Citation: Mani Pavuluri, Kelley Volpe, Alexander Yuen. Nucleus Accumbens and Its Role in Reward and Emotional Circuitry: A Potential Hot Mess in Substance Use and Emotional Disorders[J]. AIMS Neuroscience, 2017, 4(1): 52-70. doi: 10.3934/Neuroscience.2017.1.52
[1] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[2] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[3] | Xinghua You, Ghulam Farid, Lakshmi Narayan Mishra, Kahkashan Mahreen, Saleem Ullah . Derivation of bounds of integral operators via convex functions. AIMS Mathematics, 2020, 5(5): 4781-4792. doi: 10.3934/math.2020306 |
[4] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[5] | Wenfeng He, Ghulam Farid, Kahkashan Mahreen, Moquddsa Zahra, Nana Chen . On an integral and consequent fractional integral operators via generalized convexity. AIMS Mathematics, 2020, 5(6): 7632-7648. doi: 10.3934/math.2020488 |
[6] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[7] | D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar . Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics, 2020, 5(3): 1706-1719. doi: 10.3934/math.2020115 |
[8] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[9] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[10] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
First we give the definitions of generalized fractional integral operators which are special cases of the unified integral operators defined in (1.9), (1.10).
Definition 1.1. [1] Let f:[a,b]→R be an integrable function. Also let g be an increasing and positive function on (a,b], having a continuous derivative g′ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function g on [a,b] of order μ where ℜ(μ)>0 are defined by:
μgIa+f(x)=1Γ(μ)∫xa(g(x)−g(t))μ−1g′(t)f(t)dt,x>a, | (1.1) |
μgIb−f(x)=1Γ(μ)∫bx(g(t)−g(x))μ−1g′(t)f(t)dt, x<b, | (1.2) |
where Γ(.) is the gamma function.
Definition 1.2. [2] Let f:[a,b]→R be an integrable function. Also let g be an increasing and positive function on (a,b], having a continuous derivative g′ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function g on [a,b] of order μ where ℜ(μ),k>0 are defined by:
μgIka+f(x)=1kΓk(μ)∫xa(g(x)−g(t))μk−1g′(t)f(t)dt,x>a, | (1.3) |
μgIkb−f(x)=1kΓk(μ)∫bx(g(t)−g(x))μk−1g′(t)f(t)dt, x<b, | (1.4) |
where Γk(.) is defined as follows [3]:
Γk(x)=∫∞0tx−1e−tkkdt,ℜ(x)>0. | (1.5) |
A fractional integral operator containing an extended generalized Mittag-Leffler function in its kernel is defined as follows:
Definition 1.3. [4] Let ω,μ,α,l,γ,c∈C, ℜ(μ),ℜ(α),ℜ(l)>0, ℜ(c)>ℜ(γ)>0 with p≥0, δ>0 and 0<k≤δ+ℜ(μ). Let f∈L1[a,b] and x∈[a,b]. Then the generalized fractional integral operators ϵγ,δ,k,cμ,α,l,ω,a+f and ϵγ,δ,k,cμ,α,l,ω,b−f are defined by:
(ϵγ,δ,k,cμ,α,l,ω,a+f)(x;p)=∫xa(x−t)α−1Eγ,δ,k,cμ,α,l(ω(x−t)μ;p)f(t)dt, | (1.6) |
(ϵγ,δ,k,cμ,α,l,ω,b−f)(x;p)=∫bx(t−x)α−1Eγ,δ,k,cμ,α,l(ω(t−x)μ;p)f(t)dt, | (1.7) |
where
Eγ,δ,k,cμ,α,l(t;p)=∞∑n=0βp(γ+nk,c−γ)β(γ,c−γ)(c)nkΓ(μn+α)tn(l)nδ | (1.8) |
is the extended generalized Mittag-Leffler function and (c)nk is the Pochhammer symbol defined by (c)nk=Γ(c+nk)Γ(c).
Recently, a unified integral operator is defined as follows:
Definition 1.4. [5] Let f,g:[a,b]⟶R, 0<a<b, be the functions such that f be positive and f∈L1[a,b], and g be differentiable and strictly increasing. Also let ϕx be an increasing function on [a,∞) and α,l,γ,c ∈ C, p,μ,δ ≥ 0 and 0<k≤δ+μ. Then for x∈[a,b] the left and right integral operators are defined by
(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)=∫xaKyx(Eγ,δ,k,cμ,α,l,g;ϕ)f(y)d(g(y)), | (1.9) |
(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)=∫bxKxy(Eγ,δ,k,cμ,β,l,g;ϕ)f(y)d(g(y)), | (1.10) |
where the involved kernel is defined by
Kyx(Eγ,δ,k,cμ,α,l,g;ϕ)=ϕ(g(x)−g(y))g(x)−g(y)Eγ,δ,k,cμ,α,l(ω(g(x)−g(y))μ;p). | (1.11) |
For suitable settings of functions ϕ, g and certain values of parameters included in Mittag-Leffler function, several recently defined known fractional and conformable fractional integrals studied in [6,7,8,9,10,1,11,12,13,14,15,16,17] can be reproduced, see [18,Remarks 6&7].
The aim of this study is to derive the bounds of all aforementioned integral operators in a unified form for (s,m)-convex functions. These bounds will hold particularly for m-convex, s-convex and convex functions and for almost all fractional and conformable integrals defined in [6,7,8,9,10,1,11,12,13,14,15,16,17].
Definition 1.5. [19] A function f:[0,b]→R,b>0 is said to be (s,m)-convex, where (s,m)∈[0,1]2 if
f(tx+m(1−t)y)≤tsf(x)+m(1−t)sf(y) | (1.12) |
holds for all x,y∈[0,b]andt∈[0,1].
Remark 1. 1. If we take (s,m) = (1,m), then (1.12) gives the definition of m-convex function.
2. If we take (s,m) = (1,1), then (1.12) gives the definition of convex function.
3. If we take (s,m) = (1,0), then (1.12) gives the definition of star-shaped function.
P1: Let g and ϕx be increasing functions. Then for x<t<y, x,y∈[a,b] the kernel Kyx(Eγ,δ,k,cμ,α,l,g;ϕ) satisfies the following inequality:
Kxt(Eγ,δ,k,cμ,α,l,g;ϕ)g′(t)≤Kxy(Eγ,δ,k,cμ,α,l,g;ϕ)g′(t). | (2.1) |
This can be obtained from the following two straightforward inequalities:
ϕ(g(t)−g(x))g(t)−g(x)g′(t)≤ϕ(g(y)−g(x))g(y)−g(x)g′(t), | (2.2) |
Eγ,δ,k,cμ,α,l(ω(g(t)−g(x))μ;p)≤Eγ,δ,k,cμ,α,l(ω(g(y)−g(x))μ;p). | (2.3) |
The reverse of inequality (1.9) holds when g and ϕx are decreasing.
P2: Let g and ϕx be increasing functions. If ϕ(0)=ϕ′(0)=0, then for x,y∈[a,b],x<y,
Kxy(Eγ,δ,k,cμ,α,l,g;ϕ)≥0.
P3: For p,q∈R,
Kxy(Eγ,δ,k,cμ,α,l,g;pϕ1+qϕ2)=pKxy(Eγ,δ,k,cμ,α,l,g;ϕ1)+qKxy(Eγ,δ,k,cμ,α,l,g;ϕ2).
The upcoming section contains the results which deal with the bounds of several integral operators in a compact form by utilizing (s,m)-convex functions. A version of the Hadamard inequality in a compact form is presented, also a modulus inequality is given for differentiable function f such that |f′| is (s,m)-convex function.
In this section first we will state the main results. The following result provides upper bound of unified integral operators.
Theorem 3.1. Let f:[a,b]⟶R, 0≤a<b be a positive integrable (s,m)-convex function, m∈(0,1]. Let g:[a,b]⟶R be differentiable and strictly increasing function, also let ϕx be an increasing function on [a,b]. If α,β,l,γ,c∈C, p,μ≥0,δ≥0 and 0<k≤δ+μ, then for x∈(a,b) the following inequality holds for unified integral operators:
(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(mf(xm)g(x)−f(a)g(a)−Γ(s+1)(x−a)s(mf(xm)sIx−g(a)−f(a)sIa+g(x)))+Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(f(b)g(b)−mf(xm)g(x)−Γ(s+1)(b−x)s(f(b)sIb−g(x)−mf(xm)sIx+g(b))). | (3.1) |
Lemma 3.2. [20] Let f:[0,∞]⟶R, be an (s,m)-convex function, m∈(0,1]. If f(x)=f(a+b−xm), then the following inequality holds:
f(a+b2)≤12s(1+m)f(x)x∈[a,b]. | (3.2) |
The following result provides generalized Hadamard inequality for (s,m)-convex functions.
Theorem 3.3. Under the assumptions of Theorem 3.1, in addition if f(x)=f(a+b−xm), m∈(0,1], then the following inequality holds:
2s(1+m)f(a+b2)((gFϕ,γ,δ,k,cμ,α,l,b−1)(a,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,a+1)(b,ω;p))≤(gFϕ,γ,δ,k,cμ,α,l,b−f)(a,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p)≤(Kab(Eγ,δ,k,cμ,α,l,g;ϕ)+Kab(Eγ,δ,k,cμ,α,l,g;ϕ))(f(b)g(b)−mf(am)g(a)−Γ(s+1)(b−a)s(f(b)sIb−g(a)−mf(am)sIa+g(b))). | (3.3) |
Theorem 3.4. Let f:[a,b]⟶R, 0≤a<b be a differentiable function. If |f′| is (s,m)-convex, m∈(0,1] and g:[a,b]⟶R be differentiable and strictly increasing function, also let ϕx be an increasing function on [a,b]. If α,β,l,γ,c∈C, p,μ≥0, δ≥0 and 0<k≤δ+μ, then for x∈(a,b) we have
|(gFϕ,γ,δ,k,cμ,α,l,a+f∗g)(x,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,b−f∗g)(x,ω;p)|≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(m|f′(xm)|g(x)−|f′(a)|g(a)−Γ(s+1)(x−a)s(m|f′(xm)|sIx−g(a)−|f′(a)|sIa+g(x)))+Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(|f′(b)|g(b)−m|f′(xm)|g(x)−Γ(s+1)(b−x)s(|f′(b)|sIb−g(x)−m|f′(xm)|sIx+g(b))), | (3.4) |
where
(gFϕ,γ,δ,k,cμ,α,l,a+f∗g)(x,ω;p):=∫xaKtx(Eγ,δ,k,cμ,α,l,g;ϕ)f′(t)d(g(t)), |
(gFϕ,γ,δ,k,cμ,β,l,b−f∗g)(x,ω;p):=∫bxKxt(Eγ,δ,k,cμ,α,l,g;ϕ)f′(t)d(g(t)). |
In this section we give the proves of the results stated in aforementioned section.
Proof of Theorem 3.1. By (P1), the following inequalities hold:
Ktx(Eγ,δ,k,cμ,α,l,g;ϕ)g′(t)≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)g′(t), a<t<x, | (4.1) |
Kxt(Eγ,δ,k,cμ,α,l,g;ϕ)g′(t)≤Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)g′(t), x<t<b. | (4.2) |
For (s,m)-convex function the following inequalities hold:
f(t)≤(x−tx−a)sf(a)+m(t−ax−a)sf(xm), a<t<x, | (4.3) |
f(t)≤(t−xb−x)sf(b)+m(b−tb−x)sf(xm), x<t<b. | (4.4) |
From (4.1) and (4.3), the following integral inequality holds true:
∫xaKtx(Eγ,δ,k,cμ,α,l,g;ϕ)f(t)d(g(t))≤f(a)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)×∫xa(x−tx−a)sd(g(t))+mf(xm)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)∫xa(t−ax−a)sd(g(t)). | (4.5) |
Further the aforementioned inequality takes the form which involves Riemann-Liouville fractional integrals in the right hand side, provides the upper bound of unified left sided integral operator (1.1) as follows:
(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(mf(xm)g(x)−f(a)g(a)−Γ(s+1)(x−a)s(mf(xm)sIx−g(a)−f(a)sIa+g(x))). | (4.6) |
On the other hand from (4.2) and (4.4), the following integral inequality holds true:
∫bxKxt(Eγ,δ,k,cμ,α,l,g;ϕ)f(t)d(g(t))≤f(b)Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)×∫bx(t−xb−x)sd(g(t))+mf(xm)Kbx(Eγ,δ,k,cμ,α,l,g;ϕ)∫bx(b−tb−x)sd(g(t)). | (4.7) |
Further the aforementioned inequality takes the form which involves Riemann-Liouville fractional integrals in the right hand side, provides the upper bound of unified right sided integral operator (1.2) as follows:
(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)≤Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(f(b)g(b)−mf(xm)g(x)−Γ(s+1)(b−x)s(f(b)sIb−g(x)−mf(xm)sIx+g(b))). | (4.8) |
By adding (4.6) and (4.8), (3.1) can be obtained.
Remark 2. (ⅰ) If we consider (s,m) = (1, 1) in (3.1), [18,Theorem 1] is obtained.
(ⅱ) If we consider p=ω=0 in (3.1), [20,Theorem 1] is obtained.
(ⅲ) If we consider ϕ(t)=Γ(α)tα, p=ω=0 and (s,m) = (1, 1) in (3.1), [21,Theorem 1] is obtained.
(ⅳ) If we consider α=β in the result of (ⅲ), then [21,Corollary 1] is obtained.
(ⅴ) If we consider ϕ(t)=tα, g(x)=x and m=1 in (3.1), then [22,Theorem 2.1] is obtained.
(ⅵ) If we consider α=β in the result of (v), then [22,Corollary 2.1] is obtained.
(ⅶ) If we consider ϕ(t)=Γ(α)tαkkΓk(α), (s,m) = (1, 1), g(x)=x and p=ω=0 in (3.1), then [23,Theorem 1] can be obtained.
(ⅷ) If we consider α=β in the result of (ⅶ), then [23,Corollary 1] can be obtained.
(ⅸ) If we consider ϕ(t)=Γ(α)tα, g(x)=x and p=ω=0 and (s,m) = (1, 1) in (3.1), then [24,Theorem 1] is obtained.
(ⅹ) If we consider α=β in the result of (ⅸ), then [24,Corollary 1] can be obtained.
(ⅹⅰ) If we consider α=β=1 and x=a or x=b in the result of (x), then [24,Corollary 2] can be obtained.
(ⅹⅱ) If we consider α=β=1 and x=a+b2 in the result of (ⅹ), then [24,Corollary 3] can be obtained.
Proof of Theorem 3.3. By (P1), the following inequalities hold:
Kax(Eγ,δ,k,cμ,α,l,g;ϕ)g′(x)≤Kab(Eγ,δ,k,cμ,α,l,g;ϕ)g′(x), a<x<b, | (4.9) |
Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)g′(x)≤Kab(Eγ,δ,k,cμ,α,l,g;ϕ)g′(x) a<x<b. | (4.10) |
For (s,m)-convex function f, the following inequality holds:
f(x)≤(x−ab−a)sf(b)+m(b−xb−a)sf(am), a<x<b. | (4.11) |
From (4.9) and (4.11), the following integral inequality holds true:
∫baKax(Eγ,δ,k,cμ,α,l,g;ϕ)f(x)d(g(x))≤mf(am)Kab(Eγ,δ,k,cμ,α,l,g;ϕ)∫ba(b−xb−a)sd(g(x))+f(b)Kab(Eγ,δ,k,cμ,α,l,g;ϕ)∫ba(x−ab−a)sd(g(x)). |
Further the aforementioned inequality takes the form which involves Riemann-Liouville fractional integrals in the right hand side, provides the upper bound of unified right sided integral operator (1.1) as follows:
(gFϕ,γ,δ,k,cμ,α,l,b−f)(a,ω;p)≤Kab(Eγ,δ,k,cμ,α,l,g;ϕ)(f(b)g(b)−mf(am)g(a)−Γ(s+1)(b−a)s(f(b)sIb−g(a)−mf(am)sIa+g(b))). | (4.12) |
On the other hand from (4.9) and (4.11), the following inequality holds which involves Riemann-Liouville fractional integrals on the right hand side and estimates of the integral operator (1.2):
(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p)≤Kab(Eγ,δ,k,cμ,α,l,g;ϕ)(f(b)g(b)−mf(am)g(a)−Γ(s+1)(b−a)s(f(b)sIb−g(a)−mf(am)sIa+g(b))). | (4.13) |
By adding (4.12) and (4.13), following inequality can be obtained:
(gFϕ,γ,δ,k,cμ,α,l,b−f)(a,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p)≤(Kab(Eγ,δ,k,cμ,α,l,g;ϕ)+Kab(Eγ,δ,k,cμ,α,l,g;ϕ))(f(b)g(b)−mf(am)g(a)−Γ(α+1)(b−a)s(f(b)sIb−g(b)−mf(am)sIa+g(b))). | (4.14) |
Multiplying both sides of (3.2) by Kax(Eγ,δ,k,cμ,α,l,g;ϕ)g′(x), and integrating over [a,b] we have
f(a+b2)∫baKax(Eγ,δ,k,cμ,α,l,g;ϕ)d(g(x))≤(12s)(1+m)∫baKab(Eγ,δ,k,cμ,α,l,g;ϕ)f(x)d(g(x)). |
From Definition 1.4, the following inequality is obtained:
f(a+b2)2s(1+m)(gFϕ,γ,δ,k,cμ,α,l,b−1)(a,ω;p)≤(gFϕ,γ,δ,k,cμ,α,l,b−f)(a,ω;p). | (4.15) |
Similarly multiplying both sides of (3.2) by Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)g′(x), and integrating over [a,b] we have
f(a+b2)2s(1+m)(gFϕ,γ,δ,k,cμ,β,l,a+1)(b,ω;p)≤(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p). | (4.16) |
By adding (4.15) and (4.16) the following inequality is obtained:
f(a+b2)2s(1+m)((gFϕ,γ,δ,k,cμ,β,l,a+1)(b,ω;p)+(gFϕ,γ,δ,k,cμ,α,l,b−1)(a,ω;p))≤(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p)+(gFϕ,γ,δ,k,cμ,α,l,b−f)(a,ω;p). | (4.17) |
Using (4.14) and (4.17), inequality (3.3) can be obtained, this completes the proof.
Remark 3. (ⅰ) If we consider (s,m) = (1, 1) in (3.3), [18,Theorem 2] is obtained.
(ⅱ) If we consider p=ω=0 in (3.3), [20,Theorem 3] is obtained.
(ⅲ) If we consider ϕ(t)=Γ(α)tα+1, p=ω=0 and (s,m) = (1, 1) in (3.3), [21,Theorem 3] is obtained.
(ⅳ) If we consider α=β in the result of (iii), then [21,Corollary 3] is obtained.
(ⅴ) If we consider ϕ(t)=tα+1, g(x)=x and m=1 in (3.3), then [22,Theorem 2.4] is obtained.
(ⅵ) If we consider α=β in the result of (v), then [22,Corollary 2.6] is obtained.
(ⅶ) If we consider ϕ(t)=Γ(α)tαk+1, (s,m) = (1, 1), g(x)=x and p=ω=0 in (3.3), then [23,Theorem 3] can be obtained.
(ⅷ) If we consider α=β in the result of (ⅶ), then [23,Corollary 6] can be obtained.
(ⅸ) If we consider ϕ(t)=Γ(α)tα+1, p=ω=0, (s,m)=1 and g(x)=x in (3.3), [24,Theorem 3] can be obtained.
(ⅹ) If we consider α=β in the result of (ⅸ), [24,Corrolary 6] can be obtained.
Proof of Theorem 3.4. For (s,m)-convex function the following inequalities hold:
|f′(t)|≤(x−tx−a)s|f′(a)|+m(t−ax−a)s|f′(xm)|, a<t<x, | (4.18) |
|f′(t)|≤(t−xb−x)s|f′(b)|+m(b−tb−x)s|f′(xm)|, x<t<b. | (4.19) |
From (4.1) and (4.18), the following inequality is obtained:
|(gFϕ,γ,δ,k,cμ,α,l,a+(f∗g))(x,ω;p)|≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(x−a)s×((x−a)s(m|f′(xm)|g(x)−|f′(a)|g(a))−Γ(s+1)(m|f′(xm)|sIx−g(a)−|f′(a)|sIa+g(x))). | (4.20) |
Similarly, from (4.2) and (4.19), the following inequality is obtained:
|(gFϕ,γ,δ,k,cμ,β,l,b−(f∗g))(x,ω;p)|≤Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(b−x)s×((b−x)s(|f′(b)|g(b)−mf′|(xm)|g(x))−Γ(s+1)(|f′(b)|sIb−g(x)−mf′|(xm)|sIx+g(b))). | (4.21) |
By adding (4.20) and (4.21), inequality (3.4) can be achieved.
Remark 4. (ⅰ) If we consider (s,m) = (1, 1) in (3.4), then [18,Theorem 3] is obtained.
(ⅱ) If we consider p=ω=0 in (3.4), then [20,Theorem 2] is obtained.
(ⅲ) If we consider ϕ(t)=Γ(α)tα+1, p=ω=0 and (s,m) = (1, 1) in (3.4), then [21,Theorem 2] is obtained.
(ⅳ) If we consider α=β in the result of (iii), then [21,Corollary 2] is obtained.
(ⅴ) If we consider ϕ(t)=tα, g(x)=x and m=1 in (3.4), then [22,Theorem 2.3] is obtained.
(ⅵ) If we consider α=β in the result of (v), then [22,Corollary 2.5] is obtained.
(ⅶ) If we consider ϕ(t)=Γ(α)tαk+1, (s,m) = (1, 1), g(x)=x and p=ω=0 in (3.4), then [23,Theorem 2] can be obtained.
(ⅷ) If we consider α=β in the result of (ⅶ), then [23,Corollary 4] can be obtained.
(ⅸ) If we consider α=β=k=1 and x=a+b2, in the result of (ⅷ), then [23,Corollary 5] can be obtained.
(ⅹ) If we consider ϕ(t)=Γ(α)tα+1, g(x)=x and p=ω=0 and (s,m) = (1, 1) in (3.4), then [24,Theorem 2] is obtained.
(ⅹⅰ) If we consider α=β in the result of (x), then [24,Corollary 5] can be obtained.
In this section, we have established boundedness and continuity of unified integral operators for m-convex and convex functions.
Theorem 5.1. Under the assumptions of Theorem 1, the following inequality holds for m-convex functions:
(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(g(x)−g(a))(mf(xm)+f(a))+Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(g(b)−g(x))(mf(xm)+f(b)). | (5.1) |
Proof. If we put s=1 in (4.5), we have
∫xaKtx(Eγ,δ,k,cμ,α,l,g;ϕ)f(t)d(g(t))≤f(a)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)×∫xa(x−tx−a)d(g(t))+mf(xm)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)∫xa(t−ax−a)d(g(t)). | (5.2) |
Further from simplification of (5.2), the following inequality holds:
(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(g(x)−g(a))(mf(xm)+f(a)). | (5.3) |
Similarly from (4.8), the following inequality holds:
(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)≤Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(g(b)−g(x))(mf(xm)+f(b)). | (5.4) |
From (5.3) and (5.4), (5.1) can be obtained.
Theorem 5.2. With assumptions of Theorem 4, if f∈L∞[a,b], then unified integral operators for m-convex functions are bounded and continuous.
Proof. From (5.3) we have
|(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)|≤Kab(Eγ,δ,k,cμ,α,l,g;ϕ)(g(b)−g(a))(m+1)‖f‖∞, |
which further gives
|(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)|≤K‖f‖∞, |
where K=(g(b)−g(a))(m+1)Kab(Eγ,δ,k,cμ,α,l,g;ϕ).
Similarly, from (5.4) the following inequality holds:
|(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)|≤K‖f‖∞. |
Hence the boundedness is followed, further from linearity the continuity of (1.9) and (1.10) is obtained.
Corollary 1. If we take m=1 in Theorem 5, then unified integral operators for convex functions are bounded and continuous and following inequalities hold:
|(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)|≤K‖f‖∞, |
|(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)|≤K‖f‖∞, |
where K=2(g(b)−g(a))Kab(Eγ,δ,k,cμ,α,l,g;ϕ).
This paper has explored bounds of a unified integral operator for (s,m)-convex functions. These bounds are obtained in a compact form which have further interesting consequences with respect to fractional and conformable integrals for convex, m-convex and s-convex functions. Furthermore by applying Theorems 3.1, 3.3 and 3.4 several associated results can be derived for different kinds of fractional integral operators of convex, m-convex and s-convex functions.
This work was sponsored in part by Social Science Planning Fund of Liaoning Province of China(L15AJL001, L16BJY011, L18AJY001), Scientific Research Fund of The Educational Department of Liaoning Province(2017LNZD07, 2016FRZD03), Scientific Research Fund of University of science and technology Liaoning(2016RC01, 2016FR01)
The authors declare that no competing interests exist.
[1] |
Floresco SB (2015) The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol 66: 25–52. doi: 10.1146/annurev-psych-010213-115159
![]() |
[2] |
Diekhof EK, Falkai P, Gruber O (2008) Functional neuroimaging of reward processing and decision-making: a review of aberrant motivational and affective processing in addiction and mood disorders. Brain Res Rev 59: 164–184. doi: 10.1016/j.brainresrev.2008.07.004
![]() |
[3] |
Salgado S, Kaplitt MG (2015) The Nucleus Accumbens: A Comprehensive Review. Stereotact Funct Neurosurg 93: 75–93. doi: 10.1159/000368279
![]() |
[4] |
Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14: 69–97. doi: 10.1016/0301-0082(80)90018-0
![]() |
[5] |
Zahm DS, Brog JS (1992) On the significance of subterritories in the "accumbens" part of the rat ventral striatum. Neuroscience 50: 751–767. doi: 10.1016/0306-4522(92)90202-D
![]() |
[6] |
Baliki MN, Mansour A, Baria AT, et al. (2013) Parceling human accumbens into putative core and shell dissociates encoding of values for reward and pain. J Neurosci Off J Soc Neurosci 33: 16383–16393. doi: 10.1523/JNEUROSCI.1731-13.2013
![]() |
[7] |
Voorn P, Brady LS, Schotte A, et al. (1994) Evidence for two neurochemical divisions in the human nucleus accumbens. Eur J Neurosci 6: 1913–1916. doi: 10.1111/j.1460-9568.1994.tb00582.x
![]() |
[8] |
Meredith GE (1999) The synaptic framework for chemical signaling in nucleus accumbens. Ann N Y Acad Sci 877: 140–156. doi: 10.1111/j.1749-6632.1999.tb09266.x
![]() |
[9] | Francis TC, Lobo MK (2016) Emerging Role for Nucleus Accumbens Medium Spiny Neuron Subtypes in Depression. Biol Psychiatry. |
[10] | Lu XY, Ghasemzadeh MB, Kalivas PW (1998) Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience 82: 767–780. |
[11] |
Shirayama Y, Chaki S (2006) Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol 4: 277–291. doi: 10.2174/157015906778520773
![]() |
[12] |
Ding Z-M, Ingraham CM, Rodd ZA, et al. (2015) The reinforcing effects of ethanol within the nucleus accumbens shell involve activation of local GABA and serotonin receptors. J Psychopharmacol Oxf Engl 29: 725–733. doi: 10.1177/0269881115581982
![]() |
[13] | Voorn P, Brady LS, Berendse HW, et al. (1996) Densitometrical analysis of opioid receptor ligand binding in the human striatum-I. Distribution of mu-opioid receptor defines shell and core of the ventral striatum. Neuroscience 75: 777–792. |
[14] |
Schoffelmeer ANM, Hogenboom F, Wardeh G, et al. (2006) Interactions between CB1 cannabinoid and mu opioid receptors mediating inhibition of neurotransmitter release in rat nucleus accumbens core. Neuropharmacology 51: 773–781. doi: 10.1016/j.neuropharm.2006.05.019
![]() |
[15] |
O'Neill RD, Fillenz M (1985) Simultaneous monitoring of dopamine release in rat frontal cortex, nucleus accumbens and striatum: effect of drugs, circadian changes and correlations with motor activity. Neuroscience 16: 49–55. doi: 10.1016/0306-4522(85)90046-6
![]() |
[16] |
Haralambous T, Westbrook RF (1999) An infusion of bupivacaine into the nucleus accumbens disrupts the acquisition but not the expression of contextual fear conditioning. Behav Neurosci 113: 925–940. doi: 10.1037/0735-7044.113.5.925
![]() |
[17] |
Levita L, Hoskin R, Champi S (2012) Avoidance of harm and anxiety: a role for the nucleus accumbens. NeuroImage 62: 189–198. doi: 10.1016/j.neuroimage.2012.04.059
![]() |
[18] | Parkinson JA, Olmstead MC, Burns LH, et al. (1999) Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J Neurosci Off J Soc Neurosc i 19: 2401–2411. |
[19] |
Feja M, Hayn L, Koch M (2014) Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours in rats. Prog Neuropsychopharmacol Biol Psychiatry 54: 31–42. doi: 10.1016/j.pnpbp.2014.04.012
![]() |
[20] | Fernando ABP, Murray JE, Milton AL (2013) The amygdala: securing pleasure and avoiding pain. Front Behav Neurosci 7: 190. |
[21] | Di Ciano P, Cardinal RN, Cowell RA, et al. (2001) Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. J Neurosci Off J Soc Neurosci 21: 9471–9477. |
[22] |
Parkinson JA, Willoughby PJ, Robbins TW, et al. (2000) Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. Behav Neurosci 114: 42–63. doi: 10.1037/0735-7044.114.1.42
![]() |
[23] |
Saunders BT, Robinson TE (2012) The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. Eur J Neurosci 36: 2521–2532. doi: 10.1111/j.1460-9568.2012.08217.x
![]() |
[24] |
Stopper CM, Floresco SB (2011) Contributions of the nucleus accumbens and its subregions to different aspects of risk-based decision making. Cogn Affect Behav Neurosci 11: 97–112. doi: 10.3758/s13415-010-0015-9
![]() |
[25] |
Deutch AY, Lee MC, Iadarola MJ (1992) Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: The nucleus accumbens shell as a locus of antipsychotic action. Mol Cell Neurosci 3: 332–341. doi: 10.1016/1044-7431(92)90030-6
![]() |
[26] |
Ma J, Ye N, Cohen BM (2006) Typical and atypical antipsychotic drugs target dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa and neurotensin-containing neurons, but not GABAergic interneurons in the shell of nucleus accumbens of ventral striatum. Neuroscience 141: 1469–1480. doi: 10.1016/j.neuroscience.2006.05.013
![]() |
[27] | Pierce RC, Kalivas PW (1995) Amphetamine produces sensitized increases in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine. J Pharmacol Exp Ther 275: 1019–1029. |
[28] |
Park SY, Kang UG (2013) Hypothetical dopamine dynamics in mania and psychosis--its pharmacokinetic implications. Prog Neuropsychopharmacol Biol Psychiatry 43: 89–95. doi: 10.1016/j.pnpbp.2012.12.014
![]() |
[29] |
Mosholder AD, Gelperin K, Hammad TA, et al. (2009) Hallucinations and other psychotic symptoms associated with the use of attention-deficit/hyperactivity disorder drugs in children. Pediatrics 123: 611–616. doi: 10.1542/peds.2008-0185
![]() |
[30] | Bassareo V, De Luca MA, Di Chiara G (2002) Differential Expression of Motivational Stimulus Properties by Dopamine in Nucleus Accumbens Shell versus Core and Prefrontal Cortex. J Neurosci Off J Soc Neurosci 22: 4709–4719. |
[31] |
Di Chiara G, Bassareo V, Fenu S, et al. (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47: 227–241. doi: 10.1016/j.neuropharm.2004.06.032
![]() |
[32] |
Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn't do. Curr Opin Pharmacol 7: 69–76. doi: 10.1016/j.coph.2006.11.003
![]() |
[33] |
Basar K, Sesia T, Groenewegen H, et al. (2010) Nucleus accumbens and impulsivity. Prog Neurobiol 92: 533–557. doi: 10.1016/j.pneurobio.2010.08.007
![]() |
[34] |
Ahima RS, Harlan RE (1990) Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience 39: 579–604. doi: 10.1016/0306-4522(90)90244-X
![]() |
[35] |
Barrot M, Marinelli M, Abrous DN, et al. (2000) The dopaminergic hyper-responsiveness of the shell of the nucleus accumbens is hormone-dependent. Eur J Neurosci 12: 973–979. doi: 10.1046/j.1460-9568.2000.00996.x
![]() |
[36] |
Piazza PV, Rougé-Pont F, Deroche V, et al. (1996) Glucocorticoids have state-dependent stimulant effects on the mesencephalic dopaminergic transmission. Proc Natl Acad Sci U S A 93: 8716–8720. doi: 10.1073/pnas.93.16.8716
![]() |
[37] |
van der Knaap LJ, Oldehinkel AJ, Verhulst FC, et al. (2015) Glucocorticoid receptor gene methylation and HPA-axis regulation in adolescents. The TRAILS study. Psychoneuroendocrinology 58: 46–50. doi: 10.1016/j.psyneuen.2015.04.012
![]() |
[38] |
Bustamante AC, Aiello AE, Galea S, et al. (2016) Glucocorticoid receptor DNA methylation, childhood maltreatment and major depression. J Affect Disord 206: 181–188. doi: 10.1016/j.jad.2016.07.038
![]() |
[39] | Roozendaal B, de Quervain DJ, Ferry B, et al. (2001) Basolateral amygdala-nucleus accumbens interactions in mediating glucocorticoid enhancement of memory consolidation. J Neurosci Off J Soc Neurosci 21: 2518–2525. |
[40] |
Schwarzer C, Berresheim U, Pirker S, et al. (2001) Distribution of the major gamma-aminobutyric acid(A) receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. J Comp Neurol 433: 526–549. doi: 10.1002/cne.1158
![]() |
[41] |
Van Bockstaele EJ, Pickel VM (1995) GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res 682: 215–221. doi: 10.1016/0006-8993(95)00334-M
![]() |
[42] |
Root DH, Melendez RI, Zaborszky L, et al. (2015) The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130: 29–70. doi: 10.1016/j.pneurobio.2015.03.005
![]() |
[43] |
Cho YT, Fromm S, Guyer AE, et al. (2013) Nucleus accumbens, thalamus and insula connectivity during incentive anticipation in typical adults and adolescents. NeuroImage 66: 508–521. doi: 10.1016/j.neuroimage.2012.10.013
![]() |
[44] |
Kelley AE, Baldo BA, Pratt WE, et al. (2005) Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86: 773–795. doi: 10.1016/j.physbeh.2005.08.066
![]() |
[45] | Rada PV, Mark GP, Hoebel BG (1993) In vivo modulation of acetylcholine in the nucleus accumbens of freely moving rats: II. Inhibition by gamma-aminobutyric acid. Brain Res 619: 105–110. |
[46] |
Wong LS, Eshel G, Dreher J, et al. (1991) Role of dopamine and GABA in the control of motor activity elicited from the rat nucleus accumbens. Pharmacol Biochem Behav 38: 829–835. doi: 10.1016/0091-3057(91)90250-6
![]() |
[47] |
Pitman KA, Puil E, Borgland SL (2014) GABA(B) modulation of dopamine release in the nucleus accumbens core. Eur J Neurosci 40: 3472–3480. doi: 10.1111/ejn.12733
![]() |
[48] | Kim JH, Vezina P (1997) Activation of metabotropic glutamate receptors in the rat nucleus accumbens increases locomotor activity in a dopamine-dependent manner. J Pharmacol Exp Ther 283: 962–968. |
[49] |
Angulo JA, McEwen BS (1994) Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. Brain Res Brain Res Rev 19: 1–28. doi: 10.1016/0165-0173(94)90002-7
![]() |
[50] |
Vezina P, Kim JH (1999) Metabotropic glutamate receptors and the generation of locomotor activity: interactions with midbrain dopamine. Neurosci Biobehav Rev 23: 577–589. doi: 10.1016/S0149-7634(98)00055-4
![]() |
[51] | Khamassi M, Humphries MD (2012) Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Front Behav Neurosci 6: 79. |
[52] |
Williams MJ, Adinoff B (2008) The role of acetylcholine in cocaine addiction. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 33: 1779–1797. doi: 10.1038/sj.npp.1301585
![]() |
[53] |
Avena NM, Bocarsly ME (2012) Dysregulation of brain reward systems in eating disorders: neurochemical information from animal models of binge eating, bulimia nervosa, and anorexia nervosa. Neuropharmacology 63: 87–96. doi: 10.1016/j.neuropharm.2011.11.010
![]() |
[54] |
Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci Off J Soc Neurosci 27: 8161–8165. doi: 10.1523/JNEUROSCI.1554-07.2007
![]() |
[55] |
Liljeholm M, O'Doherty JP (2012) Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn Sci 16: 467–475. doi: 10.1016/j.tics.2012.07.007
![]() |
[56] |
Asaad WF, Eskandar EN (2011) Encoding of both positive and negative reward prediction errors by neurons of the primate lateral prefrontal cortex and caudate nucleus. J Neurosci Off J Soc Neurosci 31: 17772–17787. doi: 10.1523/JNEUROSCI.3793-11.2011
![]() |
[57] |
Burton AC, Nakamura K, Roesch MR (2015) From ventral-medial to dorsal-lateral striatum: neural correlates of reward-guided decision-making. Neurobiol Learn Mem 117: 51–59. doi: 10.1016/j.nlm.2014.05.003
![]() |
[58] |
Mattfeld AT, Gluck MA, Stark CEL (2011) Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment. Learn Mem Cold Spring Harb N 18: 703–711. doi: 10.1101/lm.022889.111
![]() |
[59] |
Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56: 27–78. doi: 10.1016/j.brainresrev.2007.05.004
![]() |
[60] |
Matsumoto M, Hikosaka O (2009) Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459: 837–841. doi: 10.1038/nature08028
![]() |
[61] |
Gottfried JA, O'Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301: 1104–1107. doi: 10.1126/science.1087919
![]() |
[62] | Stefani MR, Moghaddam B (2016) Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum. J Neurosci Off J Soc Neurosci 26: 8810–8818. |
[63] | Castro DC, Cole SL, Berridge KC (2015) Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci 9: 90. |
[64] | Peciña S, Smith KS, Berridge KC (2006) Hedonic hot spots in the brain. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 12: 500–511. |
[65] |
Smith KS, Berridge KC, Aldridge JW (2011) Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci U S A 108: E255-264. doi: 10.1073/pnas.1101920108
![]() |
[66] |
Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28: 309–369. doi: 10.1016/S0165-0173(98)00019-8
![]() |
[67] |
Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci Off J Soc Neurosci 27: 1594–1605. doi: 10.1523/JNEUROSCI.4205-06.2007
![]() |
[68] | Belujon P, Grace AA (2016) Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Ann N Y Acad Sci 1216: 114–121. |
[69] |
Weinshenker D, Schroeder JP (2007) There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 32: 1433–1451. doi: 10.1038/sj.npp.1301263
![]() |
[70] |
Everitt BJ, Hutcheson DM, Ersche KD, et al. (2007) The orbital prefrontal cortex and drug addiction in laboratory animals and humans. Ann N Y Acad Sci 1121: 576–597. doi: 10.1196/annals.1401.022
![]() |
[71] |
Britt JP, Benaliouad F, McDevitt RA, et al. (2012) Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76: 790–803. doi: 10.1016/j.neuron.2012.09.040
![]() |
[72] |
Asher A, Lodge DJ (2012) Distinct prefrontal cortical regions negatively regulate evoked activity in nucleus accumbens subregions. Int J Neuropsychopharmacol 15: 1287–1294. doi: 10.1017/S146114571100143X
![]() |
[73] |
Ishikawa A, Ambroggi F, Nicola SM, et al. (2008) Dorsomedial prefrontal cortex contribution to behavioral and nucleus accumbens neuronal responses to incentive cues. J Neurosci Off J Soc Neurosci 28: 5088–5098. doi: 10.1523/JNEUROSCI.0253-08.2008
![]() |
[74] |
Connolly L, Coveleskie K, Kilpatrick LA, et al. (2013) Differences in brain responses between lean and obese women to a sweetened drink. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc 25: 579–e460. doi: 10.1111/nmo.12125
![]() |
[75] |
Robbins TW, Ersche KD, Everitt BJ (2008) Drug addiction and the memory systems of the brain. Ann N Y Acad Sci 1141: 1–21. doi: 10.1196/annals.1441.020
![]() |
[76] | Müller CP (2013) Episodic memories and their relevance for psychoactive drug use and addiction. Front Behav Neurosci 7: 34. |
[77] |
Naqvi NH, Bechara A (2010) The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Struct Funct 214: 435–450. doi: 10.1007/s00429-010-0268-7
![]() |
[78] |
Satterthwaite TD, Kable JW, Vandekar L, et al. (2015) Common and Dissociable Dysfunction of the Reward System in Bipolar and Unipolar Depression. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 40: 2258–2268. doi: 10.1038/npp.2015.75
![]() |
[79] |
Surguladze S, Brammer MJ, Keedwell P, et al. (2005) A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biol Psychiatry 57: 201–209. doi: 10.1016/j.biopsych.2004.10.028
![]() |
[80] |
Elliott R, Rubinsztein JS, Sahakian BJ, et al. (2002) The neural basis of mood- congruent processing biases in depression. Arch Gen Psychiatry 59: 597–604. doi: 10.1001/archpsyc.59.7.597
![]() |
[81] |
Keedwell PA, Andrew C, Williams SCR, et al. (2005) A double dissociation of ventromedial prefrontal cortical responses to sad and happy stimuli in depressed and healthy individuals. Biol Psychiatry 58: 495–503. doi: 10.1016/j.biopsych.2005.04.035
![]() |
[82] |
Yurgelun-Todd DA, Gruber SA, Kanayama G, et al. (2000) fMRI during affect discrimination in bipolar affective disorder. Bipolar Disord 2: 237–248. doi: 10.1034/j.1399-5618.2000.20304.x
![]() |
[83] |
Caseras X, Murphy K, Lawrence NS, et al. (2015) Emotion regulation deficits in euthymic bipolar I versus bipolar II disorder: a functional and diffusion-tensor imaging study. Bipolar Disord 17: 461–470. doi: 10.1111/bdi.12292
![]() |
[84] |
Redlich R, Dohm K, Grotegerd D, et al. (2015) Reward Processing in Unipolar and Bipolar Depression: A Functional MRI Study. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 40: 2623–2631. doi: 10.1038/npp.2015.110
![]() |
[85] |
Namburi P, Beyeler A, Yorozu S, et al. (2015) A circuit mechanism for differentiating positive and negative associations. Nature 520: 675–678. doi: 10.1038/nature14366
![]() |
[86] |
Mahon K, Burdick KE, Szeszko PR (2010) A Role for White Matter Abnormalities in the Pathophysiology of Bipolar Disorder. Neurosci Biobehav Rev 34: 533–554. doi: 10.1016/j.neubiorev.2009.10.012
![]() |
[87] |
Franklin TR, Wang Z, Wang J, et al. (2007) Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion fMRI study. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 32: 2301–2309. doi: 10.1038/sj.npp.1301371
![]() |
[88] | Garavan H, Pankiewicz J, Bloom A, et al. (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157(11): 1789–1798. |
[89] |
Diekhof EK, Falkai P, Gruber O (2008) Functional neuroimaging of reward processing and decision-making: a review of aberrant motivational and affective processing in addiction and mood disorders. Brain Res Rev 59: 164–184. doi: 10.1016/j.brainresrev.2008.07.004
![]() |
[90] |
White NM, Packard MG, McDonald RJ (2013) Dissociation of memory systems: The story unfolds. Behav Neurosci 127: 813–834. doi: 10.1037/a0034859
![]() |
[91] |
Wrase J, Schlagenhauf F, Kienast T, et al. (2007) Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. NeuroImage 35: 787–794. doi: 10.1016/j.neuroimage.2006.11.043
![]() |
[92] |
Drevets WC, Gautier C, Price JC, et al. (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49: 81–96. doi: 10.1016/S0006-3223(00)01038-6
![]() |
[93] | Ding YS, Logan J, Bermel R, et al. (2000) Dopamine receptor-mediated regulation of striatal cholinergic activity: positron emission tomography studies with norchloro[18F]fluoroepibatidine. J Neurochem 74: 1514–1521. |
[94] |
Greenberg BD, Gabriels LA, Malone DA, et al. (2010) Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol Psychiatry 15: 64–79. doi: 10.1038/mp.2008.55
![]() |
[95] |
Denys D, Mantione M, Figee M, van den Munckhof P, et al. (2010) Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 67: 1061-1068. doi: 10.1001/archgenpsychiatry.2010.122
![]() |
[96] |
Scott DJ, Stohler CS, Egnatuk CM, et al. (2008) Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry 65: 220–231. doi: 10.1001/archgenpsychiatry.2007.34
![]() |
1. | Ghulam Farid, Yu-Ming Chu, Maja Andrić, Chahn Yong Jung, Josip Pečarić, Shin Min Kang, Xinguang Zhang, Refinements of Some Integral Inequalities for s , m -Convex Functions, 2020, 2020, 1563-5147, 1, 10.1155/2020/8878342 | |
2. | Zhongyi Zhang, Ghulam Farid, Kahkashan Mahreen, Fu-Dong Ge, Inequalities for Unified Integral Operators via Strongly α , h ‐ m -Convexity, 2021, 2021, 2314-8888, 1, 10.1155/2021/6675826 | |
3. | Timing Yu, Ghulam Farid, Kahkashan Mahreen, Chahn Yong Jung, Soo Hak Shim, Ghulam Mustafa, On Generalized Strongly Convex Functions and Unified Integral Operators, 2021, 2021, 1563-5147, 1, 10.1155/2021/6695781 | |
4. | Yonghong Liu, Ghulam Farid, Dina Abuzaid, Hafsa Yasmeen, On boundedness of fractional integral operators via several kinds of convex functions, 2022, 7, 2473-6988, 19167, 10.3934/math.20221052 | |
5. | Wengui Yang, Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function, 2022, 6, 2504-3110, 182, 10.3390/fractalfract6040182 | |
6. | WENGUI YANG, CERTAIN NEW WEIGHTED YOUNG- AND PÓLYA–SZEGÖ-TYPE INEQUALITIES FOR UNIFIED FRACTIONAL INTEGRAL OPERATORS VIA AN EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION WITH APPLICATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22501067 |