Hyperbolic-elliptic models for well-reservoir flow

  • Primary: 35L65, 35L60; Secondary: 35K40.

  • We formulate a hierarchy of models relevant for studying coupled well-reservoir flows. The starting point is an integral equation representing unsteady single-phase 3-D porous media flow and the 1-D isothermal Euler equations representing unsteady well flow. This $2 \times 2$ system of conservation laws is coupled to the integral equation through natural coupling conditions accounting for the flow between well and surrounding reservoir. By imposing simplifying assumptions we obtain various hyperbolic-parabolic and hyperbolic-elliptic systems. In particular, by assuming that the fluid is incompressible we obtain a hyperbolic-elliptic system for which we present existence and uniqueness results. Numerical examples demonstrate formation of steep gradients resulting from a balance between a local nonlinear convective term and a non-local diffusive term. This balance is governed by various well, reservoir, and fluid parameters involved in the non-local diffusion term, and reflects the interaction between well and reservoir.

    Citation: Steinar Evje, Kenneth H. Karlsen. Hyperbolic-elliptic models for well-reservoir flow[J]. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639

    Related Papers:

  • We formulate a hierarchy of models relevant for studying coupled well-reservoir flows. The starting point is an integral equation representing unsteady single-phase 3-D porous media flow and the 1-D isothermal Euler equations representing unsteady well flow. This $2 \times 2$ system of conservation laws is coupled to the integral equation through natural coupling conditions accounting for the flow between well and surrounding reservoir. By imposing simplifying assumptions we obtain various hyperbolic-parabolic and hyperbolic-elliptic systems. In particular, by assuming that the fluid is incompressible we obtain a hyperbolic-elliptic system for which we present existence and uniqueness results. Numerical examples demonstrate formation of steep gradients resulting from a balance between a local nonlinear convective term and a non-local diffusive term. This balance is governed by various well, reservoir, and fluid parameters involved in the non-local diffusion term, and reflects the interaction between well and reservoir.


    加载中
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4467) PDF downloads(50) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog