1(n+1)(p+n)!p!n!an+p||zn| (3.31)

    (3.13) is bounded above by 1 if (3.29) is satisfied. This completes the proof.


    Conflicts of Interest

    All authors declare no conflicts of interest in this paper.


    [1] L. Fejer, Uber die positivitat von summen, die nach trigonometrischen order Legendreschen funktionen fortschreiten, Acta Litt. Ac. Sci. Szeged., 2 (1925), 75-86.
    [2] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.
    [3] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155 (1991), 364-370.
    [4] S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327-336.
    [5] S. Kanas and A. Wiśniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647-657.
    [6] D. W. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the conference on complex analysis, Conf. Proc. Lecture Notes Anal. , International Press, Massachusetts, 1994, 157-169.
    [7] K. I. Noor and N. Khan, Some convolution properties of a subclass of p-valent functions, Maejo Int. J. Sci. Technol., 9 (2015), 181-192.
    [8] K. I. Noor, Q. Z. Ahmad and M. A. Noor, On some subclasses of analytic functions defined by fractional derivative in the conic regions, Appl. Math. Inf. Sci., 9 (2015), 819-824.
    [9] K. I. Noor, J. Sokol and Q. Z. Ahmad, Applications of conic type regions to subclasses of meromorphic univalent functions with respect to symmetric points, RACSAM, 2016, 1-14.
    [10] M. Nunokawa, S. Hussain, N. Khan and Q. Z. Ahmad, A subclass of analytic functions related with conic domain, J. Clas. Anal., 9 (2016), 137-149.
    [11] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A., 40 (1935), 167-188.
    [12] S. Ponnusamy and V. Singh, Convolution properties of some classes of analytic functions, J. Math. Sci., 89 (1998), 1008-1020.
    [13] W. Rogosinski and G. Szego, Uber die abschimlte von potenzreihen die in ernein kreise beschrankt bleiben. Math. Z., 28 (1928), 73-94.
    [14] F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska, Sect A., 45 (1991), 117-122.
    [15] R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc.Amer. Math. Soc., 106 (1989), 145-152.
  • This article has been cited by:

    1. Shahid Khan, Saqib Hussain, Maslina Darus, Inclusion relations of q-Bessel functions associated with generalized conic domain, 2021, 6, 2473-6988, 3624, 10.3934/math.2021216
    2. Hari M. Srivastava, Nazar Khan, Maslina Darus, Muhammad Tariq Rahim, Qazi Zahoor Ahmad, Yousra Zeb, Properties of Spiral-Like Close-to-Convex Functions Associated with Conic Domains, 2019, 7, 2227-7390, 706, 10.3390/math7080706
    3. Saqib Hussain, Shahid Khan, Muhammad Asad Zaighum, Maslina Darus, Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator, 2017, 2, 2473-6988, 622, 10.3934/Math.2017.4.622
    4. Bilal Khan, Hari Mohan Srivastava, Nazar Khan, Maslina Darus, Qazi Zahoor Ahmad, Muhammad Tahir, Applications of Certain Conic Domains to a Subclass of q-Starlike Functions Associated with the Janowski Functions, 2021, 13, 2073-8994, 574, 10.3390/sym13040574
    5. Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, Isra Al-shbeil, Sarfraz Ahmad, Ajmal Khan, Bilal Khan, Jianhua Gong, Coefficient Inequalities for Multivalent Janowski Type q-Starlike Functions Involving Certain Conic Domains, 2022, 11, 2075-1680, 494, 10.3390/axioms11100494
    6. Ayman Alahmade, Zeeshan Mujahid, Ferdous M. O. Tawfiq, Bilal Khan, Nazar Khan, Fairouz Tchier, Third Hankel Determinant for Subclasses of Analytic and m-Fold Symmetric Functions Involving Cardioid Domain and Sine Function, 2023, 15, 2073-8994, 2039, 10.3390/sym15112039
    7. Hari M. Srivastava, Nazar Khan, Muhtarr A. Bah, Ayman Alahmade, Ferdous M. O. Tawfiq, Zainab Syed, Fourth order Hankel determinants for certain subclasses of modified sigmoid-activated analytic functions involving the trigonometric sine function, 2024, 2024, 1029-242X, 10.1186/s13660-024-03150-0
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5012) PDF downloads(1183) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog