Research article Topical Sections

Evaluation of strength anisotropy and fracture behavior of UD NITE-SiC/SiC composites with various fiber orientations

  • Received: 30 June 2016 Accepted: 10 October 2016 Published: 14 October 2016
  • A SiC/SiC composite by Nano-infiltration and Transient Eutectic-phase (NITE) process is the attractive candidate materials for advanced energy systems, aero-space system. The NITE process is improved to the industrialization grade process from the laboratory grade process. In order to ensure reliability of products by NITE-SiC/SiC composites, understanding of the strength anisotropy is important. This paper presented the basic strength anisotropy knowledges of unidirectional (UD) type NITE-SiC/SiC composites with various fiber orientations by correlation evaluation of microstructure and mechanical properties. Also, the strength anisotropy evaluation of UD NITE-SiC/SiC composites utilizing the strength anisotropy prediction theories were discussed. The axial/off-axial mechanical properties of UD NITE-SiC/SiC composites by the industrialization grade process were evaluated by axial/off-axial tensile test. The mechanical properties of NITE-SiC/SiC composites fabricated tended to decrease with increasing of fiber orientation angle. The experiment results by axial/off-axial tensile test were consistent with the strength anisotropy prediction theories by the maximum normal stress theory and the Tsai-Hill criterion. Also, the failure mode of SiC/SiC composites fabricated with each fiber orientation angle was consistent with fracture surface observation results. The strength anisotropy of UD NITE-SiC/SiC composites was suggested to be able to predict by Tsai-Hill criterion. The basic strength anisotropy of UD SiC/SiC composites was understood.

    Citation: Naofumi Nakazato, Akira Kohyama, Hirotatsu Kishimoto. Evaluation of strength anisotropy and fracture behavior of UD NITE-SiC/SiC composites with various fiber orientations[J]. AIMS Materials Science, 2016, 3(4): 1382-1390. doi: 10.3934/matersci.2016.4.1382

    Related Papers:

    [1] Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900
    [2] Keenan Hawekotte, Susan E. Luczak, I. G. Rosen . Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach. Mathematical Biosciences and Engineering, 2021, 18(5): 6739-6770. doi: 10.3934/mbe.2021335
    [3] Gigi Thomas, Edward M. Lungu . A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences and Engineering, 2010, 7(4): 871-904. doi: 10.3934/mbe.2010.7.871
    [4] Salih Djillali, Soufiane Bentout, Tarik Mohammed Touaoula, Abdessamad Tridane . Global dynamics of alcoholism epidemic model with distributed delays. Mathematical Biosciences and Engineering, 2021, 18(6): 8245-8256. doi: 10.3934/mbe.2021409
    [5] Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang . Modelling and analysis of an alcoholism model with treatment and effect of Twitter. Mathematical Biosciences and Engineering, 2019, 16(5): 3561-3622. doi: 10.3934/mbe.2019179
    [6] Ridouan Bani, Rasheed Hameed, Steve Szymanowski, Priscilla Greenwood, Christopher M. Kribs-Zaleta, Anuj Mubayi . Influence of environmental factors on college alcohol drinking patterns. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1281-1300. doi: 10.3934/mbe.2013.10.1281
    [7] Peixian Zhuang, Xinghao Ding, Jinming Duan . Subspace-based non-blind deconvolution. Mathematical Biosciences and Engineering, 2019, 16(4): 2202-2218. doi: 10.3934/mbe.2019108
    [8] Biyun Hong, Yang Zhang . Research on the influence of attention and emotion of tea drinkers based on artificial neural network. Mathematical Biosciences and Engineering, 2021, 18(4): 3423-3434. doi: 10.3934/mbe.2021171
    [9] Colette Calmelet, John Hotchkiss, Philip Crooke . A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences and Engineering, 2014, 11(6): 1449-1464. doi: 10.3934/mbe.2014.11.1449
    [10] Piotr Klejment . Application of supervised machine learning as a method for identifying DEM contact law parameters. Mathematical Biosciences and Engineering, 2021, 18(6): 7490-7505. doi: 10.3934/mbe.2021370
  • A SiC/SiC composite by Nano-infiltration and Transient Eutectic-phase (NITE) process is the attractive candidate materials for advanced energy systems, aero-space system. The NITE process is improved to the industrialization grade process from the laboratory grade process. In order to ensure reliability of products by NITE-SiC/SiC composites, understanding of the strength anisotropy is important. This paper presented the basic strength anisotropy knowledges of unidirectional (UD) type NITE-SiC/SiC composites with various fiber orientations by correlation evaluation of microstructure and mechanical properties. Also, the strength anisotropy evaluation of UD NITE-SiC/SiC composites utilizing the strength anisotropy prediction theories were discussed. The axial/off-axial mechanical properties of UD NITE-SiC/SiC composites by the industrialization grade process were evaluated by axial/off-axial tensile test. The mechanical properties of NITE-SiC/SiC composites fabricated tended to decrease with increasing of fiber orientation angle. The experiment results by axial/off-axial tensile test were consistent with the strength anisotropy prediction theories by the maximum normal stress theory and the Tsai-Hill criterion. Also, the failure mode of SiC/SiC composites fabricated with each fiber orientation angle was consistent with fracture surface observation results. The strength anisotropy of UD NITE-SiC/SiC composites was suggested to be able to predict by Tsai-Hill criterion. The basic strength anisotropy of UD SiC/SiC composites was understood.


    [1] Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Sci Compos Tech 64: 155–170. doi: 10.1016/S0266-3538(03)00230-6
    [2] Kohyama A, Kishimoto H (2013) SiC/SiC composite materials for nuclear application. Nucl Saf Simul 4: 72–79.
    [3] Kotoh Y, Snead LL, Henager CH Jr, et al. (2014) Curent status and recent research achievements in SiC/SiC composites. J Nucl Mater 455: 387–397.
    [4] Yang W, Noda T, Araki H, et al. (2003) Mechanical properties of several advanced Tyranno-SA fiber-reinforced CVI-SiC matrix composites. Mater Sci Eng A345: 28–35.
    [5] Jones R, Szweda A, Petrak D (1999) Polymer derived ceramic matrix composites. Composites A30: 569–575.
    [6] Lee SP, Katoh Y, Kohyama A (2001) Microstructure analysis and strength evaluation of reaction sintered SiC/SiC composites. Scripta Mater 44: 153–157. doi: 10.1016/S1359-6462(00)00542-X
    [7] Kohyama A, Dong SM, Katoh Y (2002) Development of SiC/SiC composites by Nano-Infiltration and Transient Eutectoid (NITE) process. Ceram Eng Sci Proc 23: 311–318.
    [8] Katoh Y, Dong SM, Kohyama A (2002) Thermo-mechanical properties and microstructure of silicon carbide composites fabricated by nano-infiltrated transient eutectoid process. Fusion Eng Des 61–62: 723–731.
    [9] Dong SM, Katoh Y, Kohyama A (2003) Preparation of SiC/SiC composites by hot pressing, using Tyranno-SA fiber as reinforcement. J Am Ceram Soc 86: 26–32.
    [10] Kohyama A, Park JS, Jung HC (2011) Advanced SiC fibers and SiC/SiC composites toward industrialization. J Nucl Mater 417: 340–343. doi: 10.1016/j.jnucmat.2010.12.086
    [11] Nakazato N, Kohyama A, Kohno Y (2012) Effect of SiC powders surface property on densification of NITE-SiC Preforms. J Jpn I Met 76: 634–638. doi: 10.2320/jinstmet.76.634
    [12] Nakazato N, Kishimoto H, Shimoda K, et al. (2011) Effects of preform densification on near-net shaping of NITE-SiC/SiC composites. IOP Conference Series: Materials Science and Engineering 18: 202011. doi: 10.1088/1757-899X/18/20/202011
    [13] Nozawa T, Ozawa K, Choi YB, et al. (2012) Determination and prediction of axial/off-axial mechanical properties of SiC/SiC composites. Fusion Eng Des 87: 803–807. doi: 10.1016/j.fusengdes.2012.02.026
    [14] Azzi VD, Tsai SW (1965) Anisotropy strength of composites. Exp Mech 5: 283–288. doi: 10.1007/BF02326292
    [15] Hull D, Clyne TW (1996) An Introduction to Composite Materials, Cambridge University Press, 184–190
    [16] Sinclair JH, Chamis CC (1981) Fracture Modes in Off-Axis Fiber Composites. Polym Composite 2: 45–52.
  • This article has been cited by:

    1. Yan Wang, Daniel J. Fridberg, Robert F. Leeman, Robert L. Cook, Eric C. Porges, Wrist-worn alcohol biosensors: Strengths, limitations, and future directions, 2019, 81, 07418329, 83, 10.1016/j.alcohol.2018.08.013
    2. John D. Roache, Tara E. Karns-Wright, Martin Goros, Nathalie Hill-Kapturczak, Charles W. Mathias, Donald M. Dougherty, Processing transdermal alcohol concentration (TAC) data to detect low-level drinking, 2019, 81, 07418329, 101, 10.1016/j.alcohol.2018.08.014
    3. Melike Sirlanci, I. Gary Rosen, Tamara L. Wall, Susan E. Luczak, Applying a novel population-based model approach to estimating breath alcohol concentration (BrAC) from transdermal alcohol concentration (TAC) biosensor data, 2019, 81, 07418329, 117, 10.1016/j.alcohol.2018.09.005
    4. Jian Li, Susan E. Luczak, I. G. Rosen, Comparing a distributed parameter model-based system identification technique with more conventional methods for inverse problems, 2019, 27, 0928-0219, 703, 10.1515/jiip-2018-0006
    5. Alastair van Heerden, Mark Tomlinson, Sarah Skeen, Charles Parry, Kendal Bryant, Mary Jane Rotheram-Borus, Innovation at the Intersection of Alcohol and HIV Research, 2017, 21, 1090-7165, 274, 10.1007/s10461-017-1926-z
    6. Melike Sirlanci, Susan Luczak, I. G. Rosen, 2017, Approximation and convergence in the estimation of random parameters in linear holomorphic semigroups generated by regularly dissipative operators, 978-1-5090-5992-8, 3171, 10.23919/ACC.2017.7963435
    7. Kelly Egmond, Cassandra J. C. Wright, Michael Livingston, Emmanuel Kuntsche, Wearable Transdermal Alcohol Monitors: A Systematic Review of Detection Validity, and Relationship Between Transdermal and Breath Alcohol Concentration and Influencing Factors, 2020, 44, 0145-6008, 1918, 10.1111/acer.14432
    8. Christian S. Hendershot, Christina N. Nona, A Review of Developmental Considerations in Human Laboratory Alcohol Research, 2017, 4, 2196-2952, 364, 10.1007/s40429-017-0173-8
    9. Nancy P. Barnett, Mark A. Celio, Jennifer W. Tidey, James G. Murphy, Suzanne M. Colby, Robert M. Swift, A preliminary randomized controlled trial of contingency management for alcohol use reduction using a transdermal alcohol sensor, 2017, 112, 0965-2140, 1025, 10.1111/add.13767
    10. Melike Sirlanci, I G Rosen, Susan E Luczak, Catharine E Fairbairn, Konrad Bresin, Dahyeon Kang, Deconvolving the input to random abstract parabolic systems: a population model-based approach to estimating blood/breath alcohol concentration from transdermal alcohol biosensor data, 2018, 34, 0266-5611, 125006, 10.1088/1361-6420/aae791
    11. Susan E. Luczak, Ashley L. Hawkins, Zheng Dai, Raphael Wichmann, Chunming Wang, I.Gary Rosen, Obtaining continuous BrAC/BAC estimates in the field: A hybrid system integrating transdermal alcohol biosensor, Intellidrink smartphone app, and BrAC Estimator software tools, 2018, 83, 03064603, 48, 10.1016/j.addbeh.2017.11.038
    12. Melike Sirlanci, Susan E. Luczak, Catharine E. Fairbairn, Dahyeon Kang, Ruoxi Pan, Xin Yu, I. Gary Rosen, Estimating the distribution of random parameters in a diffusion equation forward model for a transdermal alcohol biosensor, 2019, 106, 00051098, 101, 10.1016/j.automatica.2019.04.026
    13. Sina Kianersi, Maya Luetke, Jon Agley, Ruth Gassman, Christina Ludema, Molly Rosenberg, Validation of transdermal alcohol concentration data collected using wearable alcohol monitors: A systematic review and meta-analysis, 2020, 216, 03768716, 108304, 10.1016/j.drugalcdep.2020.108304
    14. Catharine E. Fairbairn, I. Gary Rosen, Susan E. Luczak, Walter J. Venerable, Estimating the quantity and time course of alcohol consumption from transdermal alcohol sensor data: A combined laboratory-ambulatory study, 2019, 81, 07418329, 111, 10.1016/j.alcohol.2018.08.015
    15. John D. Clapp, Danielle R. Madden, Sheila Pakdaman, Drinking with Friends: Measuring the Two-week Ecology of Drinking Behaviors, 2022, 46, 1087-3244, 96, 10.5993/AJHB.46.2.1
    16. Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, 2022, Physics-Informed Learning: Distributed Parameter Systems, Hidden Markov Models, and the Viterbi Algorithm, 978-1-6654-5196-3, 266, 10.23919/ACC53348.2022.9867145
    17. Baichen Li, R. Scott Downen, Quan Dong, Nam Tran, Maxine LeSaux, Andrew C. Meltzer, Zhenyu Li, A Discreet Wearable IoT Sensor for Continuous Transdermal Alcohol Monitoring—Challenges and Opportunities, 2021, 21, 1530-437X, 5322, 10.1109/JSEN.2020.3030254
    18. Clemens Oszkinat, Susan E. Luczak, I. Gary Rosen, An abstract parabolic system-based physics-informed long short-term memory network for estimating breath alcohol concentration from transdermal alcohol biosensor data, 2022, 34, 0941-0643, 18933, 10.1007/s00521-022-07505-w
    19. Mengsha Yao, Susan E. Luczak, I. Gary Rosen, Tracking and blind deconvolution of blood alcohol concentration from transdermal alcohol biosensor data: A population model-based LQG approach in Hilbert space, 2023, 147, 00051098, 110699, 10.1016/j.automatica.2022.110699
    20. Keenan Hawekotte, Susan E. Luczak, I. G. Rosen, Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach, 2021, 18, 1551-0018, 6739, 10.3934/mbe.2021335
    21. Clemens Oszkinat, Tianlan Shao, Chunming Wang, I G Rosen, Allison D Rosen, Emily B Saldich, Susan E Luczak, Blood and breath alcohol concentration from transdermal alcohol biosensor data: estimation and uncertainty quantification via forward and inverse filtering for a covariate-dependent, physics-informed, hidden Markov model* , 2022, 38, 0266-5611, 055002, 10.1088/1361-6420/ac5ac7
    22. Mengsha Yao, Susan E. Luczak, Emily B. Saldich, I. Gary Rosen, A population model‐based linear‐quadratic Gaussian compensator for the control of intravenously infused alcohol studies and withdrawal symptom prophylaxis using transdermal sensing, 2022, 0143-2087, 10.1002/oca.2934
    23. Bob M. Lansdorp, Flux-Type versus Concentration-Type Sensors in Transdermal Measurements, 2023, 13, 2079-6374, 845, 10.3390/bios13090845
    24. Kyla-Rose Walden, Emily B. Saldich, Georgia Wong, Haoxing Liu, Chunming Wang, I. Gary Rosen, Susan E. Luczak, 2023, 79, 9780443193866, 271, 10.1016/bs.plm.2023.06.002
    25. Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, Uncertainty Quantification in Estimating Blood Alcohol Concentration From Transdermal Alcohol Level With Physics-Informed Neural Networks, 2023, 34, 2162-237X, 8094, 10.1109/TNNLS.2022.3140726
    26. Lernik Asserian, Susan E. Luczak, I. G. Rosen, Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol, 2023, 20, 1551-0018, 20345, 10.3934/mbe.2023900
    27. J.M. Maestre, P. Chanfreut, L. Aarons, Constrained numerical deconvolution using orthogonal polynomials, 2024, 24058440, e24762, 10.1016/j.heliyon.2024.e24762
    28. Mengsha Yao, Maria Allayioti, Emily B. Saldich, Georgia Y. Wong, Chunming Wang, Susan E. Luczak, I. G. Rosen, Real-time recursive estimation of, and uncertainty quantification for, breath alcohol concentration via LQ tracking control-based inverse filtering of transdermal alcohol biosensor signals, 2024, 2, 2994-7669, 38, 10.3934/ammc.2024003
    29. Joseph C. Anderson, A new approach to modeling transdermal ethanol kinetics, 2024, 12, 2051-817X, 10.14814/phy2.70070
    30. Mengsha Yao, Gary Rosen, 2025, 10.5772/intechopen.1010428
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5563) PDF downloads(1050) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog